mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-05-01 22:54:53 +02:00
* opencl: fix `ROPE` * opencl: fix `SOFT_MAX` * Add fp16 variant * opencl: enforce subgroup size for `soft_max`
4027 lines
164 KiB
C++
4027 lines
164 KiB
C++
#define CL_TARGET_OPENCL_VERSION 220
|
|
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
|
|
|
|
// suppress warnings in CL headers for GCC and Clang
|
|
#pragma GCC diagnostic ignored "-Woverlength-strings"
|
|
#ifdef __clang__
|
|
#pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
|
|
#endif
|
|
|
|
#include "ggml-opencl.h"
|
|
#include "ggml-backend.h"
|
|
#include "ggml-impl.h"
|
|
#include "ggml-backend-impl.h"
|
|
#include "ggml.h"
|
|
|
|
#include <CL/cl.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <atomic>
|
|
#include <fstream>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <cmath>
|
|
|
|
#undef MIN
|
|
#undef MAX
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
|
|
#define CL_CHECK(err) \
|
|
do { \
|
|
cl_int err_ = (err); \
|
|
if (err_ != CL_SUCCESS) { \
|
|
GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
|
|
#err, err_, __FILE__, __LINE__); \
|
|
GGML_ASSERT(0); \
|
|
} \
|
|
} while (0)
|
|
|
|
//------------------------------------------------------------------------------
|
|
// OpenCL
|
|
//------------------------------------------------------------------------------
|
|
|
|
bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
|
|
|
|
enum GPU_FAMILY {
|
|
ADRENO,
|
|
INTEL,
|
|
UNKNOWN,
|
|
};
|
|
|
|
enum ADRENO_GPU_GEN {
|
|
ADRENO_UNKNOWN,
|
|
A7X,
|
|
A8X,
|
|
X1E,
|
|
};
|
|
|
|
static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
|
|
if (strstr(device_name, "730") ||
|
|
strstr(device_name, "740") ||
|
|
strstr(device_name, "750")) {
|
|
return ADRENO_GPU_GEN::A7X;
|
|
}
|
|
|
|
if (strstr(device_name, "830")) {
|
|
return ADRENO_GPU_GEN::A8X;
|
|
}
|
|
|
|
if (strstr(device_name, "X1")) {
|
|
return ADRENO_GPU_GEN::X1E;
|
|
}
|
|
|
|
return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
|
|
}
|
|
|
|
static int get_adreno_cl_compiler_version(const char *driver_version) {
|
|
std::string driver_ver_str(driver_version);
|
|
size_t compiler_ver_pos = driver_ver_str.find("E031");
|
|
size_t compiler_ver_len = 13;
|
|
size_t compiler_ver_offset = 5;
|
|
|
|
if (compiler_ver_pos == std::string::npos) {
|
|
compiler_ver_pos = driver_ver_str.find("DX");
|
|
if (compiler_ver_pos == std::string::npos) {
|
|
return -1;
|
|
}
|
|
compiler_ver_len = 11;
|
|
compiler_ver_offset = 3;
|
|
}
|
|
|
|
std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
|
|
std::string major_ver_str = compiler_ver_str.substr(compiler_ver_offset, 2);
|
|
return std::atoi(major_ver_str.c_str());
|
|
}
|
|
|
|
// backend device context
|
|
struct ggml_backend_opencl_device_context {
|
|
cl_platform_id platform;
|
|
std::string platform_name;
|
|
|
|
cl_device_id device;
|
|
std::string device_name;
|
|
};
|
|
|
|
// backend context
|
|
struct ggml_backend_opencl_context {
|
|
cl_device_id device;
|
|
std::string device_name;
|
|
|
|
std::string driver_version;
|
|
|
|
GPU_FAMILY gpu_family;
|
|
ADRENO_GPU_GEN adreno_gen;
|
|
|
|
cl_int alignment;
|
|
size_t max_alloc_size;
|
|
bool fp16_support;
|
|
|
|
int adreno_wave_size;
|
|
|
|
cl_context context;
|
|
cl_command_queue queue;
|
|
|
|
cl_program program;
|
|
cl_program program_1;
|
|
cl_program program_2;
|
|
|
|
cl_kernel kernel_add, kernel_add_row;
|
|
cl_kernel kernel_mul, kernel_mul_row;
|
|
cl_kernel kernel_scale;
|
|
cl_kernel kernel_silu, kernel_silu_4;
|
|
cl_kernel kernel_gelu, kernel_gelu_4;
|
|
cl_kernel kernel_relu;
|
|
cl_kernel kernel_clamp;
|
|
cl_kernel kernel_norm;
|
|
cl_kernel kernel_rms_norm;
|
|
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
|
|
cl_kernel kernel_soft_max, kernel_soft_max_4;
|
|
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
|
|
cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
|
|
cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
|
|
cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
|
|
cl_kernel kernel_mul_mat_f32_f32;
|
|
cl_kernel kernel_mul_mat_f16_f16;
|
|
cl_kernel kernel_mul_mat_f16_f32_1row;
|
|
cl_kernel kernel_mul_mat_f16_f32;
|
|
cl_kernel kernel_mul_mat_f16_f32_l4;
|
|
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
|
|
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0, kernel_mul_mat_q4_0_f32_flat;
|
|
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
|
|
cl_kernel kernel_convert_block_q4_0_noshuffle, kernel_mul_mat_q4_0_f32_flat_v0,
|
|
kernel_mul_mat_q4_0_f32_flat_img_v0;
|
|
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
|
|
cl_kernel kernel_mul_mv_q6_K_f32;
|
|
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
// Transpose kernels
|
|
cl_program program_transpose_32;
|
|
cl_program program_transpose_32_16;
|
|
cl_program program_transpose_16;
|
|
cl_kernel kernel_transpose_32;
|
|
cl_kernel kernel_transpose_32_16;
|
|
cl_kernel kernel_transpose_16;
|
|
|
|
cl_mem A_s_d_max; // max scale buffer size for transpose
|
|
cl_mem A_q_d_max; // max weight buffer size for transpose
|
|
cl_mem B_d_max; // max activation buffer size for transpose
|
|
|
|
// Gemm and Gemv related programs, kernels, etc
|
|
cl_program program_CL_gemm;
|
|
cl_program program_CL_gemv_general;
|
|
cl_program program_CL_gemv_4096_1_11008;
|
|
cl_program program_CL_gemv_4096_1_4096;
|
|
cl_program program_CL_gemv_11008_1_4096;
|
|
cl_program program_CL_gemv_32000_1_4096;
|
|
cl_kernel CL_mul_mat_Ab_Bi_8x4;
|
|
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
|
|
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
|
|
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
|
|
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
|
|
cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
|
|
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
|
};
|
|
|
|
static ggml_backend_device g_ggml_backend_opencl_device;
|
|
static ggml_backend_opencl_device_context g_ggml_ctx_dev_main {
|
|
/*.platform =*/ nullptr,
|
|
/*.platform_nane =*/ "",
|
|
/*.device =*/ nullptr,
|
|
/*.device_name =*/ "",
|
|
};
|
|
|
|
static int ggml_backend_opencl_n_devices = 0;
|
|
|
|
// Profiling
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
struct ProfilingInfo {
|
|
std::string op_name;
|
|
std::string kernel_name;
|
|
// Kernel execution time in nanoseconds.
|
|
cl_ulong duration_ns;
|
|
// Global and local work sizes.
|
|
size_t global_size[3];
|
|
size_t local_size[3];
|
|
// Op output size.
|
|
size_t output_size[4];
|
|
};
|
|
|
|
std::vector<ProfilingInfo> g_profiling_info;
|
|
#endif
|
|
|
|
inline std::string read_file(const std::string &path) {
|
|
std::ifstream ifs(path);
|
|
if (!ifs) {
|
|
return "";
|
|
}
|
|
std::string text;
|
|
ifs.seekg(0, std::ios::end);
|
|
text.resize(ifs.tellg());
|
|
ifs.seekg(0, std::ios::beg);
|
|
ifs.read(&text[0], text.size());
|
|
return text;
|
|
}
|
|
|
|
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
|
|
cl_program p;
|
|
char *program_log;
|
|
size_t program_size;
|
|
size_t log_size;
|
|
int err;
|
|
|
|
program_size = strlen(program_buffer);
|
|
|
|
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
|
|
if(err < 0) {
|
|
GGML_LOG_ERROR("OpenCL error creating program");
|
|
exit(1);
|
|
}
|
|
|
|
err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
|
|
if(err < 0) {
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
|
|
program_log = (char*) malloc(log_size + 1);
|
|
program_log[log_size] = '\0';
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
|
|
GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
|
|
free(program_log);
|
|
exit(1);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
|
|
static bool initialized = false;
|
|
static ggml_backend_opencl_context *backend_ctx = nullptr;
|
|
|
|
if (initialized) {
|
|
return backend_ctx;
|
|
}
|
|
|
|
ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
|
|
GGML_ASSERT(dev_ctx);
|
|
GGML_ASSERT(dev_ctx->platform == nullptr);
|
|
GGML_ASSERT(dev_ctx->device == nullptr);
|
|
GGML_ASSERT(backend_ctx == nullptr);
|
|
|
|
initialized = true;
|
|
backend_ctx = new ggml_backend_opencl_context();
|
|
backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
|
|
|
|
cl_int err;
|
|
|
|
#ifdef GGML_PROFILE_OPENCL
|
|
GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
|
|
#endif
|
|
|
|
struct cl_device;
|
|
struct cl_platform {
|
|
cl_platform_id id;
|
|
unsigned number;
|
|
char name[128];
|
|
char vendor[128];
|
|
struct cl_device * devices;
|
|
unsigned n_devices;
|
|
struct cl_device * default_device;
|
|
};
|
|
|
|
struct cl_device {
|
|
struct cl_platform * platform;
|
|
cl_device_id id;
|
|
unsigned number;
|
|
cl_device_type type;
|
|
char name[128];
|
|
};
|
|
|
|
enum { NPLAT = 16, NDEV = 16 };
|
|
|
|
struct cl_platform platforms[NPLAT];
|
|
unsigned n_platforms = 0;
|
|
struct cl_device devices[NDEV];
|
|
unsigned n_devices = 0;
|
|
struct cl_device * default_device = NULL;
|
|
|
|
cl_platform_id platform_ids[NPLAT];
|
|
if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
|
|
GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
|
|
return backend_ctx;
|
|
}
|
|
|
|
for (unsigned i = 0; i < n_platforms; i++) {
|
|
struct cl_platform * p = &platforms[i];
|
|
p->number = i;
|
|
p->id = platform_ids[i];
|
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
|
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
|
|
|
|
cl_device_id device_ids[NDEV];
|
|
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
|
|
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
|
|
p->n_devices = 0;
|
|
} else {
|
|
CL_CHECK(clGetDeviceIDsError);
|
|
}
|
|
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
|
|
p->default_device = NULL;
|
|
|
|
for (unsigned j = 0; j < p->n_devices; j++) {
|
|
struct cl_device * d = &devices[n_devices];
|
|
d->number = n_devices++;
|
|
d->id = device_ids[j];
|
|
d->platform = p;
|
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
|
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
|
|
|
|
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
|
|
p->default_device = d;
|
|
}
|
|
}
|
|
|
|
if (default_device == NULL && p->default_device != NULL) {
|
|
default_device = p->default_device;
|
|
}
|
|
}
|
|
|
|
if (n_devices == 0) {
|
|
GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
|
|
return backend_ctx;
|
|
}
|
|
|
|
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
|
|
char * user_device_string = getenv("GGML_OPENCL_DEVICE");
|
|
int user_platform_number = -1;
|
|
int user_device_number = -1;
|
|
|
|
unsigned n;
|
|
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
|
|
user_platform_number = (int)n;
|
|
}
|
|
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
|
|
user_device_number = (int)n;
|
|
}
|
|
if (user_platform_number != -1 && user_device_number != -1) {
|
|
cl_platform* platform = &platforms[user_platform_number];
|
|
if ((unsigned)user_device_number >= platform->n_devices) {
|
|
GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
|
|
exit(1);
|
|
}
|
|
default_device = &platform->devices[user_device_number];
|
|
} else {
|
|
|
|
struct cl_device * selected_devices = devices;
|
|
unsigned n_selected_devices = n_devices;
|
|
|
|
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
|
|
for (unsigned i = 0; i < n_platforms; i++) {
|
|
struct cl_platform * p = &platforms[i];
|
|
if (strstr(p->name, user_platform_string) != NULL ||
|
|
strstr(p->vendor, user_platform_string) != NULL) {
|
|
user_platform_number = (int)i;
|
|
break;
|
|
}
|
|
}
|
|
if (user_platform_number == -1) {
|
|
GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (user_platform_number != -1) {
|
|
struct cl_platform * p = &platforms[user_platform_number];
|
|
selected_devices = p->devices;
|
|
n_selected_devices = p->n_devices;
|
|
default_device = p->default_device;
|
|
if (n_selected_devices == 0) {
|
|
GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
|
|
for (unsigned i = 0; i < n_selected_devices; i++) {
|
|
struct cl_device * d = &selected_devices[i];
|
|
if (strstr(d->name, user_device_string) != NULL) {
|
|
user_device_number = d->number;
|
|
break;
|
|
}
|
|
}
|
|
if (user_device_number == -1) {
|
|
GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (user_device_number != -1) {
|
|
selected_devices = &devices[user_device_number];
|
|
n_selected_devices = 1;
|
|
default_device = &selected_devices[0];
|
|
}
|
|
|
|
GGML_ASSERT(n_selected_devices > 0);
|
|
|
|
if (default_device == NULL) {
|
|
default_device = &selected_devices[0];
|
|
}
|
|
}
|
|
|
|
GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
|
|
GGML_LOG_INFO("ggml_opencl: selecting device: '%s'\n", default_device->name);
|
|
if (default_device->type != CL_DEVICE_TYPE_GPU) {
|
|
GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
|
|
}
|
|
|
|
dev_ctx->platform = default_device->platform->id;
|
|
dev_ctx->device = default_device->id;
|
|
backend_ctx->device = default_device->id;
|
|
|
|
if (strstr(default_device->name, "Adreno")) {
|
|
backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
|
|
backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
|
|
|
|
// Default wave size is 128, A8x uses 64.
|
|
if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A8X) {
|
|
backend_ctx->adreno_wave_size = 64;
|
|
} else if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A7X ||
|
|
backend_ctx->adreno_gen == ADRENO_GPU_GEN::X1E) {
|
|
backend_ctx->adreno_wave_size = 128;
|
|
} else {
|
|
backend_ctx->adreno_wave_size = 128;
|
|
GGML_LOG_WARN("ggml_opencl: Unsupported Adreno GPU: %s, "
|
|
"using wave size %d, "
|
|
"may not work as expected\n",
|
|
backend_ctx->device_name.c_str(), backend_ctx->adreno_wave_size);
|
|
}
|
|
} else if (strstr(default_device->name, "Intel")) {
|
|
backend_ctx->gpu_family = GPU_FAMILY::INTEL;
|
|
} else {
|
|
GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name);
|
|
backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
|
|
return backend_ctx;
|
|
}
|
|
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
|
|
GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
|
|
"run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
|
|
return backend_ctx;
|
|
}
|
|
#endif
|
|
|
|
// Populate backend device name
|
|
dev_ctx->platform_name = default_device->platform->name;
|
|
dev_ctx->device_name = default_device->name;
|
|
backend_ctx->device_name = default_device->name;
|
|
|
|
// A local ref of cl_device_id for convenience
|
|
cl_device_id device = backend_ctx->device;
|
|
|
|
// Check device OpenCL version, OpenCL 2.0 or above is required
|
|
size_t device_ver_str_size;
|
|
clGetDeviceInfo(device, CL_DEVICE_VERSION, 0, NULL, &device_ver_str_size);
|
|
char *device_ver_buffer = (char *)alloca(device_ver_str_size + 1);
|
|
clGetDeviceInfo(device, CL_DEVICE_VERSION, device_ver_str_size, device_ver_buffer, NULL);
|
|
device_ver_buffer[device_ver_str_size] = '\0';
|
|
GGML_LOG_INFO("ggml_opencl: device OpenCL version: %s\n", device_ver_buffer);
|
|
|
|
if (strstr(device_ver_buffer, "OpenCL 2") == NULL &&
|
|
strstr(device_ver_buffer, "OpenCL 3") == NULL) {
|
|
GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
|
|
return backend_ctx;
|
|
}
|
|
|
|
// Check driver version
|
|
size_t driver_version_str_size;
|
|
clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
|
|
char *driver_version = (char *)alloca(driver_version_str_size + 1);
|
|
clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
|
|
driver_version[driver_version_str_size] = '\0';
|
|
GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
|
|
backend_ctx->driver_version = driver_version;
|
|
|
|
int adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
|
|
bool has_vector_subgroup_broadcast =
|
|
adreno_cl_compiler_version >= 47 || adreno_cl_compiler_version == 17;
|
|
GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
|
|
has_vector_subgroup_broadcast ? "true" : "false");
|
|
|
|
size_t ext_str_size;
|
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
|
|
char *ext_buffer = (char *)alloca(ext_str_size + 1);
|
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
|
|
ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
|
|
// Check if ext_buffer contains cl_khr_fp16
|
|
backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
|
|
GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
|
|
|
|
// fp16 is required
|
|
if (!backend_ctx->fp16_support) {
|
|
GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
|
|
return backend_ctx;
|
|
}
|
|
|
|
// If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
|
|
// optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
|
|
if (strstr(device_ver_buffer, "OpenCL 3") &&
|
|
strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
|
|
strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
|
|
GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
|
|
"(note that subgroups is an optional feature in OpenCL 3.0)\n");
|
|
return backend_ctx;
|
|
}
|
|
|
|
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &backend_ctx->alignment, NULL));
|
|
GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
|
|
|
|
clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
|
|
GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
|
|
|
|
// Check SVM.
|
|
cl_device_svm_capabilities svm_caps;
|
|
CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
|
|
GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
|
|
svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
|
|
GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
|
|
svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
|
|
GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
|
|
svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
|
|
GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
|
|
svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
|
|
|
|
// Print out configurations
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
|
|
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
|
|
|
cl_context_properties properties[] = {
|
|
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0
|
|
};
|
|
|
|
CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
|
|
|
|
// A local ref of cl_context for convenience
|
|
cl_context context = backend_ctx->context;
|
|
|
|
//CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
|
|
// (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
|
|
// (queue = clCreateCommandQueue(context, device, 0, &err), err)
|
|
//)));
|
|
cl_command_queue_properties command_queue_props = 0;
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
|
|
#endif
|
|
CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
|
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string kernel_src {
|
|
#include "ggml-opencl.cl.h"
|
|
};
|
|
#else
|
|
const std::string kernel_src = read_file("ggml-opencl.cl");
|
|
#endif
|
|
|
|
std::string compile_opts =
|
|
"-cl-std=CL2.0 -cl-mad-enable -cl-unsafe-math-optimizations "
|
|
"-cl-finite-math-only -cl-fast-relaxed-math ";
|
|
backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts);
|
|
|
|
// Non matmul kernels.
|
|
CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program, "kernel_get_rows_q4_0", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program, "kernel_add", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program, "kernel_add_row", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program, "kernel_mul", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program, "kernel_mul_row", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program, "kernel_scale", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program, "kernel_silu", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program, "kernel_rms_norm", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf_8", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program, "kernel_soft_max", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f32", &err), err));
|
|
|
|
// Matmul kernels.
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f32_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f16", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_1row", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_l4", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_v", &err), err));
|
|
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_flat", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_convert_block_q4_0", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_restore_block_q4_0", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
|
|
|
|
// Load additional mulmat kernels.
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string kernel_src_1 {
|
|
#include "ggml-opencl_mm.cl.h"
|
|
};
|
|
#else
|
|
const std::string kernel_src_1 = read_file("ggml-opencl_mm.cl");
|
|
#endif
|
|
backend_ctx->program_1 = build_program_from_source(context, device, kernel_src_1.c_str(), compile_opts);
|
|
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mv_q6_K_f32", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_v0", &err), err));
|
|
CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_img_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_img_v0", &err), err));
|
|
|
|
// Load additional data conversion kernels.
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string kernel_src_2 {
|
|
#include "ggml-opencl_cvt.cl.h"
|
|
};
|
|
#else
|
|
const std::string kernel_src_2 = read_file("ggml-opencl_cvt.cl");
|
|
#endif
|
|
backend_ctx->program_2 = build_program_from_source(context, device, kernel_src_2.c_str(), compile_opts);
|
|
|
|
CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));
|
|
|
|
// Kernels for Adreno
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string transpose_32_src {
|
|
#include "ggml-opencl_transpose_32.cl.h"
|
|
};
|
|
#else
|
|
const std::string transpose_32_src = read_file("ggml-opencl_transpose_32.cl");
|
|
#endif
|
|
backend_ctx->program_transpose_32 = build_program_from_source(context, device, transpose_32_src.c_str(), compile_opts);
|
|
CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose_32, "kernel_transpose_32", &err), err));
|
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string transpose_32_16_src {
|
|
#include "ggml-opencl_transpose_32_16.cl.h"
|
|
};
|
|
#else
|
|
const std::string transpose_32_16_src = read_file("ggml-opencl_transpose_32_16.cl");
|
|
#endif
|
|
backend_ctx->program_transpose_32_16 = build_program_from_source(context, device, transpose_32_16_src.c_str(), compile_opts);
|
|
CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose_32_16, "kernel_transpose_32_16", &err), err));
|
|
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string transpose_16_src {
|
|
#include "ggml-opencl_transpose_16.cl.h"
|
|
};
|
|
#else
|
|
const std::string transpose_16_src = read_file("ggml-opencl_transpose_16.cl");
|
|
#endif
|
|
backend_ctx->program_transpose_16 = build_program_from_source(context, device, transpose_16_src.c_str(), compile_opts);
|
|
CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err));
|
|
|
|
// Gemv general
|
|
std::string CL_gemv_compile_opts =
|
|
" -cl-std=CL2.0 "
|
|
" -cl-mad-enable "
|
|
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
|
|
if (has_vector_subgroup_broadcast) {
|
|
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
|
|
}
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string kernel_src_CL_gemv_general {
|
|
#include "ggml-opencl_gemv_noshuffle_general.cl.h"
|
|
};
|
|
#else
|
|
const std::string kernel_src_CL_gemv_general = read_file("ggml-opencl_gemv_noshuffle_general.cl");
|
|
#endif
|
|
|
|
backend_ctx->program_CL_gemv_general = build_program_from_source(
|
|
context, device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
|
|
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
|
|
|
|
// Gemv 2048, 16384
|
|
CL_gemv_compile_opts =
|
|
" -cl-std=CL2.0 "
|
|
" -cl-mad-enable "
|
|
" -DLINE_STRIDE_A=2048 "
|
|
" -DBLOCK_STRIDE_A=16384 "
|
|
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
|
|
if (has_vector_subgroup_broadcast) {
|
|
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
|
|
}
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string kernel_src_CL_gemv {
|
|
#include "ggml-opencl_gemv_noshuffle.cl.h"
|
|
};
|
|
#else
|
|
const std::string kernel_src_CL_gemv = read_file("ggml-opencl_gemv_noshuffle.cl");
|
|
#endif
|
|
|
|
backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
|
|
context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
|
|
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
|
|
|
|
// Gemv 2048, 16384
|
|
CL_gemv_compile_opts =
|
|
" -cl-std=CL2.0 "
|
|
" -cl-mad-enable "
|
|
" -DLINE_STRIDE_A=2048 "
|
|
" -DBLOCK_STRIDE_A=16384 "
|
|
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
|
|
if (has_vector_subgroup_broadcast) {
|
|
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
|
|
}
|
|
|
|
backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
|
|
context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
|
|
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
|
|
|
|
// Gemv 5504, 44032
|
|
CL_gemv_compile_opts =
|
|
" -cl-std=CL2.0 "
|
|
" -cl-mad-enable "
|
|
" -DLINE_STRIDE_A=5504 "
|
|
" -DBLOCK_STRIDE_A=44032 "
|
|
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
|
|
if (has_vector_subgroup_broadcast) {
|
|
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
|
|
}
|
|
|
|
backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
|
|
context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
|
|
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
|
|
|
|
// Gemv 16000, 128000
|
|
CL_gemv_compile_opts =
|
|
" -cl-std=CL2.0 "
|
|
" -cl-mad-enable "
|
|
" -DLINE_STRIDE_A=16000 "
|
|
" -DBLOCK_STRIDE_A=128000 "
|
|
" -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
|
|
if (has_vector_subgroup_broadcast) {
|
|
CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
|
|
}
|
|
|
|
backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
|
|
CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
|
|
|
|
// Gemm
|
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
|
const std::string kernel_src_CL_gemm {
|
|
#include "ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h"
|
|
};
|
|
#else
|
|
const std::string kernel_src_CL_gemm = read_file("ggml-opencl_mul_mat_Ab_Bi_8x4.cl");
|
|
#endif
|
|
backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts);
|
|
CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
|
|
|
|
// Allocate intermediate buffers and images
|
|
size_t max_A_q_d_bytes = 311164928;
|
|
size_t max_A_s_d_bytes = 38895616;
|
|
size_t max_B_d_bytes = 45088768;
|
|
|
|
CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
|
|
CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
|
|
CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
|
|
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
|
|
|
// For now we support a single devices
|
|
ggml_backend_opencl_n_devices = 1;
|
|
|
|
return backend_ctx;
|
|
}
|
|
|
|
static void ggml_cl2_free(void) {
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
FILE * fperf = fopen("cl_profiling.csv", "w");
|
|
if (!fperf) {
|
|
GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
|
|
return;
|
|
}
|
|
|
|
float total_kernel_time = 0;
|
|
fprintf(fperf, "op name, kernel name, duration (ms), global size, local size, output size\n");
|
|
for (const ProfilingInfo & info : g_profiling_info) {
|
|
total_kernel_time += info.duration_ns/1.e6f;
|
|
fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
|
|
info.op_name.c_str(), info.kernel_name.c_str(), info.duration_ns/1.e6f,
|
|
info.global_size[0], info.global_size[1], info.global_size[2],
|
|
info.local_size[0], info.local_size[2], info.local_size[2],
|
|
info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
|
|
}
|
|
fclose(fperf);
|
|
|
|
GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Tensor extra management
|
|
//------------------------------------------------------------------------------
|
|
struct ggml_tensor_extra_cl {
|
|
// The buffer object that holds the data.
|
|
cl_mem data_device;
|
|
// The offset into the buffer object. This is primarily for scratch buffer
|
|
// and view operation.
|
|
// NB: this offset no longer includes view offset (view_offs). Whenever this
|
|
// offset is used, view_offs should be considered.
|
|
cl_ulong offset;
|
|
// The actual size of the cl_mem object. This is needed when returning the
|
|
// block to the pool.
|
|
size_t actual_size;
|
|
|
|
void reset() {
|
|
data_device = nullptr;
|
|
offset = 0;
|
|
actual_size = 0;
|
|
}
|
|
};
|
|
|
|
// Additional tensor extra structs for quantized tensors.
|
|
// These tensors are loaded from files and should not be allocated in scratch --
|
|
// they should always be allocated from the pool. Hence, they do not have an
|
|
// `offset`, which indicate their locations in the scratch buffer.
|
|
struct ggml_tensor_extra_cl_q4_0 {
|
|
// Quantized values.
|
|
cl_mem q = nullptr;
|
|
// Quantized values in image1d_buffer_t.
|
|
cl_mem q_img = nullptr;
|
|
// Scales.
|
|
cl_mem d = nullptr;
|
|
// Scales in image1d_buffer_t.
|
|
cl_mem d_img = nullptr;
|
|
// Size of quantized values.
|
|
size_t size_q = 0;
|
|
// Size of scales.
|
|
size_t size_d = 0;
|
|
|
|
~ggml_tensor_extra_cl_q4_0() {
|
|
reset();
|
|
}
|
|
|
|
void reset() {
|
|
// q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
|
|
// They must be properly released so that the original buffer can be
|
|
// properly released to avoid memory leak.
|
|
if (q != nullptr) {
|
|
CL_CHECK(clReleaseMemObject(q));
|
|
q = nullptr;
|
|
}
|
|
if (d != nullptr) {
|
|
CL_CHECK(clReleaseMemObject(d));
|
|
d = nullptr;
|
|
}
|
|
// Currently, q_img and d_img are only initialized when SMALL_ALLOC is
|
|
// enabled. They point to the images in ggml_backend_opencl_buffer_context.
|
|
// So, there is no need to release them here.
|
|
// TODO: initialize them for non SMALL_PATH path, or remove them.
|
|
q_img = nullptr;
|
|
d_img = nullptr;
|
|
size_q = 0;
|
|
size_d = 0;
|
|
}
|
|
};
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Backend API
|
|
//------------------------------------------------------------------------------
|
|
|
|
//
|
|
// backend
|
|
//
|
|
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
|
|
return "OpenCL";
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_opencl_free(ggml_backend_t backend) {
|
|
ggml_cl2_free();
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
GGML_UNUSED(backend);
|
|
GGML_UNUSED(tensor);
|
|
GGML_UNUSED(data);
|
|
GGML_UNUSED(offset);
|
|
GGML_UNUSED(size);
|
|
}
|
|
|
|
static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
GGML_UNUSED(backend);
|
|
GGML_UNUSED(tensor);
|
|
GGML_UNUSED(data);
|
|
GGML_UNUSED(offset);
|
|
GGML_UNUSED(size);
|
|
}
|
|
|
|
static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
|
|
GGML_UNUSED(backend);
|
|
GGML_UNUSED(src);
|
|
GGML_UNUSED(dst);
|
|
return false;
|
|
}
|
|
|
|
static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
ggml_tensor * node = cgraph->nodes[i];
|
|
|
|
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
|
continue;
|
|
}
|
|
|
|
bool ok = ggml_cl_compute_forward(backend, node);
|
|
if (!ok) {
|
|
GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
|
}
|
|
GGML_ASSERT(ok);
|
|
}
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
}
|
|
|
|
static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
|
GGML_UNUSED(dev);
|
|
|
|
switch (op->op) {
|
|
case GGML_OP_NONE:
|
|
return true;
|
|
case GGML_OP_GET_ROWS:
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
return true;
|
|
case GGML_TYPE_Q4_0:
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
// We do not support flattened Q4_0 (and possibly other Q's)
|
|
return false;
|
|
#else // GGML_OPENCL_SOA_Q
|
|
return true;
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_CONT:
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F32:
|
|
switch (op->type) {
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_F32:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_TYPE_F16:
|
|
switch (op->type) {
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_F32:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_MUL:
|
|
return true;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(op)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_RELU:
|
|
return ggml_is_contiguous(op->src[0]);
|
|
default:
|
|
return false;
|
|
}
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_RMS_NORM:
|
|
return true;
|
|
case GGML_OP_MUL_MAT:
|
|
if (op->src[0]->type == GGML_TYPE_F16) {
|
|
return true;
|
|
} else if (op->src[0]->type == GGML_TYPE_F32) {
|
|
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
|
|
} else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
|
|
op->src[0]->type == GGML_TYPE_Q6_K) {
|
|
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
|
|
}
|
|
return false;
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
return true;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
return op->ne[3] == 1;
|
|
case GGML_OP_ROPE: {
|
|
const int mode = ((const int32_t *) op->op_params)[2];
|
|
if (mode & GGML_ROPE_TYPE_MROPE) {
|
|
return false;
|
|
}
|
|
if (mode & GGML_ROPE_TYPE_VISION) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Forward declaration - implementation appears later in the file.
|
|
static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
|
|
|
|
static ggml_guid_t ggml_backend_opencl_guid() {
|
|
static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
|
|
return &guid;
|
|
}
|
|
|
|
static ggml_backend_i ggml_backend_opencl_i = {
|
|
/* .get_name = */ ggml_backend_opencl_name,
|
|
/* .free = */ ggml_backend_opencl_free,
|
|
/* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
|
|
/* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
|
|
/* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
|
|
/* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_update = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_opencl_graph_compute,
|
|
/* .event_record = */ NULL,
|
|
/* .event_wait = */ NULL,
|
|
};
|
|
|
|
ggml_backend_t ggml_backend_opencl_init(void) {
|
|
ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
|
|
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
|
|
|
|
ggml_backend_t backend = new ggml_backend {
|
|
/* .guid = */ ggml_backend_opencl_guid(),
|
|
/* .interface = */ ggml_backend_opencl_i,
|
|
/* .device = */ dev,
|
|
/* .context = */ backend_ctx
|
|
};
|
|
|
|
return backend;
|
|
}
|
|
|
|
bool ggml_backend_is_opencl(ggml_backend_t backend) {
|
|
return backend && backend->iface.get_name == ggml_backend_opencl_name;
|
|
}
|
|
|
|
//
|
|
// buffer
|
|
//
|
|
struct ggml_backend_opencl_buffer_context {
|
|
// A buffer context can hold multiple cl_mem objects. This is for flattening
|
|
// quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
|
|
// each tensor is allocated a separate buffer. When flattening is enabled
|
|
// with small allocation, each tensor is backed by two cl_mem objects (for
|
|
// quants and scales) packed into a backend_opencl_buffer.
|
|
ggml_backend_opencl_buffer_context(cl_mem buf)
|
|
: name("OpenCL") {
|
|
buffer.push_back(buf);
|
|
}
|
|
|
|
~ggml_backend_opencl_buffer_context() {
|
|
for (cl_mem buf : buffer) {
|
|
CL_CHECK(clReleaseMemObject(buf));
|
|
}
|
|
for (cl_mem im : img) {
|
|
CL_CHECK(clReleaseMemObject(im));
|
|
}
|
|
|
|
// Delete all extras to trigger their destructors
|
|
for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
|
|
delete e;
|
|
}
|
|
for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
|
|
delete e;
|
|
}
|
|
for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
|
|
delete e;
|
|
}
|
|
for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
|
|
delete e;
|
|
}
|
|
}
|
|
|
|
ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
|
|
ggml_tensor_extra_cl * extra;
|
|
if (temp_tensor_extras.empty()) {
|
|
extra = new ggml_tensor_extra_cl();
|
|
} else {
|
|
extra = temp_tensor_extras.back();
|
|
temp_tensor_extras.pop_back();
|
|
}
|
|
|
|
temp_tensor_extras_in_use.push_back(extra);
|
|
|
|
extra->reset();
|
|
return extra;
|
|
}
|
|
|
|
ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
|
|
ggml_tensor_extra_cl_q4_0 * extra;
|
|
if (temp_tensor_extras_q4_0.empty()) {
|
|
extra = new ggml_tensor_extra_cl_q4_0();
|
|
} else {
|
|
extra = temp_tensor_extras_q4_0.back();
|
|
temp_tensor_extras_q4_0.pop_back();
|
|
}
|
|
|
|
temp_tensor_extras_q4_0_in_use.push_back(extra);
|
|
|
|
extra->reset();
|
|
return extra;
|
|
}
|
|
|
|
void reset() {
|
|
for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
|
|
temp_tensor_extras.push_back(e);
|
|
}
|
|
temp_tensor_extras_in_use.clear();
|
|
|
|
for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
|
|
temp_tensor_extras_q4_0.push_back(e);
|
|
}
|
|
temp_tensor_extras_q4_0_in_use.clear();
|
|
}
|
|
|
|
// Pools for extras. Available extras are in `temp_tensor_extras`. Extras
|
|
// being used are in `temp_tensor_extras_in_use`. At the first run, new
|
|
// extras get created and put in `in_use`. When the buffer is reset via
|
|
// the `reset` callback, all extras in `in_use` get moved to available extras
|
|
// for reuse.
|
|
std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
|
|
std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
|
|
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
|
|
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
|
|
|
|
// The buffer_context is initially created by ggml_backend_buft_alloc_buffer
|
|
// before any tensor is initialized (at the beginning of alloc_tensor_range).
|
|
// Hence, there is alway a buffer object in this vector. When each tensor is
|
|
// being initialized, this original buffer object will be released if both
|
|
// flattening and small allocation are enabled, and additional buffer
|
|
// objects will be created in init_tensor to represent flattened quantized
|
|
// weights.
|
|
std::vector<cl_mem> buffer;
|
|
// These are image1d_buffer_t objects that wrap around the quants and scales.
|
|
// For Q4_0 quantization, there should be two of them - one for quants and
|
|
// one for scales. They should be populated only when flattening and small
|
|
// allocation are enabled.
|
|
std::vector<cl_mem> img;
|
|
std::string name;
|
|
};
|
|
|
|
static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
|
|
|
|
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
delete ctx;
|
|
}
|
|
|
|
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
return cl_ptr_base;
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
|
|
ggml_cl2_init(buffer->buft->device);
|
|
|
|
if (tensor->view_src != nullptr) {
|
|
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
|
|
|
|
ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
|
|
GGML_ASSERT(view_extra && "view_extra is nullptr?");
|
|
|
|
// Reuse extra of the parent tensor. The offset of this view tensor
|
|
// becomes `extra->offset + view_offs` and needs to be calculated when
|
|
// it is used. This changes is needed because of the change to
|
|
// ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
|
|
// `buffer` passed in here will always be `tensor->buffer`. It is OK
|
|
// to allocate extras from the same buffer context for ordinary
|
|
// intermediate tensors. But for views into kv cache tensors, doing so
|
|
// would mess up the extras used by kv cache.
|
|
// Before #7640, `buffer` is for intermediate tensors, which is always
|
|
// different from that of kv cache tensors.
|
|
//
|
|
// NB: now extra->offset no longer accounts for view_offs.
|
|
// NB: this should not apply to weight tensors (for end-to-end runs, but
|
|
// may apply for test-backend-ops).
|
|
// FIXME: if any unexpected results are seen, double check the offset -
|
|
// there could be other places that need fix.
|
|
tensor->extra = view_extra;
|
|
} else {
|
|
{
|
|
size_t offset = (char *)tensor->data - (char *)cl_ptr_base;
|
|
|
|
ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
|
|
extra->offset = offset;
|
|
extra->data_device = ctx->buffer[0];
|
|
extra->actual_size = ggml_nbytes(tensor);
|
|
|
|
tensor->extra = extra;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The optimized gemm and gemv kernels are used for large matrices without batch.
|
|
// tensor is the quantized weights matrix.
|
|
inline bool use_adreno_kernels(const ggml_tensor *tensor) {
|
|
return tensor->ne[0] >= 512 && tensor->ne[1] >= 512 &&
|
|
tensor->ne[2] == 1 && tensor->ne[3] == 1;
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
|
|
|
|
cl_context context = backend_ctx->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
// We separate the quantized bits and scale from block_q4_0 by using an
|
|
// additional kernel, where each thread handles a block. We first read the
|
|
// original weights into a temporary buffer, then create two separate
|
|
// buffers for quantized bits and scales, which are then populated by the
|
|
// conversion kernel.
|
|
if (tensor->type == GGML_TYPE_Q4_0) {
|
|
// Tensors should have been preallocated, therefore they should
|
|
// already have ggml_tensor_extra_cl as extra.
|
|
ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
|
|
GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
|
|
|
|
// Allocate the new extra and create aliases from the original.
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
|
|
|
|
size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
|
|
size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
|
|
GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
|
|
|
|
cl_int err;
|
|
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
|
|
ggml_nbytes(tensor), NULL, &err);
|
|
CL_CHECK(err);
|
|
CL_CHECK(clEnqueueWriteBuffer(
|
|
queue, data_device, CL_TRUE, 0,
|
|
ggml_nbytes(tensor), data, 0, NULL, NULL));
|
|
|
|
// We consider the specified offset arg as always, although For weights
|
|
// the offset arg should be 0 (we do not assert this).
|
|
//GGML_ASSERT(offset == 0);
|
|
|
|
// We create subbuffers from the original tensor buffer for scales and
|
|
// quants - i.e., scales and quants are aliases into the buffer obejct
|
|
// that backs the original tensor. This is a cleaner way to adapt to the
|
|
// new memory management.
|
|
// In the old code, we allocate new buffers for scales and quants
|
|
// respectively, which could still be done but would result in double
|
|
// allocation; properly deallocating the preallocated buffer that backs
|
|
// the tensors is tricky and would leak the backend specific information
|
|
// into the general backend code.
|
|
// Does this create misaligned subbuffers (alignment is 1024) in certain
|
|
// cases ?
|
|
cl_buffer_region region;
|
|
|
|
// The original tensor memory is divided into scales and quants, i.e.,
|
|
// we first store scales, then quants.
|
|
// Create subbuffer for scales.
|
|
region.origin = extra_orig->offset + tensor->view_offs + offset;
|
|
region.size = size_d;
|
|
extra->d = clCreateSubBuffer(
|
|
extra_orig->data_device, CL_MEM_READ_WRITE,
|
|
CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
|
CL_CHECK(err);
|
|
|
|
// Create subbuffer for quants.
|
|
region.origin = extra_orig->offset + tensor->view_offs + offset + size_d;
|
|
region.size = size_q;
|
|
extra->q = clCreateSubBuffer(
|
|
extra_orig->data_device, CL_MEM_READ_WRITE,
|
|
CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
|
CL_CHECK(err);
|
|
|
|
//cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
|
|
|
|
// The optimized kernels need weights in natural order, so unshuffle.
|
|
if (use_adreno_kernels(tensor)) {
|
|
kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
|
|
}
|
|
#else
|
|
cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
|
|
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
|
|
|
|
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
CL_CHECK(clWaitForEvents(1, &evt));
|
|
CL_CHECK(clReleaseMemObject(data_device));
|
|
|
|
tensor->extra = extra;
|
|
|
|
// transpose the weights and scales
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
// Only do transpose for large, non batched matrix
|
|
// TODO: use preallocated images instead of sub-buffer then image
|
|
if (use_adreno_kernels(tensor)) {
|
|
// <----------------------------------------------------------------------------------> //
|
|
// start transpose
|
|
// <----------------------------------------------------------------------------------> //
|
|
int M = tensor->ne[1]; // ne01
|
|
int K = tensor->ne[0]; // ne00
|
|
|
|
// transpose is out of place, so we need to allocate transposed buffers
|
|
// <----------------------------------------------------------------------------------> //
|
|
// use sub_buffer of max buffer size instead
|
|
|
|
size_t q_size_bytes = K * M / 8 * sizeof(float);
|
|
cl_buffer_region region;
|
|
region.origin = 0;
|
|
region.size = q_size_bytes;
|
|
cl_mem qT_d = clCreateSubBuffer(
|
|
backend_ctx->A_q_d_max,
|
|
0,
|
|
CL_BUFFER_CREATE_TYPE_REGION,
|
|
®ion,
|
|
&err);
|
|
// cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
|
|
CL_CHECK(err);
|
|
|
|
// size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
|
|
size_t d_size_bytes = M * (K / 32) * 2;
|
|
region.origin = 0;
|
|
region.size = d_size_bytes;
|
|
cl_mem dT_d = clCreateSubBuffer(
|
|
backend_ctx->A_s_d_max,
|
|
0,
|
|
CL_BUFFER_CREATE_TYPE_REGION,
|
|
®ion,
|
|
&err);
|
|
// cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
|
|
CL_CHECK(err);
|
|
|
|
// <----------------------------------------------------------------------------------> //
|
|
|
|
|
|
// create images from the buffers
|
|
// <----------------------------------------------------------------------------------> //
|
|
cl_mem q_d_image1D;
|
|
cl_mem d_d_image1D;
|
|
cl_mem qT_d_image1D;
|
|
cl_mem dT_d_image1D;
|
|
|
|
cl_image_format img_fmt_1d = { CL_RGBA, CL_FLOAT };
|
|
cl_image_desc img_desc_1d;
|
|
|
|
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
|
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
|
img_desc_1d.image_width = M * K / 8 / 4;
|
|
img_desc_1d.buffer = extra->q;
|
|
q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
|
CL_CHECK(err);
|
|
|
|
img_fmt_1d = { CL_RGBA, CL_FLOAT };
|
|
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
|
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
|
img_desc_1d.image_width = M * K / 8 / 4;
|
|
img_desc_1d.buffer = qT_d;
|
|
qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
|
CL_CHECK(err);
|
|
|
|
img_fmt_1d = { CL_RGBA, CL_FLOAT };
|
|
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
|
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
|
img_desc_1d.image_width = M * K / 32 / 4 / 2;
|
|
img_desc_1d.buffer = extra->d;
|
|
d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
|
CL_CHECK(err);
|
|
|
|
img_fmt_1d = { CL_RGBA, CL_FLOAT };
|
|
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
|
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
|
img_desc_1d.image_width = M * K / 32 / 4 / 2;
|
|
img_desc_1d.buffer = dT_d;
|
|
dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
|
|
CL_CHECK(err);
|
|
// <----------------------------------------------------------------------------------> //
|
|
|
|
// set up and call the transpose kernels
|
|
// <----------------------------------------------------------------------------------> //
|
|
// weights
|
|
int height_q = M / 8;
|
|
int width_q = K / 8 / 4;
|
|
kernel = backend_ctx->kernel_transpose_16;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
|
|
|
|
size_t local_size_q[3] = {4, 16, 1};
|
|
size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
|
|
CL_CHECK(clWaitForEvents(1, &evt));
|
|
|
|
// scales
|
|
int height_s = M / 8;
|
|
int width_s = K / 32 / 8;
|
|
|
|
kernel = backend_ctx->kernel_transpose_16;
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
|
|
|
|
size_t local_size_s[3] = {4, 16, 1};
|
|
size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
|
|
CL_CHECK(clWaitForEvents(1, &evt));
|
|
// <----------------------------------------------------------------------------------> //
|
|
|
|
// copy transposed buffer contents to original buffers
|
|
// <----------------------------------------------------------------------------------> //
|
|
// weights
|
|
CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
|
|
CL_CHECK(clWaitForEvents(1, &evt));
|
|
|
|
// scales
|
|
CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
|
|
CL_CHECK(clWaitForEvents(1, &evt));
|
|
// <----------------------------------------------------------------------------------> //
|
|
|
|
// deallocate transpose buffers
|
|
// <----------------------------------------------------------------------------------> //
|
|
CL_CHECK(clReleaseMemObject(qT_d));
|
|
CL_CHECK(clReleaseMemObject(dT_d));
|
|
|
|
// deallocate temporary images
|
|
CL_CHECK(clReleaseMemObject(q_d_image1D));
|
|
CL_CHECK(clReleaseMemObject(d_d_image1D));
|
|
CL_CHECK(clReleaseMemObject(qT_d_image1D));
|
|
CL_CHECK(clReleaseMemObject(dT_d_image1D));
|
|
// <----------------------------------------------------------------------------------> //
|
|
// end transpose
|
|
// <----------------------------------------------------------------------------------> //
|
|
}
|
|
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
|
|
|
return;
|
|
}
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
|
|
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
|
|
GGML_ASSERT(extra);
|
|
|
|
CL_CHECK(clEnqueueWriteBuffer(
|
|
queue, extra->data_device, CL_TRUE, extra->offset + offset,
|
|
size, data, 0, NULL, NULL));
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(tensor->extra);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
|
|
|
|
cl_context context = backend_ctx->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
// Make sure all previously submitted commands are finished.
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
// In end-to-end runs, get_tensor is usually used to get back the logits,
|
|
// where we can simply do clEnqueueReadBuffer since they are f32.
|
|
// However, in test-backend-ops, the GPU graph is copied to the CPU backend,
|
|
// which requires reading back quantized weight tensors.
|
|
// To properly support this, we need to restore block_q4_0 struct arrays
|
|
// from the flattened buffers.
|
|
if (tensor->type == GGML_TYPE_Q4_0) {
|
|
ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
|
|
|
|
cl_int err;
|
|
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
|
|
ggml_nbytes(tensor), NULL, &err);
|
|
CL_CHECK(err);
|
|
|
|
cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
|
|
|
|
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
|
|
size_t local_work_size[] = {1, 1, 1};
|
|
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
|
|
global_work_size, local_work_size, 0, NULL, &evt));
|
|
CL_CHECK(clWaitForEvents(1, &evt));
|
|
CL_CHECK(clEnqueueReadBuffer(
|
|
queue, data_device, CL_TRUE, offset,
|
|
size, data, 0, NULL, NULL));
|
|
CL_CHECK(clReleaseMemObject(data_device));
|
|
return;
|
|
}
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
|
|
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
|
|
|
|
CL_CHECK(clEnqueueReadBuffer(
|
|
queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
|
|
size, data, 0, NULL, NULL));
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
ggml_backend_dev_t dev = buffer->buft->device;
|
|
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
for (cl_mem buf : ctx->buffer) {
|
|
CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
|
|
}
|
|
CL_CHECK(clFinish(queue));
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
ctx->reset();
|
|
}
|
|
|
|
static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
|
|
/* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_opencl_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
|
|
/* .memset_tensor = */ NULL,
|
|
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
|
|
/* .cpy_tensor = */ NULL,
|
|
/* .clear = */ ggml_backend_opencl_buffer_clear,
|
|
/* .reset = */ ggml_backend_opencl_buffer_reset,
|
|
};
|
|
|
|
//
|
|
// buffer type
|
|
//
|
|
|
|
static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
|
|
ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
|
|
|
|
// clCreateBuffer returns -61 for size 0
|
|
size = std::max(size, (size_t)1);
|
|
|
|
cl_int err;
|
|
cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
|
|
if (err != CL_SUCCESS) {
|
|
GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
|
|
return nullptr;
|
|
}
|
|
|
|
ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
|
|
|
|
return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
|
|
}
|
|
|
|
static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
|
|
// FIXME: not thread safe, device may not be initialized yet
|
|
static cl_uint alignment = -1;
|
|
if (alignment == (cl_uint)-1) {
|
|
ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
|
|
alignment = backend_ctx->alignment;
|
|
}
|
|
return alignment;
|
|
}
|
|
|
|
static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
|
|
static size_t max_size = -1;
|
|
if (max_size == (size_t)-1) {
|
|
ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
|
|
max_size = backend_ctx->max_alloc_size;
|
|
}
|
|
return max_size;
|
|
}
|
|
|
|
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
|
return ggml_backend_is_opencl(backend);
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
|
|
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ NULL,
|
|
/* .is_host = */ NULL,
|
|
};
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
|
|
static ggml_backend_buffer_type buffer_type = {
|
|
/* .iface = */ ggml_backend_opencl_buffer_type_interface,
|
|
/* .device = */ &g_ggml_backend_opencl_device,
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return &buffer_type;
|
|
}
|
|
|
|
//
|
|
// backend device
|
|
//
|
|
|
|
static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
|
|
return "GPUOpenCL";
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
|
|
ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
|
|
return dev_ctx->device_name.c_str();
|
|
}
|
|
|
|
static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
|
*free = 1;
|
|
*total = 1;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
|
|
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
|
props->name = ggml_backend_opencl_device_get_name(dev);
|
|
props->description = ggml_backend_opencl_device_get_description(dev);
|
|
props->type = ggml_backend_opencl_device_get_type(dev);
|
|
ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
|
props->caps = ggml_backend_dev_caps {
|
|
/* .async = */ false,
|
|
/* .host_buffer = */ false,
|
|
/* .buffer_from_host_ptr = */ false,
|
|
/* .events = */ false,
|
|
};
|
|
}
|
|
|
|
static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
|
|
ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
|
|
|
|
ggml_backend_t backend = new ggml_backend {
|
|
/* .guid = */ ggml_backend_opencl_guid(),
|
|
/* .interface = */ ggml_backend_opencl_i,
|
|
/* .device = */ dev,
|
|
/* .context = */ backend_ctx,
|
|
};
|
|
|
|
return backend;
|
|
|
|
GGML_UNUSED(params);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
|
|
return ggml_backend_opencl_buffer_type();
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
|
GGML_UNUSED(dev);
|
|
GGML_UNUSED(ptr);
|
|
GGML_UNUSED(size);
|
|
GGML_UNUSED(max_tensor_size);
|
|
return nullptr;
|
|
}
|
|
|
|
static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
|
return ggml_opencl_supports_op(dev, op);
|
|
}
|
|
|
|
static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
|
return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name;
|
|
|
|
GGML_UNUSED(dev);
|
|
}
|
|
|
|
static struct ggml_backend_device_i ggml_backend_opencl_device_i = {
|
|
/* .get_name = */ ggml_backend_opencl_device_get_name,
|
|
/* .get_description = */ ggml_backend_opencl_device_get_description,
|
|
/* .get_memory = */ ggml_backend_opencl_device_get_memory,
|
|
/* .get_type = */ ggml_backend_opencl_device_get_type,
|
|
/* .get_props = */ ggml_backend_opencl_device_get_props,
|
|
/* .init_backend = */ ggml_backend_opencl_device_init,
|
|
/* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
|
|
/* .get_host_buffer_type = */ NULL,
|
|
/* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
|
|
/* .supports_op = */ ggml_backend_opencl_device_supports_op,
|
|
/* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
|
|
/* .offload_op = */ NULL,
|
|
/* .event_new = */ NULL,
|
|
/* .event_free = */ NULL,
|
|
/* .event_synchronize = */ NULL,
|
|
};
|
|
|
|
// Backend registry
|
|
|
|
static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
|
|
return ggml_backend_opencl_n_devices;
|
|
|
|
GGML_UNUSED(reg);
|
|
}
|
|
|
|
static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
|
|
GGML_ASSERT(index == 0);
|
|
|
|
return &g_ggml_backend_opencl_device;
|
|
|
|
GGML_UNUSED(reg);
|
|
GGML_UNUSED(index);
|
|
}
|
|
|
|
static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
|
|
/* .get_name = */ ggml_backend_opencl_reg_get_name,
|
|
/* .device_count = */ ggml_backend_opencl_reg_device_count,
|
|
/* .device_get = */ ggml_backend_opencl_reg_device_get,
|
|
/* .get_proc_address = */ NULL,
|
|
};
|
|
|
|
ggml_backend_reg_t ggml_backend_opencl_reg(void) {
|
|
// TODO: make this thread-safe somehow?
|
|
static ggml_backend_reg reg;
|
|
static bool initialized = false;
|
|
|
|
if (!initialized) {
|
|
reg = ggml_backend_reg {
|
|
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
|
/* .iface = */ ggml_backend_opencl_reg_i,
|
|
/* .context = */ NULL,
|
|
};
|
|
|
|
g_ggml_backend_opencl_device = ggml_backend_device {
|
|
/* .iface = */ ggml_backend_opencl_device_i,
|
|
/* .reg = */ ®,
|
|
/* .context = */ &g_ggml_ctx_dev_main,
|
|
};
|
|
|
|
ggml_cl2_init(&g_ggml_backend_opencl_device);
|
|
|
|
initialized = true;
|
|
}
|
|
|
|
return ®
|
|
}
|
|
|
|
GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Debugging utils
|
|
//------------------------------------------------------------------------------
|
|
#if 0
|
|
#define QK4_0 32
|
|
typedef struct {
|
|
ggml_fp16_t d; // delta
|
|
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
|
} block_q4_0;
|
|
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
|
|
"wrong q4_0 block size/padding");
|
|
|
|
#include <math.h>
|
|
#ifdef __cplusplus
|
|
#include "half.hpp"
|
|
#endif
|
|
|
|
static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
|
|
void * buf = malloc(ggml_nbytes(tensor));
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
void * buf_q;
|
|
void * buf_d;
|
|
#endif
|
|
|
|
#ifdef GGML_USE_OPENCL
|
|
// Make sure everything is done.
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
if (tensor->type == GGML_TYPE_Q4_0) {
|
|
ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
|
|
GGML_ASSERT(extra);
|
|
|
|
size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
|
|
size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
|
|
GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
|
|
buf_q = malloc(size_q);
|
|
buf_d = malloc(size_d);
|
|
|
|
CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
|
|
CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
} else {
|
|
// Read out the tensor from GPU memory.
|
|
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
|
|
GGML_ASSERT(extra);
|
|
|
|
CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
|
|
extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
}
|
|
#else
|
|
// Read out the tensor from GPU memory.
|
|
ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
|
|
GGML_ASSERT(extra);
|
|
|
|
CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
|
|
extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
#endif // GGML_USE_OPENCL
|
|
|
|
// Open file and dump.
|
|
char fname[512];
|
|
sprintf(fname, "./tensor-dumps/%s.txt", tensor->name);
|
|
FILE * f = fopen(fname, "w");
|
|
if (!f) {
|
|
printf("Failed to open %s\n", fname);
|
|
return;
|
|
}
|
|
|
|
if (tensor->type == GGML_TYPE_F32) {
|
|
float * data = (float *) buf;
|
|
for (int i = 0; i < ggml_nelements(tensor); ++i) {
|
|
if (isnan(data[i])) {
|
|
printf("NaN found: %s\n", tensor->name);
|
|
break;
|
|
}
|
|
fprintf(f, "%f\n", data[i]);
|
|
}
|
|
} else if (tensor->type == GGML_TYPE_I32) {
|
|
int * data = (int *) buf;
|
|
for (int i = 0; i < ggml_nelements(tensor); ++i) {
|
|
if (isnan(data[i])) {
|
|
printf("NaN found: %s\n", tensor->name);
|
|
break;
|
|
}
|
|
fprintf(f, "%d\n", data[i]);
|
|
}
|
|
} else if (tensor->type == GGML_TYPE_F16) {
|
|
#ifdef __cplusplus
|
|
half_float::half * data = (half_float::half *) buf;
|
|
for (int i = 0; i < ggml_nelements(tensor); ++i) {
|
|
if (std::isnan(data[i])) {
|
|
printf("NaN found: %s\n", tensor->name);
|
|
break;
|
|
}
|
|
fprintf(f, "%f\n", float(data[i]));
|
|
}
|
|
#endif
|
|
} else if (tensor->type == GGML_TYPE_Q4_0) {
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
|
|
unsigned char * data_q = (unsigned char *)buf_q;
|
|
|
|
for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
|
|
fprintf(f, "%04x, ", data_d[i]);
|
|
for (int k = 0; k < QK4_0/2; ++k) {
|
|
fprintf(f, "%02x, ", data_q[k]);
|
|
}
|
|
fprintf(f, "\n");
|
|
data_q += QK4_0/2;
|
|
}
|
|
free(buf_d);
|
|
free(buf_q);
|
|
#else
|
|
block_q4_0 * data = (block_q4_0 *) buf;
|
|
for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
|
|
fprintf(f, "%04x, ", data[i].d);
|
|
for (int k = 0; k < QK4_0/2; ++k) {
|
|
fprintf(f, "%02x, ", data[i].qs[k]);
|
|
}
|
|
fprintf(f, "\n");
|
|
}
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
}
|
|
free(buf);
|
|
fflush(f);
|
|
fclose(f);
|
|
}
|
|
#else
|
|
#define dump_tensor(tensor)
|
|
#endif
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Profiling utility
|
|
//------------------------------------------------------------------------------
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
void populateProfilingInfo(
|
|
ProfilingInfo& info, cl_event evt, cl_kernel kernel,
|
|
size_t global_size[3], size_t local_size[3],
|
|
const ggml_tensor * tensor) {
|
|
cl_ulong start;
|
|
cl_ulong end;
|
|
CL_CHECK(clWaitForEvents(1, &evt));
|
|
CL_CHECK(clGetEventProfilingInfo(
|
|
evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL));
|
|
CL_CHECK(clGetEventProfilingInfo(
|
|
evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL));
|
|
|
|
char kernel_name[512];
|
|
CL_CHECK(clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME,
|
|
sizeof(kernel_name), kernel_name, NULL));
|
|
|
|
info.duration_ns = end - start;
|
|
info.op_name = tensor->name;
|
|
info.kernel_name = kernel_name;
|
|
info.local_size[0] = local_size[0];
|
|
info.local_size[1] = local_size[1];
|
|
info.local_size[2] = local_size[2];
|
|
info.global_size[0] = global_size[0];
|
|
info.global_size[1] = global_size[1];
|
|
info.global_size[2] = global_size[2];
|
|
info.output_size[0] = tensor->ne[0];
|
|
info.output_size[1] = tensor->ne[1];
|
|
info.output_size[2] = tensor->ne[2];
|
|
info.output_size[3] = tensor->ne[3];
|
|
}
|
|
#endif
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Ops
|
|
//------------------------------------------------------------------------------
|
|
|
|
static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
// TODO: find the optimal values for these
|
|
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
dst->type == GGML_TYPE_F32 &&
|
|
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
|
|
}
|
|
|
|
static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
UNUSED(backend);
|
|
UNUSED(src0);
|
|
UNUSED(src1);
|
|
UNUSED(dst);
|
|
}
|
|
|
|
static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(src1);
|
|
GGML_ASSERT(src1->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
|
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
|
|
const int ne10 = src1 ? src1->ne[0] : 0;
|
|
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
|
|
const int ne11 = src1 ? src1->ne[1] : 0;
|
|
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
|
|
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
|
|
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
cl_kernel kernel;
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
kernel = backend_ctx->kernel_get_rows_f32;
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
kernel = backend_ctx->kernel_get_rows_f16;
|
|
break;
|
|
case GGML_TYPE_Q4_0:
|
|
kernel = backend_ctx->kernel_get_rows_q4_0;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
|
|
|
|
size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
|
|
size_t local_work_size[] = {1, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(src1);
|
|
GGML_ASSERT(src1->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const int ne01 = src0 ? src0->ne[1] : 0;
|
|
const int ne02 = src0 ? src0->ne[2] : 0;
|
|
const int ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
|
|
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
|
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
|
|
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
|
|
|
|
const int ne10 = src1 ? src1->ne[0] : 0;
|
|
const int ne11 = src1 ? src1->ne[1] : 0;
|
|
const int ne12 = src1 ? src1->ne[2] : 0;
|
|
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
|
|
|
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
|
|
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
|
|
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
|
|
const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
|
|
|
const int ne0 = dst ? dst->ne[0] : 0;
|
|
const int ne1 = dst ? dst->ne[1] : 0;
|
|
const int ne2 = dst ? dst->ne[2] : 0;
|
|
const int ne3 = dst ? dst->ne[3] : 0;
|
|
|
|
const cl_ulong nb0 = dst ? dst->nb[0] : 0;
|
|
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
|
|
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
|
|
const cl_ulong nb3 = dst ? dst->nb[3] : 0;
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
bool bcast_row = false;
|
|
cl_kernel kernel;
|
|
|
|
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
// src1 is a row
|
|
GGML_ASSERT(ne11 == 1);
|
|
|
|
bcast_row = true;
|
|
int ne = ne00 / 4;
|
|
kernel = backend_ctx->kernel_add_row;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
|
} else {
|
|
kernel = backend_ctx->kernel_add;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
|
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
|
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
|
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
|
|
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
|
|
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
|
|
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
|
|
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
|
|
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
|
|
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
|
|
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
|
|
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
|
|
}
|
|
|
|
if (bcast_row) {
|
|
int n = ggml_nelements(dst)/4;
|
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
} else {
|
|
unsigned int nth = MIN(64, ne0);
|
|
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
|
|
size_t local_work_size[] = {nth, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(src1);
|
|
GGML_ASSERT(src1->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const int ne01 = src0 ? src0->ne[1] : 0;
|
|
const int ne02 = src0 ? src0->ne[2] : 0;
|
|
const int ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
|
|
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
|
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
|
|
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
|
|
|
|
const int ne10 = src1 ? src1->ne[0] : 0;
|
|
const int ne11 = src1 ? src1->ne[1] : 0;
|
|
const int ne12 = src1 ? src1->ne[2] : 0;
|
|
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
|
|
|
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
|
|
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
|
|
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
|
|
const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
|
|
|
const int ne0 = dst ? dst->ne[0] : 0;
|
|
const int ne1 = dst ? dst->ne[1] : 0;
|
|
const int ne2 = dst ? dst->ne[2] : 0;
|
|
const int ne3 = dst ? dst->ne[3] : 0;
|
|
|
|
const cl_ulong nb0 = dst ? dst->nb[0] : 0;
|
|
const cl_ulong nb1 = dst ? dst->nb[1] : 0;
|
|
const cl_ulong nb2 = dst ? dst->nb[2] : 0;
|
|
const cl_ulong nb3 = dst ? dst->nb[3] : 0;
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
bool bcast_row = false;
|
|
cl_kernel kernel;
|
|
|
|
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
// src1 is a row
|
|
GGML_ASSERT(ne11 == 1);
|
|
|
|
bcast_row = true;
|
|
int ne = ne00 / 4;
|
|
kernel = backend_ctx->kernel_mul_row;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
|
} else {
|
|
kernel = backend_ctx->kernel_mul;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
|
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
|
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
|
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
|
|
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
|
|
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
|
|
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
|
|
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
|
|
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
|
|
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
|
|
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
|
|
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
|
|
}
|
|
|
|
if (bcast_row) {
|
|
int n = ggml_nelements(dst)/4;
|
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
} else {
|
|
unsigned int nth = MIN(64, ne0);
|
|
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
|
|
size_t local_work_size[] = {nth, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
UNUSED(src1);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
cl_kernel kernel;
|
|
|
|
int n = ggml_nelements(dst);
|
|
|
|
if (n % 4 == 0) {
|
|
kernel = backend_ctx->kernel_gelu_4;
|
|
n /= 4;
|
|
} else {
|
|
kernel = backend_ctx->kernel_gelu;
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
|
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
UNUSED(src1);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
cl_kernel kernel;
|
|
|
|
int n = ggml_nelements(dst);
|
|
|
|
if (n % 4 == 0) {
|
|
kernel = backend_ctx->kernel_silu_4;
|
|
n /= 4;
|
|
} else {
|
|
kernel = backend_ctx->kernel_silu;
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
|
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
UNUSED(src1);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
cl_kernel kernel = backend_ctx->kernel_relu;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
UNUSED(src1);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
float min;
|
|
float max;
|
|
memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
|
|
memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
|
|
|
|
cl_kernel kernel = backend_ctx->kernel_clamp;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
|
|
|
|
const int64_t n = ggml_nelements(dst);
|
|
|
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
UNUSED(src1);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
|
|
|
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
|
|
const int nth = MIN(64, ne00);
|
|
|
|
cl_kernel kernel = backend_ctx->kernel_norm;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth, NULL));
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
|
|
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
UNUSED(src1);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_backend_opencl_device_context * dev_ctx =
|
|
(ggml_backend_opencl_device_context *)backend->device->context;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
float eps;
|
|
memcpy(&eps, dst->op_params, sizeof(float));
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
|
|
|
GGML_ASSERT(ne00 % 4 == 0);
|
|
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
|
|
|
const int nth = MIN(64, ne00);
|
|
|
|
const int64_t nrows = ggml_nrows(src0);
|
|
|
|
size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
|
|
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
|
|
|
cl_kernel kernel = backend_ctx->kernel_rms_norm;
|
|
|
|
// Note, this kernel declares local memory in kernel args and the size
|
|
// depends on subgroup size.
|
|
// Retrieve subgroup size.
|
|
// Note, this requires OpenCL 2.1 and above
|
|
size_t sgs;
|
|
CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
|
|
CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
|
|
sizeof(local_work_size), local_work_size,
|
|
sizeof(size_t), &sgs, NULL));
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
|
|
// This is local memory - the size depends on subgroup size.
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth/sgs, NULL));
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(src1);
|
|
GGML_ASSERT(src1->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
|
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
|
|
#endif
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const int ne01 = src0 ? src0->ne[1] : 0;
|
|
const int ne02 = src0 ? src0->ne[2] : 0;
|
|
const int ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
|
|
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
|
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
|
|
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
|
|
|
|
const int ne10 = src1 ? src1->ne[0] : 0;
|
|
const int ne11 = src1 ? src1->ne[1] : 0;
|
|
const int ne12 = src1 ? src1->ne[2] : 0;
|
|
const int ne13 = src1 ? src1->ne[3] : 0;
|
|
|
|
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
|
|
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
|
|
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
|
|
const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
|
|
|
|
const int ne0 = dst ? dst->ne[0] : 0;
|
|
const int ne1 = dst ? dst->ne[1] : 0;
|
|
|
|
int r2 = ne12/ne02;
|
|
int r3 = ne13/ne03;
|
|
|
|
GGML_ASSERT(ne00 == ne10);
|
|
|
|
int nth0 = 32;
|
|
int nth1 = 1;
|
|
int nrows = 1;
|
|
// The number of values produced by each subgroup
|
|
int ndst = 4;
|
|
|
|
cl_kernel kernel;
|
|
|
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
|
cl_context context = backend_ctx->context;
|
|
|
|
if (ne01 && ne1 && use_adreno_kernels(src0)) {
|
|
|
|
// init CL objects
|
|
// <--------------------------------------------> //
|
|
cl_int status;
|
|
cl_image_format img_fmt_1d;
|
|
cl_image_desc img_desc_1d;
|
|
cl_buffer_region region;
|
|
cl_mem A_image1d = nullptr;
|
|
cl_mem B_image1d = nullptr;
|
|
cl_mem B_sub_buffer = nullptr;
|
|
cl_mem C_d = nullptr;
|
|
// for B transpose
|
|
cl_mem B_d = nullptr;
|
|
cl_mem B_d_input_image = nullptr;
|
|
// <--------------------------------------------> //
|
|
|
|
// define matrix dimensions
|
|
// <--------------------------------------------> //
|
|
int M = ne01;
|
|
int N = ne1;
|
|
int K = ne00;
|
|
int padding;
|
|
// <--------------------------------------------> //
|
|
|
|
// q4_0 x fp32
|
|
if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
|
|
// TODO: remove duplicate definitions of image description + format -- move to top
|
|
|
|
// create an image for A
|
|
// <--------------------------------------------> //
|
|
if (N == 1) {
|
|
img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
|
|
} else {
|
|
img_fmt_1d = { CL_R, CL_FLOAT};
|
|
}
|
|
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
|
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
|
img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
|
|
img_desc_1d.buffer = extra0_q4_0->q;
|
|
A_image1d = clCreateImage(
|
|
context,
|
|
CL_MEM_READ_ONLY,
|
|
&img_fmt_1d,
|
|
&img_desc_1d,
|
|
NULL,
|
|
&status);
|
|
CL_CHECK(status);
|
|
// <--------------------------------------------> //
|
|
|
|
|
|
// create a sub_buffer for B
|
|
// <--------------------------------------------> //
|
|
region.origin = (extra1->offset);
|
|
region.size = K * N * sizeof(float);
|
|
B_sub_buffer = clCreateSubBuffer(
|
|
extra1->data_device,
|
|
0,
|
|
CL_BUFFER_CREATE_TYPE_REGION,
|
|
®ion,
|
|
&status);
|
|
CL_CHECK(status);
|
|
// <--------------------------------------------> //
|
|
|
|
// transpose activation for Skyler's gemm
|
|
if (N != 1) {
|
|
//how many extra elements beyond multiple of 8
|
|
int extra_elements = N % 8;
|
|
|
|
//how much padding to add
|
|
padding = 0;
|
|
if (extra_elements > 0){
|
|
padding = 8 - extra_elements;
|
|
}
|
|
|
|
// Specify the starting offset (in bytes)
|
|
region.origin = 0;
|
|
// Specify the size of the sub-buffer (divide by 2 for FP16)
|
|
region.size = K * (N + padding) * sizeof(float)/2;
|
|
B_d = clCreateSubBuffer(
|
|
backend_ctx->B_d_max,
|
|
0,
|
|
CL_BUFFER_CREATE_TYPE_REGION,
|
|
®ion,
|
|
&status);
|
|
CL_CHECK(status);
|
|
|
|
cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
|
|
cl_image_desc image_desc_B_d_input = {
|
|
CL_MEM_OBJECT_IMAGE1D_BUFFER,
|
|
static_cast<size_t>(K * N / 4),
|
|
0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
|
|
};
|
|
B_d_input_image = clCreateImage(
|
|
context,
|
|
0,
|
|
&image_format_B_d_input,
|
|
&image_desc_B_d_input,
|
|
NULL,
|
|
&status);
|
|
CL_CHECK(status);
|
|
|
|
cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
|
|
cl_image_desc image_desc_B_d_output = {
|
|
CL_MEM_OBJECT_IMAGE1D_BUFFER,
|
|
static_cast<size_t>(K * (N + padding)/4),
|
|
0, 0, 0, 0, 0, 0, 0, { B_d }
|
|
};
|
|
B_image1d = clCreateImage(
|
|
context,
|
|
0,
|
|
&image_format_B_d_output,
|
|
&image_desc_B_d_output,
|
|
NULL,
|
|
&status);
|
|
CL_CHECK(status);
|
|
|
|
int height_B = N/4;
|
|
int width_B = K/4;
|
|
int padded_height_B = (N + padding)/4;
|
|
|
|
kernel = backend_ctx->kernel_transpose_32_16;
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
|
|
|
|
size_t local_size_t[2] = { 1, 16 };
|
|
//WGS tuning
|
|
if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
|
|
local_size_t[0]=4;
|
|
local_size_t[1]=8;
|
|
} else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
|
|
local_size_t[0]=2;
|
|
local_size_t[1]=8;
|
|
} else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
|
|
local_size_t[0]=1;
|
|
local_size_t[1]=8;
|
|
} else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
|
|
local_size_t[0]=2;
|
|
local_size_t[1]=8;
|
|
}
|
|
|
|
size_t global_size_t[2] = {
|
|
static_cast<size_t>(width_B),
|
|
static_cast<size_t>(padded_height_B)
|
|
};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL));
|
|
#endif
|
|
} else {
|
|
// no need to transpose B in other cases
|
|
// create an image for B from sub_buffer
|
|
// <--------------------------------------------> //
|
|
img_fmt_1d = {CL_RGBA, CL_FLOAT};
|
|
|
|
memset(&img_desc_1d, 0, sizeof(img_desc_1d));
|
|
img_desc_1d.image_width = K * N / 4;
|
|
img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
|
|
img_desc_1d.buffer = B_sub_buffer;
|
|
B_image1d = clCreateImage(
|
|
context,
|
|
CL_MEM_READ_ONLY,
|
|
&img_fmt_1d,
|
|
&img_desc_1d,
|
|
NULL,
|
|
&status);
|
|
CL_CHECK(status);
|
|
// <--------------------------------------------> //
|
|
}
|
|
|
|
// choose gemm or gemv kernel
|
|
// <--------------------------------------------> //
|
|
if (N == 1) {
|
|
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
|
|
if (M == 4096 && K == 4096) {
|
|
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
|
|
} else if (M == 4096 && K == 11008) {
|
|
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
|
|
} else if (M == 11008 && K == 4096) {
|
|
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
|
|
} else if (M == 32000 && K == 4096) {
|
|
kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
|
|
}
|
|
} else {
|
|
kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
|
|
}
|
|
// <--------------------------------------------> //
|
|
|
|
// set kernel args
|
|
// <--------------------------------------------> //
|
|
cl_uint k_arg = 0;
|
|
|
|
if (N == 1) {
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
|
|
CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
|
|
} else {
|
|
region.origin = extrad->offset; // Specify the starting offset (in bytes)
|
|
region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
|
|
C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
|
|
CL_CHECK(status);
|
|
|
|
int padded_N = ne1 + padding;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
|
|
}
|
|
// <--------------------------------------------> //
|
|
|
|
// choose workgroup size
|
|
// <--------------------------------------------> //
|
|
size_t global_work_size[3] = {
|
|
64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
|
|
size_t local_work_size[3] = {64, 2, 4};
|
|
|
|
global_work_size[0] = (size_t)(ceil((float)ne1/8));
|
|
global_work_size[1] = (size_t)(ne01/4);
|
|
global_work_size[2] = (size_t)(1);
|
|
|
|
local_work_size[0] = (size_t)(1); //4x32 for FP32
|
|
local_work_size[1] = (size_t)(128);
|
|
local_work_size[2] = (size_t)(1);
|
|
|
|
//WGS tuning
|
|
if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
|
|
local_work_size[0] = 1;
|
|
local_work_size[1] = 128;
|
|
} else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
|
|
local_work_size[0] = 2;
|
|
local_work_size[1] = 64;
|
|
} else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
|
|
local_work_size[0] = 2;
|
|
local_work_size[1] = 64;
|
|
} else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
|
|
local_work_size[0] = 2;
|
|
local_work_size[1] = 64;
|
|
}
|
|
|
|
if (N == 1) {
|
|
local_work_size[0] = backend_ctx->adreno_wave_size; // localsize
|
|
local_work_size[1] = 4; // reduce factor
|
|
local_work_size[2] = 1;
|
|
|
|
global_work_size[0] = M / 2;
|
|
global_work_size[1] = 4; // reduce factor
|
|
global_work_size[2] = 1;
|
|
}
|
|
// <--------------------------------------------> //
|
|
|
|
// enqueue kernel with profiling
|
|
// <--------------------------------------------> //
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
// enqueue kernel without profiling
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
// <--------------------------------------------> //
|
|
|
|
// deallocate sub buffers and images
|
|
// <--------------------------------------------> //
|
|
CL_CHECK(clReleaseMemObject(A_image1d));
|
|
CL_CHECK(clReleaseMemObject(B_sub_buffer));
|
|
CL_CHECK(clReleaseMemObject(B_image1d));
|
|
|
|
if (N != 1) {
|
|
CL_CHECK(clReleaseMemObject(B_d));
|
|
CL_CHECK(clReleaseMemObject(B_d_input_image));
|
|
CL_CHECK(clReleaseMemObject(C_d));
|
|
}
|
|
// <--------------------------------------------> //
|
|
|
|
return;
|
|
}
|
|
} // if (ne01 && ne1)
|
|
#endif // GGML_OPENCL_USE_ADRENO_KERNELS
|
|
|
|
if (!ggml_is_transposed(src0) &&
|
|
!ggml_is_transposed(src1) &&
|
|
src1t == GGML_TYPE_F32 &&
|
|
ne00%32 == 0 &&
|
|
ne11 > 2) {
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
// Set up kernel.
|
|
switch(src0t) {
|
|
case GGML_TYPE_Q4_0:
|
|
// This should have been satisfied.
|
|
GGML_ASSERT(ne11 == ne1);
|
|
GGML_ASSERT(ne01 == ne0);
|
|
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
nth0 = 16;
|
|
nth1 = 1;
|
|
|
|
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
|
|
} else if (backend_ctx->gpu_family == ADRENO) {
|
|
nth0 = 64;
|
|
nth1 = 1;
|
|
|
|
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
|
|
} else {
|
|
GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Launch kernel.
|
|
if (src0t == GGML_TYPE_Q4_0) {
|
|
size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
|
|
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
|
|
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
// Set global size for Intel. It uses 16x output values.
|
|
global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
|
|
global_work_size[1] = (size_t)ne11*nth1;
|
|
global_work_size[2] = (size_t)ne12*ne13;
|
|
}
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
return;
|
|
}
|
|
#else // GGML_OPENCL_SOA_Q
|
|
// TODO: add block_q4_0 variant.
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
}
|
|
|
|
// use custom matrix x vector kernel
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
//GGML_ASSERT(ne02 == ne12);
|
|
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
|
kernel = backend_ctx->kernel_mul_mat_f32_f32;
|
|
nrows = 4;
|
|
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
nth0 = 32;
|
|
nth1 = 1;
|
|
} else if (backend_ctx->gpu_family == ADRENO) {
|
|
nth0 = 64;
|
|
nth1 = 1;
|
|
} else {
|
|
GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
|
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
|
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
|
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
|
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
|
|
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
|
|
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
//GGML_ASSERT(ne02 == ne12);
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
nth0 = 32;
|
|
nth1 = 1;
|
|
} else if (backend_ctx->gpu_family == ADRENO) {
|
|
nth0 = 64;
|
|
nth1 = 1;
|
|
} else {
|
|
GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
}
|
|
|
|
if (src1t == GGML_TYPE_F32) {
|
|
if (ne11 * ne12 < 4) {
|
|
kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
|
|
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
|
kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
|
|
nrows = ne11;
|
|
} else {
|
|
kernel = backend_ctx->kernel_mul_mat_f16_f32;
|
|
nrows = 4;
|
|
}
|
|
} else {
|
|
kernel = backend_ctx->kernel_mul_mat_f16_f16;
|
|
nrows = 4;
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
|
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
|
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
|
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
|
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
|
|
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
|
|
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
|
|
break;
|
|
case GGML_TYPE_Q4_0:
|
|
// This should have been satisfied.
|
|
GGML_ASSERT(ne11 == ne1);
|
|
GGML_ASSERT(ne01 == ne0);
|
|
|
|
#ifdef GGML_OPENCL_SOA_Q
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
nth0 = 16;
|
|
nth1 = 1;
|
|
|
|
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
|
|
ndst = 8;
|
|
} else if (backend_ctx->gpu_family == ADRENO) {
|
|
nth0 = 64;
|
|
nth1 = 1;
|
|
|
|
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
|
|
ndst =8;
|
|
} else {
|
|
GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
|
|
#else // GGML_OPENCL_SOA_Q
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
// Use 1D local size. Each workgroup is a SIMD group. Each SIMD
|
|
// group produces N_DST (4 for Q4_0 kernel) values in the result.
|
|
// The number of workgroups on dim 0 (the leading dimension) is
|
|
// the nearest multiple of 4 that covers ne0 (equals ne01).
|
|
nth0 = 16;
|
|
nth1 = 1;
|
|
|
|
kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
|
|
ndst = 4;
|
|
} else if (backend_ctx->gpu_family == ADRENO) {
|
|
nth0 = 64;
|
|
nth1 = 1;
|
|
|
|
kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
|
|
ndst = 4;
|
|
} else {
|
|
GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
|
|
#endif // GGML_OPENCL_SOA_Q
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
|
|
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
nth0 = 2;
|
|
nth1 = 16;
|
|
} else if (backend_ctx->gpu_family == ADRENO) {
|
|
nth0 = 2;
|
|
nth1 = 64;
|
|
} else {
|
|
GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
if (src0t == GGML_TYPE_Q4_0 ||
|
|
src0t == GGML_TYPE_Q4_1 ||
|
|
src0t == GGML_TYPE_Q8_0 ||
|
|
src0t == GGML_TYPE_Q2_K) {
|
|
// Each SIMD group produces N_DST values in the result. Assuming each
|
|
// workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
|
|
// produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
|
|
// (number of workgroups) will be a nearest multiple of
|
|
// N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
|
|
// N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
|
|
size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
|
|
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
} else if (src0t == GGML_TYPE_Q4_K) {
|
|
GGML_ASSERT(false && "not implemented");
|
|
} else if (src0t == GGML_TYPE_Q3_K) {
|
|
GGML_ASSERT(false && "not implemented");
|
|
} else if (src0t == GGML_TYPE_Q5_K) {
|
|
GGML_ASSERT(false && "not implemented");
|
|
} else if (src0t == GGML_TYPE_Q6_K) {
|
|
size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
|
|
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
} else {
|
|
int64_t ny = (ne11 + nrows - 1)/nrows;
|
|
|
|
size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
|
|
size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
GGML_UNUSED(src1);
|
|
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
float scale;
|
|
memcpy(&scale, dst->op_params, sizeof(scale));
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
cl_kernel kernel = backend_ctx->kernel_scale;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
|
|
|
|
int n = ggml_nelements(dst)/4;
|
|
|
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(src1);
|
|
GGML_ASSERT(src1->extra);
|
|
|
|
// GGML_OP_CPY happens between src0 and src1.
|
|
// GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
|
|
UNUSED(dst);
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const int ne01 = src0 ? src0->ne[1] : 0;
|
|
const int ne02 = src0 ? src0->ne[2] : 0;
|
|
const int ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
|
|
const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
|
|
const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
|
|
const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
|
|
|
|
const int ne10 = src1 ? src1->ne[0] : 0;
|
|
const int ne11 = src1 ? src1->ne[1] : 0;
|
|
const int ne12 = src1 ? src1->ne[2] : 0;
|
|
const int ne13 = src1 ? src1->ne[3] : 0;
|
|
|
|
const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
|
|
const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
|
|
const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
|
|
const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
|
|
|
|
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
|
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
|
|
cl_kernel kernel;
|
|
|
|
switch (src0t) {
|
|
case GGML_TYPE_F32:
|
|
switch (src1t) {
|
|
case GGML_TYPE_F16:
|
|
kernel = backend_ctx->kernel_cpy_f32_f16;
|
|
break;
|
|
case GGML_TYPE_F32:
|
|
kernel = backend_ctx->kernel_cpy_f32_f32;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false && "not implemented");
|
|
}
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
switch (src1t) {
|
|
case GGML_TYPE_F16:
|
|
kernel = backend_ctx->kernel_cpy_f16_f16;
|
|
break;
|
|
case GGML_TYPE_F32:
|
|
kernel = backend_ctx->kernel_cpy_f16_f32;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false && "not implemented");
|
|
}
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
|
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
|
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
|
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
|
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
|
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
|
|
|
|
const int nth = MIN(64, ne00);
|
|
|
|
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
|
|
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
ggml_cl_cpy(backend, src0, dst, nullptr);
|
|
UNUSED(src1);
|
|
}
|
|
|
|
static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
UNUSED(src1);
|
|
|
|
int n_past = ((int32_t *)(dst->op_params))[0];
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const int ne01 = src0 ? src0->ne[1] : 0;
|
|
const int ne02 = src0 ? src0->ne[2] : 0;
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
cl_kernel kernel;
|
|
|
|
if (ne00%8 == 0) {
|
|
kernel = backend_ctx->kernel_diag_mask_inf_8;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
|
|
|
|
size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
} else {
|
|
kernel = backend_ctx->kernel_diag_mask_inf;
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
|
|
|
|
size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
|
|
size_t local_work_size[] = {64, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
// Softmax can now fuse KQ mask and KQ scale, which used to be two additional
|
|
// ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
|
|
// alibi is not used; however, for some other models, it is used.
|
|
// KQ_mask
|
|
if (src1) {
|
|
GGML_ASSERT(src1);
|
|
GGML_ASSERT(src1->extra);
|
|
}
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const int ne01 = src0 ? src0->ne[1] : 0;
|
|
const int ne02 = src0 ? src0->ne[2] : 0;
|
|
const int ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
float scale, max_bias;
|
|
memcpy(&scale, dst->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, dst->op_params + 1, sizeof(float));
|
|
|
|
const int nrows_x = ggml_nrows(src0);
|
|
const int nrows_y = src0->ne[1];
|
|
|
|
const int n_head = nrows_x/nrows_y;
|
|
const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
|
|
|
// Local size must be wave size. Each workgroup is a wave, working on a row,
|
|
// where a row corresponds to leading dimension.
|
|
int nth = MIN(32, ne00);
|
|
|
|
if (backend_ctx->gpu_family == INTEL) {
|
|
// This is the same as the initial value.
|
|
nth = MIN(32, ne00);
|
|
}
|
|
else if (backend_ctx->gpu_family == ADRENO) {
|
|
nth = 64;
|
|
} else {
|
|
GGML_ASSERT(false && "TODO: Unknown GPU");
|
|
}
|
|
|
|
cl_kernel kernel;
|
|
|
|
if (ne00%4 == 0) {
|
|
if (use_f16) {
|
|
kernel = backend_ctx->kernel_soft_max_4_f16;
|
|
} else {
|
|
kernel = backend_ctx->kernel_soft_max_4;
|
|
}
|
|
} else {
|
|
if (use_f16) {
|
|
kernel = backend_ctx->kernel_soft_max_f16;
|
|
} else {
|
|
kernel = backend_ctx->kernel_soft_max;
|
|
}
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(float), &scale));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &max_bias));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &m0));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &m1));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &n_head_log2));
|
|
|
|
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
|
|
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src0);
|
|
GGML_ASSERT(src0->extra);
|
|
GGML_ASSERT(src1);
|
|
GGML_ASSERT(src1->extra);
|
|
GGML_ASSERT(dst);
|
|
GGML_ASSERT(dst->extra);
|
|
|
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
|
cl_command_queue queue = backend_ctx->queue;
|
|
|
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
|
|
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
|
|
|
ggml_tensor * src2 = dst->src[2];
|
|
ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
|
|
|
|
cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
|
|
|
|
const int ne00 = src0 ? src0->ne[0] : 0;
|
|
const int ne01 = src0 ? src0->ne[1] : 0;
|
|
const int ne02 = src0 ? src0->ne[2] : 0;
|
|
const int ne03 = src0 ? src0->ne[3] : 0;
|
|
|
|
const int nb00 = src0 ? src0->nb[0] : 0;
|
|
const int nb01 = src0 ? src0->nb[1] : 0;
|
|
const int nb02 = src0 ? src0->nb[2] : 0;
|
|
const int nb03 = src0 ? src0->nb[3] : 0;
|
|
|
|
const int ne10 = src1 ? src1->ne[0] : 0;
|
|
const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
|
|
const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
|
|
const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
|
|
|
const int ne0 = dst ? dst->ne[0] : 0;
|
|
const int ne1 = dst ? dst->ne[1] : 0;
|
|
const int ne2 = dst ? dst->ne[2] : 0;
|
|
const int ne3 = dst ? dst->ne[3] : 0;
|
|
|
|
const int nb0 = dst ? dst->nb[0] : 0;
|
|
const int nb1 = dst ? dst->nb[1] : 0;
|
|
const int nb2 = dst ? dst->nb[2] : 0;
|
|
const int nb3 = dst ? dst->nb[3] : 0;
|
|
|
|
GGML_ASSERT(ne10 % ne02 == 0);
|
|
GGML_ASSERT(ne10 >= ne02);
|
|
|
|
int nth = MIN(64, ne00);
|
|
|
|
const int n_past = ((int *) dst->op_params)[0];
|
|
const int n_dims = ((int *) dst->op_params)[1];
|
|
const int mode = ((int *) dst->op_params)[2];
|
|
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
|
|
|
float freq_base;
|
|
float freq_scale;
|
|
float ext_factor;
|
|
float attn_factor;
|
|
float beta_fast;
|
|
float beta_slow;
|
|
|
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
|
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
|
|
|
const bool is_neox = mode & 2;
|
|
|
|
cl_kernel kernel;
|
|
|
|
if (!is_neox) {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
kernel = backend_ctx->kernel_rope_norm_f32;
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
kernel = backend_ctx->kernel_rope_norm_f16;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
};
|
|
} else {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F32:
|
|
kernel = backend_ctx->kernel_rope_neox_f32;
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
kernel = backend_ctx->kernel_rope_neox_f16;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
};
|
|
}
|
|
|
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
|
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
|
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
|
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
|
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
|
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
|
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
|
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
|
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
|
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
|
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
|
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
|
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
|
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
|
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
|
|
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
|
|
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
|
|
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
|
|
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
|
|
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
|
|
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
|
|
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
|
|
CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
|
|
CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
|
|
CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
|
|
CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
|
|
CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
|
|
CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
|
|
|
|
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
|
|
size_t local_work_size[] = {(size_t)nth, 1, 1};
|
|
|
|
#ifdef GGML_OPENCL_PROFILING
|
|
cl_event evt;
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
|
|
|
g_profiling_info.emplace_back();
|
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
|
#else
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
|
#endif
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Op offloading
|
|
//------------------------------------------------------------------------------
|
|
|
|
typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
|
|
|
bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
|
|
ggml_cl_func_t func = nullptr;
|
|
|
|
ggml_tensor * src0 = tensor->src[0];
|
|
ggml_tensor * src1 = tensor->src[1];
|
|
|
|
const bool any_on_device = tensor->extra
|
|
|| (src0 != nullptr && src0->extra)
|
|
|| (src1 != nullptr && src1->extra);
|
|
|
|
switch (tensor->op) {
|
|
case GGML_OP_GET_ROWS:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_get_rows;
|
|
break;
|
|
case GGML_OP_CPY:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_cpy;
|
|
break;
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_CONT:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_dup;
|
|
break;
|
|
case GGML_OP_ADD:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
func = ggml_cl_add;
|
|
break;
|
|
case GGML_OP_MUL:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_mul;
|
|
break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(tensor)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_gelu;
|
|
break;
|
|
case GGML_UNARY_OP_SILU:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_silu;
|
|
break;
|
|
case GGML_UNARY_OP_RELU:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_relu;
|
|
break;
|
|
default:
|
|
return false;
|
|
} break;
|
|
case GGML_OP_CLAMP:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_clamp;
|
|
break;
|
|
case GGML_OP_NORM:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_norm;
|
|
break;
|
|
case GGML_OP_RMS_NORM:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_rms_norm;
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_mul_mat;
|
|
break;
|
|
case GGML_OP_SCALE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_scale;
|
|
break;
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_nop;
|
|
break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_diag_mask_inf;
|
|
break;
|
|
case GGML_OP_SOFT_MAX:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_soft_max;
|
|
break;
|
|
case GGML_OP_ROPE:
|
|
if (!any_on_device) {
|
|
return false;
|
|
}
|
|
func = ggml_cl_rope;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
func(backend, tensor->src[0], tensor->src[1], tensor);
|
|
return true;
|
|
}
|