whisper.cpp/examples/talk-llama/llama-kv-cache-recurrent.h
Georgi Gerganov 7fd6fa8097 talk-llama : sync llama.cpp
ggml-ci
2025-06-01 15:14:44 +03:00

192 lines
5.6 KiB
C++

#pragma once
#include "llama-batch.h"
#include "llama-graph.h"
#include "llama-kv-cache.h"
#include <set>
#include <vector>
//
// llama_kv_cache_recurrent
//
// TODO: extract the KV cache state used for graph computation into llama_kv_cache_recurrent_state_i
// see the implementation of llama_kv_cache_unified_state_i for an example how to do it
class llama_kv_cache_recurrent : public llama_kv_cache {
public:
llama_kv_cache_recurrent(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool offload,
uint32_t kv_size,
uint32_t n_seq_max);
~llama_kv_cache_recurrent() = default;
//
// llama_memory_i
//
void clear() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
void seq_keep(llama_seq_id seq_id) override;
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override;
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
//
// llama_kv_cache
//
llama_memory_state_ptr init_batch(
const llama_batch & batch,
uint32_t n_ubatch,
bool embd_pooled,
bool logits_all) override;
llama_memory_state_ptr init_full() override;
bool update(llama_context & lctx) override;
void defrag_sched(float thold) override;
bool prepare(const std::vector<llama_ubatch> & ubatches);
// find a contiguous slot of kv cells and emplace the ubatch there
bool find_slot(const llama_ubatch & ubatch);
bool get_can_shift() const override;
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
int32_t s_copy(int i) const;
float s_mask(int i) const;
// state write/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
uint32_t size = 0; // total number of cells, shared across all sequences
uint32_t used = 0; // used cells (i.e. at least one seq_id)
// computed before each graph build
uint32_t n = 0;
// TODO: optimize for recurrent state needs
struct kv_cell {
llama_pos pos = -1;
int32_t src = -1; // used to copy states
int32_t tail = -1;
std::set<llama_seq_id> seq_id;
bool has_seq_id(const llama_seq_id & id) const {
return seq_id.find(id) != seq_id.end();
}
bool is_empty() const {
return seq_id.empty();
}
bool is_same_seq(const kv_cell & other) const {
return seq_id == other.seq_id;
}
};
std::vector<kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
//const llama_model & model;
const llama_hparams & hparams;
const uint32_t n_seq_max = 1;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
size_t total_size() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
class llama_kv_cache_recurrent_state : public llama_memory_state_i {
public:
// used for errors
llama_kv_cache_recurrent_state(llama_memory_status status);
// used to create a full-cache state
llama_kv_cache_recurrent_state(
llama_memory_status status,
llama_kv_cache_recurrent * kv);
// used to create a state from a batch
llama_kv_cache_recurrent_state(
llama_memory_status status,
llama_kv_cache_recurrent * kv,
llama_sbatch sbatch,
std::vector<llama_ubatch> ubatches);
virtual ~llama_kv_cache_recurrent_state();
//
// llama_memory_state_i
//
bool next() override;
bool apply() override;
std::vector<int64_t> & out_ids() override;
llama_memory_status get_status() const override;
const llama_ubatch & get_ubatch() const override;
//
// llama_kv_cache_recurrent_state specific API
//
uint32_t get_n_kv() const;
uint32_t get_head() const;
uint32_t get_size() const;
ggml_tensor * get_k_l(int32_t il) const;
ggml_tensor * get_v_l(int32_t il) const;
int32_t s_copy(int i) const;
float s_mask(int i) const;
private:
const llama_memory_status status;
llama_kv_cache_recurrent * kv;
llama_sbatch sbatch;
size_t i_next = 0;
std::vector<llama_ubatch> ubatches;
//
// data needed for building the compute graph for the current ubatch:
// TODO: extract all the state like `head` and `n` here
//
const bool is_full = false;
};