mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-05-31 23:15:38 +02:00
178 lines
5.6 KiB
Plaintext
178 lines
5.6 KiB
Plaintext
#version 450
|
|
|
|
#ifdef FLOAT16
|
|
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
|
|
#endif
|
|
#extension GL_EXT_shader_explicit_arithmetic_types : require
|
|
|
|
#include "mul_mat_vec_base.comp"
|
|
|
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
|
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
|
|
|
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
|
|
#define K_PER_ITER 8
|
|
#else
|
|
#define K_PER_ITER 2
|
|
#endif
|
|
|
|
|
|
uint a_offset, b_offset, d_offset, y_offset;
|
|
|
|
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
|
|
|
void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
|
|
{
|
|
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
|
|
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
|
|
const uint iybs = col - col%QUANT_K; // y block start index
|
|
|
|
#if K_PER_ITER == 8
|
|
#if QUANT_R == 2
|
|
B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
|
|
B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
|
|
FLOAT_TYPE b0 = FLOAT_TYPE(bv02.x);
|
|
FLOAT_TYPE b1 = FLOAT_TYPE(bv13.x);
|
|
FLOAT_TYPE b2 = FLOAT_TYPE(bv02.y);
|
|
FLOAT_TYPE b3 = FLOAT_TYPE(bv13.y);
|
|
FLOAT_TYPE b4 = FLOAT_TYPE(bv02.z);
|
|
FLOAT_TYPE b5 = FLOAT_TYPE(bv13.z);
|
|
FLOAT_TYPE b6 = FLOAT_TYPE(bv02.w);
|
|
FLOAT_TYPE b7 = FLOAT_TYPE(bv13.w);
|
|
#else
|
|
B_TYPE_VEC4 bv0 = data_b_v4[(b_offset + iybs + iqs) / 4];
|
|
B_TYPE_VEC4 bv1 = data_b_v4[(b_offset + iybs + iqs) / 4 + 1];
|
|
FLOAT_TYPE b0 = FLOAT_TYPE(bv0.x);
|
|
FLOAT_TYPE b1 = FLOAT_TYPE(bv0.y);
|
|
FLOAT_TYPE b2 = FLOAT_TYPE(bv0.z);
|
|
FLOAT_TYPE b3 = FLOAT_TYPE(bv0.w);
|
|
FLOAT_TYPE b4 = FLOAT_TYPE(bv1.x);
|
|
FLOAT_TYPE b5 = FLOAT_TYPE(bv1.y);
|
|
FLOAT_TYPE b6 = FLOAT_TYPE(bv1.z);
|
|
FLOAT_TYPE b7 = FLOAT_TYPE(bv1.w);
|
|
#endif
|
|
#else
|
|
// Check if the second of the pair of elements is OOB, and don't fetch B or
|
|
// accumulate it. We still fetch a pair of elements for A, which is fine for
|
|
// quantized formats since they'll be within the same block. We should
|
|
// probably skip fetching the second element for F16/F32, but as of now we
|
|
// still do.
|
|
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);
|
|
|
|
FLOAT_TYPE b0 = 0, b1 = 0;
|
|
b0 = FLOAT_TYPE(data_b[b_offset + iybs + iqs]);
|
|
if (!OOB) {
|
|
b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
|
|
}
|
|
#endif
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
const uint ib = ((first_row + n)*p.ncols + col)/QUANT_K; // block index
|
|
|
|
#if K_PER_ITER == 8
|
|
const vec4 v = dequantize4(ib, iqs, a_offset);
|
|
const vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
|
|
|
|
// matrix multiplication
|
|
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
|
|
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
|
|
temp[n] = fma(FLOAT_TYPE(v.z), b2, temp[n]);
|
|
temp[n] = fma(FLOAT_TYPE(v.w), b3, temp[n]);
|
|
temp[n] = fma(FLOAT_TYPE(v2.x), b4, temp[n]);
|
|
temp[n] = fma(FLOAT_TYPE(v2.y), b5, temp[n]);
|
|
temp[n] = fma(FLOAT_TYPE(v2.z), b6, temp[n]);
|
|
temp[n] = fma(FLOAT_TYPE(v2.w), b7, temp[n]);
|
|
#else
|
|
const vec2 v = dequantize(ib, iqs, a_offset);
|
|
|
|
// matrix multiplication
|
|
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
|
|
if (!OOB) {
|
|
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
|
const uint tid = gl_LocalInvocationID.x;
|
|
|
|
get_offsets(a_offset, b_offset, d_offset);
|
|
a_offset /= QUANT_K;
|
|
|
|
y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
|
|
|
|
FLOAT_TYPE temp[NUM_ROWS];
|
|
|
|
for (uint i = 0; i < NUM_ROWS; ++i) {
|
|
temp[i] = FLOAT_TYPE(0);
|
|
}
|
|
|
|
uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE);
|
|
if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) {
|
|
num_iters++;
|
|
}
|
|
int unroll_count = 4;
|
|
uint unrolled_iters = num_iters & ~(unroll_count - 1);
|
|
|
|
uint i = 0;
|
|
while (i < unrolled_iters) {
|
|
// Manually partially unroll the loop
|
|
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
|
|
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
|
|
i++;
|
|
}
|
|
}
|
|
unroll_count = 2;
|
|
unrolled_iters = num_iters & ~(unroll_count - 1);
|
|
while (i < unrolled_iters) {
|
|
// Manually partially unroll the loop
|
|
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
|
|
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
|
|
i++;
|
|
}
|
|
}
|
|
while (i < num_iters) {
|
|
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, true);
|
|
i++;
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
tmpsh[n][tid] = temp[n];
|
|
}
|
|
barrier();
|
|
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
|
if (tid < s) {
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
tmpsh[n][tid] += tmpsh[n][tid + s];
|
|
}
|
|
}
|
|
barrier();
|
|
}
|
|
if (tid == 0) {
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void main() {
|
|
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
|
|
|
#if defined(DATA_A_IQ4_NL)
|
|
init_iq4nl_shmem();
|
|
#endif
|
|
|
|
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
|
if (first_row + NUM_ROWS <= p.stride_d) {
|
|
compute_outputs(first_row, NUM_ROWS);
|
|
} else {
|
|
if (first_row >= p.stride_d) {
|
|
return;
|
|
}
|
|
compute_outputs(first_row, p.stride_d - first_row);
|
|
}
|
|
}
|