whisper.cpp/ggml-alloc.c

996 lines
36 KiB
C

#include "ggml-alloc.h"
#include "ggml-backend-impl.h"
#include "ggml.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MAX_FREE_BLOCKS 256
//#define GGML_ALLOCATOR_DEBUG
//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#define AT_PRINTF(...)
static bool ggml_is_view(const struct ggml_tensor * t) {
return t->view_src != NULL;
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_UNARY:
case GGML_OP_ROPE:
case GGML_OP_RMS_NORM:
case GGML_OP_SOFT_MAX:
return true;
default:
return false;
}
}
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
assert(alignment && !(alignment & (alignment - 1))); // power of 2
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
return offset + align;
}
// tallocr
struct ggml_tallocr {
ggml_backend_buffer_t buffer;
void * base;
size_t alignment;
size_t offset;
};
ggml_tallocr_t ggml_tallocr_new(ggml_backend_buffer_t buffer) {
ggml_tallocr_t talloc = malloc(sizeof(struct ggml_tallocr));
if (talloc == NULL) {
return NULL;
}
void * base = ggml_backend_buffer_get_base(buffer);
size_t align = ggml_backend_buffer_get_alignment(buffer);
assert(align && !(align & (align - 1))); // power of 2
*talloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.base = */ base,
/*.alignment = */ align,
/*.offset = */ aligned_offset(base, 0, align),
};
return talloc;
}
void ggml_tallocr_free(ggml_tallocr_t talloc) {
free(talloc);
}
void ggml_tallocr_alloc(ggml_tallocr_t talloc, struct ggml_tensor * tensor) {
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
size = GGML_PAD(size, talloc->alignment);
if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
__func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
GGML_ASSERT(!"not enough space in the buffer");
return;
}
void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
talloc->offset += size;
assert(((uintptr_t)addr % talloc->alignment) == 0);
ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
}
// dynamic tensor allocator
struct free_block {
size_t offset;
size_t size;
};
struct ggml_dyn_tallocr {
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
size_t max_size;
#ifdef GGML_ALLOCATOR_DEBUG
struct {
const struct ggml_tensor * tensor;
size_t offset;
} allocated_tensors[1024];
#endif
};
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor == NULL) {
alloc->allocated_tensors[i].tensor = tensor;
alloc->allocated_tensors[i].offset = offset;
return;
}
}
GGML_ASSERT(!"out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].offset == offset) {
alloc->allocated_tensors[i].tensor = NULL;
return;
}
}
fprintf(stderr, "tried to free tensor %s not found\n", tensor->name);
GGML_ASSERT(!"tensor not found");
}
#endif
static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
size_t max_avail = 0;
// find the best fitting free block besides the last block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
}
}
if (best_fit_block == -1) {
// the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1;
} else {
// this should never happen
fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
GGML_UNREACHABLE();
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
size_t offset = block->offset;
block->offset = offset + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
alloc->n_free_blocks--;
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, offset, tensor);
size_t cur_max = offset + size;
if (cur_max > alloc->max_size) {
// sort allocated_tensors by offset
for (int i = 0; i < 1024; i++) {
for (int j = i + 1; j < 1024; j++) {
if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
size_t tmp_offset = alloc->allocated_tensors[i].offset;
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
alloc->allocated_tensors[j].tensor = tmp_tensor;
alloc->allocated_tensors[j].offset = tmp_offset;
}
}
}
fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor) {
fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
alloc->allocated_tensors[i].offset,
alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
}
}
fprintf(stderr, "\n");
}
#endif
alloc->max_size = MAX(alloc->max_size, offset + size);
return offset;
GGML_UNUSED(tensor);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, offset, tensor);
#endif
// see if we can merge with an existing block
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
// check if ptr is at the end of the block
if (block->offset + block->size == offset) {
block->size += size;
// check if we can merge with the next block
if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
block->size += alloc->free_blocks[i+1].size;
alloc->n_free_blocks--;
for (int j = i+1; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
// check if ptr is at the beginning of the block
if (offset + size == block->offset) {
block->offset = offset;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
alloc->free_blocks[i-1].size += block->size;
alloc->n_free_blocks--;
for (int j = i; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
}
// otherwise, add a new block
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
alloc->free_blocks[i] = alloc->free_blocks[i-1];
}
// insert the new block
alloc->free_blocks[insert_pos].offset = offset;
alloc->free_blocks[insert_pos].size = size;
alloc->n_free_blocks++;
GGML_UNUSED(tensor);
}
static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
alloc->n_free_blocks = 1;
alloc->free_blocks[0].offset = 0;
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
alloc->max_size = 0;
}
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
*alloc = (struct ggml_dyn_tallocr) {
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.max_size = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {{0}},
#endif
};
ggml_dyn_tallocr_reset(alloc);
return alloc;
}
static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
free(alloc);
}
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
return alloc->max_size;
}
/////////////////////////////////////
// graph allocator
struct hash_node {
int n_children;
int n_views;
int buffer_id;
size_t offset; // offset within the buffer
bool allocated;
};
//
struct tensor_alloc {
size_t offset;
size_t size_max; // 0 = pre-allocated, unused, or view
};
struct node_alloc {
int buffer_id;
struct tensor_alloc dst;
struct tensor_alloc src[GGML_MAX_SRC];
};
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
struct ggml_hash_set hash_set;
struct hash_node * hash_values; // [hash_set.size]
struct node_alloc * node_allocs; // [n_nodes]
int n_nodes;
struct tensor_alloc * leaf_allocs; // [n_leafs]
int n_leafs;
};
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
GGML_ASSERT(galloc != NULL);
galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1);
GGML_ASSERT(galloc->bufts != NULL);
galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1);
GGML_ASSERT(galloc->buffers != NULL);
galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1);
GGML_ASSERT(galloc->buf_tallocs != NULL);
for (int i = 0; i < n_bufs; i++) {
galloc->bufts[i] = bufts[i];
galloc->buffers[i] = NULL;
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
}
galloc->n_buffers = n_bufs;
return galloc;
}
ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) {
return ggml_gallocr_new_n(&buft, 1);
}
void ggml_gallocr_free(ggml_gallocr_t galloc) {
if (galloc == NULL) {
return;
}
for (int i = 0; i < galloc->n_buffers; i++) {
if (galloc->buffers != NULL) {
ggml_backend_buffer_free(galloc->buffers[i]);
}
if (galloc->buf_tallocs != NULL) {
ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
}
}
free(galloc->hash_set.keys);
free(galloc->hash_values);
free(galloc->bufts);
free(galloc->buffers);
free(galloc->buf_tallocs);
free(galloc->node_allocs);
free(galloc->leaf_allocs);
free(galloc);
}
typedef struct ggml_gallocr * ggml_gallocr_t;
static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
return &galloc->hash_values[i];
}
static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) {
return ggml_gallocr_hash_get(galloc, t)->allocated;
}
static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
hn->buffer_id = buffer_id;
hn->offset = offset;
hn->allocated = true;
}
static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) {
return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
}
static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
hn->allocated = true;
assert(hn->offset == 0);
// try to reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * parent = node->src[i];
if (parent == NULL) {
continue;
}
// if the node's data is external, then we cannot re-use it
if (!ggml_gallocr_is_own(galloc, parent)) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue;
}
// outputs cannot be reused
if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) {
AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
continue;
}
if (!ggml_are_same_layout(node, parent)) {
AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
continue;
}
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
if (p_hn->n_children == 1 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
assert(view_src_hn->offset == p_hn->offset);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
p_hn->allocated = false; // avoid freeing the parent
view_src_hn->allocated = false;
return;
}
} else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
p_hn->allocated = false; // avoid freeing the parent
return;
}
}
}
}
// allocate tensor from the buffer
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
hn->buffer_id = buffer_id;
hn->offset = offset;
return;
}
}
static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
// graph outputs are never freed
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
AT_PRINTF("not freeing output %s\n", node->name);
return;
}
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
size_t offset = hn->offset;
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
hn->allocated = false;
}
static int get_node_buffer_id(const int * node_buffer_ids, int i) {
return node_buffer_ids ? node_buffer_ids[i] : 0;
}
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
// clear hash tables
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
// count number of children and views
// allocate all graph inputs and leafs first to avoid overwriting them
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = node->view_src;
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
}
if (node->flags & GGML_TENSOR_FLAG_INPUT) {
ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
// allocate explicit inputs and leafs
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
}
}
}
// allocate the remaining leafs that are unused on the graph
// these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
if (hn->n_children == 0) {
assert(!hn->allocated);
// since buffer ids are only given for nodes, these leafs are always allocated in the first buffer
ggml_gallocr_allocate_node(galloc, leaf, 0);
}
}
// allocate tensors
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
int buffer_id = get_node_buffer_id(node_buffer_ids, i);
// allocate parents (only leafs need to be allocated at this point)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
continue;
}
ggml_gallocr_allocate_node(galloc, parent, buffer_id);
}
// allocate node
ggml_gallocr_allocate_node(galloc, node, buffer_id);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
continue;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
// update parents
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
continue;
}
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
p_hn->n_children -= 1;
AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n",
view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
ggml_gallocr_free_node(galloc, view_src, buffer_id);
}
}
else if (p_hn->allocated) {
ggml_gallocr_free_node(galloc, parent, buffer_id);
}
}
AT_PRINTF("\n");
}
}
}
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids) {
size_t hash_size = graph->visited_hash_table.size;
// initialize hash table
if (galloc->hash_set.size < hash_size) {
free(galloc->hash_set.keys);
free(galloc->hash_values);
galloc->hash_set.size = hash_size;
galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size);
galloc->hash_values = calloc(sizeof(struct hash_node), hash_size);
GGML_ASSERT(galloc->hash_set.keys != NULL);
GGML_ASSERT(galloc->hash_values != NULL);
} else {
// reset hash table
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
}
// reset allocators
for (int i = 0; i < galloc->n_buffers; i++) {
ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
}
// allocate in hash table
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids);
// set the node_allocs from the hash table
if (galloc->n_nodes < graph->n_nodes) {
free(galloc->node_allocs);
galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes);
GGML_ASSERT(galloc->node_allocs != NULL);
}
galloc->n_nodes = graph->n_nodes;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
struct node_alloc * node_alloc = &galloc->node_allocs[i];
node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i);
if (node->view_src || node->data) {
node_alloc->dst.offset = SIZE_MAX;
node_alloc->dst.size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
node_alloc->dst.offset = hn->offset;
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (!src || src->view_src || src->data) {
node_alloc->src[j].offset = SIZE_MAX;
node_alloc->src[j].size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
node_alloc->src[j].offset = hn->offset;
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
}
}
}
if (galloc->n_leafs < graph->n_leafs) {
free(galloc->leaf_allocs);
galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs);
GGML_ASSERT(galloc->leaf_allocs != NULL);
}
galloc->n_leafs = graph->n_leafs;
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
galloc->leaf_allocs[i].offset = hn->offset;
galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
}
// reallocate buffers if needed
for (int i = 0; i < galloc->n_buffers; i++) {
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
if (new_size > cur_size) {
#ifndef NDEBUG
fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
if (galloc->buffers[i] == NULL) {
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
return false;
}
}
}
return true;
}
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
return ggml_gallocr_reserve_n(galloc, graph, NULL);
}
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) {
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
if (node->view_src != NULL) {
if (node->buffer == NULL) {
assert(tensor_alloc->offset == SIZE_MAX);
if (node->view_src->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
}
ggml_backend_view_init(galloc->buffers[buffer_id], node);
}
} else {
if (node->data == NULL) {
assert(tensor_alloc->offset != SIZE_MAX);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
void * addr = (char *)base + tensor_alloc->offset;
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr);
} else {
if (node->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
}
}
}
}
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) {
ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id];
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
return talloc->size_max >= node_size;
}
static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
if (galloc->n_nodes != graph->n_nodes) {
#ifndef NDEBUG
fprintf(stderr, "%s: graph has different number of nodes\n", __func__);
#endif
return true;
}
if (galloc->n_leafs != graph->n_leafs) {
#ifndef NDEBUG
fprintf(stderr, "%s: graph has different number of leafs\n", __func__);
#endif
return true;
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
struct node_alloc * node_alloc = &galloc->node_allocs[i];
if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) {
#ifndef NDEBUG
fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name);
#endif
return true;
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) {
#ifndef NDEBUG
fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
#endif
return true;
}
}
}
return false;
}
bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
if (ggml_gallocr_needs_realloc(galloc, graph)) {
if (galloc->n_buffers == 1) {
#ifndef NDEBUG
fprintf(stderr, "%s: reallocating buffers automatically\n", __func__);
#endif
if (!ggml_gallocr_reserve(galloc, graph)) {
return false;
}
} else {
#ifndef NDEBUG
fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
#endif
return false;
}
}
// reset buffers
for (int i = 0; i < galloc->n_buffers; i++) {
// zero size buffers are not allocated
if (galloc->buffers[i] != NULL) {
ggml_backend_buffer_reset(galloc->buffers[i]);
}
}
// allocate the graph tensors from the previous assignments
// nodes
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
struct node_alloc * node_alloc = &galloc->node_allocs[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]);
}
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
}
// leafs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i];
ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc);
}
return true;
}
size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
if (galloc->buffers[buffer_id] == NULL) {
return 0;
}
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
}
// utils
static bool alloc_tensor_range(struct ggml_context * ctx,
struct ggml_tensor * first, struct ggml_tensor * last,
ggml_backend_buffer_type_t buft, size_t size,
ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
if (buffer == NULL) {
#ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
#endif
for (size_t i = 0; i < *n_buffers; i++) {
ggml_backend_buffer_free(*buffers[i]);
}
free(*buffers);
return false;
}
struct ggml_tallocr * tallocr = ggml_tallocr_new(buffer);
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL) {
if (t->view_src == NULL) {
ggml_tallocr_alloc(tallocr, t);
} else if (t->buffer == NULL) {
ggml_backend_view_init(buffer, t);
}
} else {
if (t->view_src != NULL && t->buffer == NULL) {
// view of a pre-allocated tensor
ggml_backend_view_init(buffer, t);
}
}
}
ggml_tallocr_free(tallocr);
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
(*buffers)[(*n_buffers)++] = buffer;
return true;
}
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
size_t alignment = ggml_backend_buft_get_alignment(buft);
size_t max_size = ggml_backend_buft_get_max_size(buft);
ggml_backend_buffer_t * buffers = NULL;
size_t n_buffers = 0;
size_t cur_buf_size = 0;
struct ggml_tensor * first = ggml_get_first_tensor(ctx);
for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
size_t this_size = 0;
if (t->data == NULL && t->view_src == NULL) {
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
}
if (this_size > max_size) {
fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
__func__, t->name,
ggml_backend_buft_name(buft),
this_size, max_size);
for (size_t i = 0; i < n_buffers; i++) {
ggml_backend_buffer_free(buffers[i]);
}
free(buffers);
return NULL;
}
if ((cur_buf_size + this_size) > max_size) {
// allocate tensors in the current buffer
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
return NULL;
}
first = t;
cur_buf_size = this_size;
} else {
cur_buf_size += this_size;
}
}
// allocate remaining tensors
if (cur_buf_size > 0) {
if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
return NULL;
}
}
if (n_buffers == 0) {
#ifndef NDEBUG
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
#endif
return NULL;
}
ggml_backend_buffer_t buffer;
if (n_buffers == 1) {
buffer = buffers[0];
} else {
buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
}
free(buffers);
return buffer;
}
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
}