mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-05 01:07:19 +02:00
192 lines
5.6 KiB
C++
192 lines
5.6 KiB
C++
#pragma once
|
|
|
|
#include "llama-batch.h"
|
|
#include "llama-graph.h"
|
|
#include "llama-kv-cache.h"
|
|
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
//
|
|
// llama_kv_cache_recurrent
|
|
//
|
|
|
|
// TODO: extract the KV cache state used for graph computation into llama_kv_cache_recurrent_state_i
|
|
// see the implementation of llama_kv_cache_unified_state_i for an example how to do it
|
|
class llama_kv_cache_recurrent : public llama_kv_cache {
|
|
public:
|
|
llama_kv_cache_recurrent(
|
|
const llama_model & model,
|
|
ggml_type type_k,
|
|
ggml_type type_v,
|
|
bool offload,
|
|
uint32_t kv_size,
|
|
uint32_t n_seq_max);
|
|
|
|
~llama_kv_cache_recurrent() = default;
|
|
|
|
//
|
|
// llama_memory_i
|
|
//
|
|
|
|
void clear() override;
|
|
|
|
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
|
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
|
void seq_keep(llama_seq_id seq_id) override;
|
|
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override;
|
|
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
|
|
|
|
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
|
|
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
|
|
|
//
|
|
// llama_kv_cache
|
|
//
|
|
|
|
llama_memory_state_ptr init_batch(
|
|
const llama_batch & batch,
|
|
uint32_t n_ubatch,
|
|
bool embd_pooled,
|
|
bool logits_all) override;
|
|
|
|
llama_memory_state_ptr init_full() override;
|
|
|
|
bool update(llama_context & lctx) override;
|
|
|
|
void defrag_sched(float thold) override;
|
|
|
|
bool prepare(const std::vector<llama_ubatch> & ubatches);
|
|
|
|
// find a contiguous slot of kv cells and emplace the ubatch there
|
|
bool find_slot(const llama_ubatch & ubatch);
|
|
|
|
bool get_can_shift() const override;
|
|
|
|
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
|
|
int32_t s_copy(int i) const;
|
|
float s_mask(int i) const;
|
|
|
|
// state write/load
|
|
|
|
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
|
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
|
|
|
uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
|
|
uint32_t size = 0; // total number of cells, shared across all sequences
|
|
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
|
|
|
// computed before each graph build
|
|
uint32_t n = 0;
|
|
|
|
// TODO: optimize for recurrent state needs
|
|
struct kv_cell {
|
|
llama_pos pos = -1;
|
|
int32_t src = -1; // used to copy states
|
|
int32_t tail = -1;
|
|
|
|
std::set<llama_seq_id> seq_id;
|
|
|
|
bool has_seq_id(const llama_seq_id & id) const {
|
|
return seq_id.find(id) != seq_id.end();
|
|
}
|
|
|
|
bool is_empty() const {
|
|
return seq_id.empty();
|
|
}
|
|
|
|
bool is_same_seq(const kv_cell & other) const {
|
|
return seq_id == other.seq_id;
|
|
}
|
|
};
|
|
|
|
std::vector<kv_cell> cells;
|
|
|
|
std::vector<ggml_tensor *> k_l; // per layer
|
|
std::vector<ggml_tensor *> v_l;
|
|
|
|
private:
|
|
//const llama_model & model;
|
|
const llama_hparams & hparams;
|
|
|
|
const uint32_t n_seq_max = 1;
|
|
|
|
std::vector<ggml_context_ptr> ctxs;
|
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
|
|
|
size_t total_size() const;
|
|
|
|
size_t size_k_bytes() const;
|
|
size_t size_v_bytes() const;
|
|
|
|
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
|
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
|
|
|
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
|
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
|
};
|
|
|
|
class llama_kv_cache_recurrent_state : public llama_memory_state_i {
|
|
public:
|
|
// used for errors
|
|
llama_kv_cache_recurrent_state(llama_memory_status status);
|
|
|
|
// used to create a full-cache state
|
|
llama_kv_cache_recurrent_state(
|
|
llama_memory_status status,
|
|
llama_kv_cache_recurrent * kv);
|
|
|
|
// used to create a state from a batch
|
|
llama_kv_cache_recurrent_state(
|
|
llama_memory_status status,
|
|
llama_kv_cache_recurrent * kv,
|
|
llama_sbatch sbatch,
|
|
std::vector<llama_ubatch> ubatches);
|
|
|
|
virtual ~llama_kv_cache_recurrent_state();
|
|
|
|
//
|
|
// llama_memory_state_i
|
|
//
|
|
|
|
bool next() override;
|
|
bool apply() override;
|
|
|
|
std::vector<int64_t> & out_ids() override;
|
|
|
|
llama_memory_status get_status() const override;
|
|
const llama_ubatch & get_ubatch() const override;
|
|
|
|
//
|
|
// llama_kv_cache_recurrent_state specific API
|
|
//
|
|
|
|
uint32_t get_n_kv() const;
|
|
uint32_t get_head() const;
|
|
uint32_t get_size() const;
|
|
|
|
ggml_tensor * get_k_l(int32_t il) const;
|
|
ggml_tensor * get_v_l(int32_t il) const;
|
|
|
|
int32_t s_copy(int i) const;
|
|
float s_mask(int i) const;
|
|
|
|
private:
|
|
const llama_memory_status status;
|
|
|
|
llama_kv_cache_recurrent * kv;
|
|
|
|
llama_sbatch sbatch;
|
|
|
|
size_t i_next = 0;
|
|
|
|
std::vector<llama_ubatch> ubatches;
|
|
|
|
//
|
|
// data needed for building the compute graph for the current ubatch:
|
|
// TODO: extract all the state like `head` and `n` here
|
|
//
|
|
|
|
const bool is_full = false;
|
|
};
|