R0CKSTAR 121d27a495
musa: correct MUSA SDK rc4.0.1 download URL (#3217)
* musa: correct MUSA SDK rc4.0.1 download URL

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix typo

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-06-03 06:02:12 +02:00
..

whisper.cpp/tests/librispeech

LibriSpeech is a standard dataset for training and evaluating automatic speech recognition systems.

This directory contains a set of tools to evaluate the recognition performance of whisper.cpp on LibriSpeech corpus.

Quick Start

  1. (Pre-requirement) Compile whisper-cli and prepare the Whisper model in ggml format.

    $ # Execute the commands below in the project root dir.
    $ cmake -B build
    $ cmake --build build --config Release
    $ ./models/download-ggml-model.sh tiny
    

    Consult whisper.cpp/README.md for more details.

  2. Download the audio files from LibriSpeech project.

    $ make get-audio
    
  3. Set up the environment to compute WER score.

    $ pip install -r requirements.txt
    

    For example, if you use virtualenv, you can set up it as follows:

    $ python3 -m venv venv
    $ . venv/bin/activate
    $ pip install -r requirements.txt
    
  4. Run the benchmark test.

    $ make
    

How-to guides

How to change the inference parameters

Create eval.conf and override variables.

WHISPER_MODEL = large-v3-turbo
WHISPER_FLAGS = --no-prints --threads 8 --language en --output-txt

Check out eval.mk for more details.