Files
whisper.cpp/src/whisper-arch.h
Daniel Bevenius e41bc5c61a vad : add initial Voice Activity Detection (VAD) support (#3065)
* vad : add initial Voice Activity Detection (VAD) support

This commit add support for Voice Activity Detection (VAD). When enabled
this feature will process the audio input and detect speech segments.
This information is then used to reduce the number of samples that need
to be processed by whisper_full.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3003

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-05-12 16:10:11 +02:00

198 lines
9.0 KiB
C++

#pragma once
#include "ggml.h"
#include <map>
enum asr_tensor {
ASR_TENSOR_ENC_POS_EMBD,
ASR_TENSOR_DEC_POS_EMBD,
ASR_TENSOR_DEC_TOKEN_EMBD_WEIGHT,
ASR_TENSOR_LN_WEIGHT,
ASR_TENSOR_LN_BIAS,
ASR_TENSOR_CONV1_WEIGHT,
ASR_TENSOR_CONV1_BIAS,
ASR_TENSOR_CONV2_WEIGHT,
ASR_TENSOR_CONV2_BIAS,
ASR_TENSOR_LN_POST_WEIGHT,
ASR_TENSOR_LN_POST_BIAS,
ASR_TENSOR_MLP_LN_WEIGHT,
ASR_TENSOR_MLP_LN_BIAS,
ASR_TENSOR_MLP_0_WEIGHT,
ASR_TENSOR_MLP_0_BIAS,
ASR_TENSOR_MLP_2_WEIGHT,
ASR_TENSOR_MLP_2_BIAS,
ASR_TENSOR_ATTN_LN_WEIGHT,
ASR_TENSOR_ATTN_LN_BIAS,
ASR_TENSOR_ATTN_QUERY_WEIGHT,
ASR_TENSOR_ATTN_QUERY_BIAS,
ASR_TENSOR_ATTN_KEY_WEIGHT,
ASR_TENSOR_ATTN_VALUE_WEIGHT,
ASR_TENSOR_ATTN_VALUE_BIAS,
ASR_TENSOR_ATTN_OUT_WEIGHT,
ASR_TENSOR_ATTN_OUT_BIAS,
};
enum asr_system {
ASR_SYSTEM_ENCODER,
ASR_SYSTEM_DECODER,
ASR_SYSTEM_CROSS
};
static const std::map<asr_system, std::map<asr_tensor, const char *>> ASR_TENSOR_NAMES = {
{
ASR_SYSTEM_ENCODER,
{
{ASR_TENSOR_ENC_POS_EMBD, "encoder.positional_embedding"},
{ASR_TENSOR_CONV1_WEIGHT, "encoder.conv1.weight"},
{ASR_TENSOR_CONV1_BIAS, "encoder.conv1.bias"},
{ASR_TENSOR_CONV2_WEIGHT, "encoder.conv2.weight"},
{ASR_TENSOR_CONV2_BIAS, "encoder.conv2.bias"},
{ASR_TENSOR_LN_WEIGHT, "encoder.ln_post.weight"},
{ASR_TENSOR_LN_POST_BIAS, "encoder.ln_post.bias"},
{ASR_TENSOR_MLP_LN_WEIGHT, "encoder.blocks.%d.mlp_ln.weight"},
{ASR_TENSOR_MLP_LN_BIAS, "encoder.blocks.%d.mlp_ln.bias"},
{ASR_TENSOR_MLP_0_WEIGHT, "encoder.blocks.%d.mlp.0.weight"},
{ASR_TENSOR_MLP_0_BIAS, "encoder.blocks.%d.mlp.0.bias"},
{ASR_TENSOR_MLP_2_WEIGHT, "encoder.blocks.%d.mlp.2.weight"},
{ASR_TENSOR_MLP_2_BIAS, "encoder.blocks.%d.mlp.2.bias"},
{ASR_TENSOR_ATTN_LN_WEIGHT, "encoder.blocks.%d.attn_ln.weight"},
{ASR_TENSOR_ATTN_LN_BIAS, "encoder.blocks.%d.attn_ln.bias"},
{ASR_TENSOR_ATTN_QUERY_WEIGHT, "encoder.blocks.%d.attn.query.weight"},
{ASR_TENSOR_ATTN_QUERY_BIAS, "encoder.blocks.%d.attn.query.bias"},
{ASR_TENSOR_ATTN_KEY_WEIGHT, "encoder.blocks.%d.attn.key.weight"},
{ASR_TENSOR_ATTN_VALUE_WEIGHT, "encoder.blocks.%d.attn.value.weight"},
{ASR_TENSOR_ATTN_VALUE_BIAS, "encoder.blocks.%d.attn.value.bias"},
{ASR_TENSOR_ATTN_OUT_WEIGHT, "encoder.blocks.%d.attn.out.weight"},
{ASR_TENSOR_ATTN_OUT_BIAS, "encoder.blocks.%d.attn.out.bias"},
},
},
{
ASR_SYSTEM_DECODER,
{
{ASR_TENSOR_DEC_POS_EMBD, "decoder.positional_embedding"},
{ASR_TENSOR_DEC_TOKEN_EMBD_WEIGHT, "decoder.token_embedding.weight"},
{ASR_TENSOR_LN_WEIGHT, "decoder.ln.weight"},
{ASR_TENSOR_LN_BIAS, "decoder.ln.bias"},
{ASR_TENSOR_MLP_LN_WEIGHT, "decoder.blocks.%d.mlp_ln.weight"},
{ASR_TENSOR_MLP_LN_BIAS, "decoder.blocks.%d.mlp_ln.bias"},
{ASR_TENSOR_MLP_0_WEIGHT, "decoder.blocks.%d.mlp.0.weight"},
{ASR_TENSOR_MLP_0_BIAS, "decoder.blocks.%d.mlp.0.bias"},
{ASR_TENSOR_MLP_2_WEIGHT, "decoder.blocks.%d.mlp.2.weight"},
{ASR_TENSOR_MLP_2_BIAS, "decoder.blocks.%d.mlp.2.bias"},
{ASR_TENSOR_ATTN_LN_WEIGHT, "decoder.blocks.%d.attn_ln.weight"},
{ASR_TENSOR_ATTN_LN_BIAS, "decoder.blocks.%d.attn_ln.bias"},
{ASR_TENSOR_ATTN_QUERY_WEIGHT, "decoder.blocks.%d.attn.query.weight"},
{ASR_TENSOR_ATTN_QUERY_BIAS, "decoder.blocks.%d.attn.query.bias"},
{ASR_TENSOR_ATTN_KEY_WEIGHT, "decoder.blocks.%d.attn.key.weight"},
{ASR_TENSOR_ATTN_VALUE_WEIGHT, "decoder.blocks.%d.attn.value.weight"},
{ASR_TENSOR_ATTN_VALUE_BIAS, "decoder.blocks.%d.attn.value.bias"},
{ASR_TENSOR_ATTN_OUT_WEIGHT, "decoder.blocks.%d.attn.out.weight"},
{ASR_TENSOR_ATTN_OUT_BIAS, "decoder.blocks.%d.attn.out.bias"},
},
},
{
ASR_SYSTEM_CROSS,
{
{ASR_TENSOR_ATTN_LN_WEIGHT, "decoder.blocks.%d.cross_attn_ln.weight"},
{ASR_TENSOR_ATTN_LN_BIAS, "decoder.blocks.%d.cross_attn_ln.bias"},
{ASR_TENSOR_ATTN_QUERY_WEIGHT, "decoder.blocks.%d.cross_attn.query.weight"},
{ASR_TENSOR_ATTN_QUERY_BIAS, "decoder.blocks.%d.cross_attn.query.bias"},
{ASR_TENSOR_ATTN_KEY_WEIGHT, "decoder.blocks.%d.cross_attn.key.weight"},
{ASR_TENSOR_ATTN_VALUE_WEIGHT, "decoder.blocks.%d.cross_attn.value.weight"},
{ASR_TENSOR_ATTN_VALUE_BIAS, "decoder.blocks.%d.cross_attn.value.bias"},
{ASR_TENSOR_ATTN_OUT_WEIGHT, "decoder.blocks.%d.cross_attn.out.weight"},
{ASR_TENSOR_ATTN_OUT_BIAS, "decoder.blocks.%d.cross_attn.out.bias"},
},
},
};
static const std::map<asr_tensor, ggml_op> ASR_TENSOR_INFO = {
{ASR_TENSOR_ENC_POS_EMBD, GGML_OP_ADD},
{ASR_TENSOR_DEC_POS_EMBD, GGML_OP_GET_ROWS},
// Note: ASR_TENSOR_DEC_TOKEN_EMBD_WEIGHT is also used by GGML_OP_MAT_MUL. Need to figure out a way how to handle
// weight tensors that are used by multiple different operators when extra_buffer_type implementations accelerate
// more than just GGML_OP_MUL_MAT.
{ASR_TENSOR_DEC_TOKEN_EMBD_WEIGHT, GGML_OP_GET_ROWS},
{ASR_TENSOR_LN_WEIGHT, GGML_OP_MUL},
{ASR_TENSOR_LN_BIAS, GGML_OP_ADD},
{ASR_TENSOR_CONV1_WEIGHT, GGML_OP_IM2COL},
{ASR_TENSOR_CONV1_BIAS, GGML_OP_ADD},
{ASR_TENSOR_CONV2_WEIGHT, GGML_OP_IM2COL},
{ASR_TENSOR_CONV2_BIAS, GGML_OP_ADD},
{ASR_TENSOR_LN_POST_WEIGHT, GGML_OP_MUL},
{ASR_TENSOR_LN_POST_BIAS, GGML_OP_ADD},
{ASR_TENSOR_MLP_LN_WEIGHT, GGML_OP_MUL},
{ASR_TENSOR_MLP_LN_BIAS, GGML_OP_ADD},
{ASR_TENSOR_MLP_0_WEIGHT, GGML_OP_MUL_MAT},
{ASR_TENSOR_MLP_0_BIAS, GGML_OP_ADD},
{ASR_TENSOR_MLP_2_WEIGHT, GGML_OP_MUL_MAT},
{ASR_TENSOR_MLP_2_BIAS, GGML_OP_ADD},
{ASR_TENSOR_ATTN_LN_WEIGHT, GGML_OP_MUL},
{ASR_TENSOR_ATTN_LN_BIAS, GGML_OP_ADD},
{ASR_TENSOR_ATTN_QUERY_WEIGHT, GGML_OP_MUL_MAT},
{ASR_TENSOR_ATTN_QUERY_BIAS, GGML_OP_ADD},
{ASR_TENSOR_ATTN_KEY_WEIGHT, GGML_OP_MUL_MAT},
{ASR_TENSOR_ATTN_VALUE_WEIGHT, GGML_OP_MUL_MAT},
{ASR_TENSOR_ATTN_VALUE_BIAS, GGML_OP_ADD},
{ASR_TENSOR_ATTN_OUT_WEIGHT, GGML_OP_MUL_MAT},
{ASR_TENSOR_ATTN_OUT_BIAS, GGML_OP_ADD},
};
enum vad_tensor {
VAD_TENSOR_STFT_BASIS,
VAD_TENSOR_ENC_0_WEIGHT,
VAD_TENSOR_ENC_0_BIAS,
VAD_TENSOR_ENC_1_WEIGHT,
VAD_TENSOR_ENC_1_BIAS,
VAD_TENSOR_ENC_2_WEIGHT,
VAD_TENSOR_ENC_2_BIAS,
VAD_TENSOR_ENC_3_WEIGHT,
VAD_TENSOR_ENC_3_BIAS,
VAD_TENSOR_LSTM_WEIGHT_IH,
VAD_TENSOR_LSTM_WEIGHT_HH,
VAD_TENSOR_LSTM_BIAS_IH,
VAD_TENSOR_LSTM_BIAS_HH,
VAD_TENSOR_FINAL_CONV_WEIGHT,
VAD_TENSOR_FINAL_CONV_BIAS,
};
static const std::map<vad_tensor, ggml_op> VAD_TENSOR_OPS = {
{VAD_TENSOR_STFT_BASIS, GGML_OP_IM2COL},
{VAD_TENSOR_ENC_0_WEIGHT, GGML_OP_IM2COL},
{VAD_TENSOR_ENC_0_BIAS, GGML_OP_ADD},
{VAD_TENSOR_ENC_1_WEIGHT, GGML_OP_IM2COL},
{VAD_TENSOR_ENC_1_BIAS, GGML_OP_ADD},
{VAD_TENSOR_ENC_2_WEIGHT, GGML_OP_IM2COL},
{VAD_TENSOR_ENC_2_BIAS, GGML_OP_ADD},
{VAD_TENSOR_ENC_3_WEIGHT, GGML_OP_IM2COL},
{VAD_TENSOR_ENC_3_BIAS, GGML_OP_ADD},
{VAD_TENSOR_LSTM_WEIGHT_IH, GGML_OP_MUL_MAT},
{VAD_TENSOR_LSTM_WEIGHT_HH, GGML_OP_MUL_MAT},
{VAD_TENSOR_LSTM_BIAS_IH, GGML_OP_ADD},
{VAD_TENSOR_LSTM_BIAS_HH, GGML_OP_ADD},
{VAD_TENSOR_FINAL_CONV_WEIGHT, GGML_OP_IM2COL},
{VAD_TENSOR_FINAL_CONV_BIAS, GGML_OP_ADD}
};
static const std::map<vad_tensor, const char *> VAD_TENSOR_NAMES = {
{VAD_TENSOR_STFT_BASIS, "_model.stft.forward_basis_buffer"},
{VAD_TENSOR_ENC_0_WEIGHT, "_model.encoder.0.reparam_conv.weight"},
{VAD_TENSOR_ENC_0_BIAS, "_model.encoder.0.reparam_conv.bias"},
{VAD_TENSOR_ENC_1_WEIGHT, "_model.encoder.1.reparam_conv.weight"},
{VAD_TENSOR_ENC_1_BIAS, "_model.encoder.1.reparam_conv.bias"},
{VAD_TENSOR_ENC_2_WEIGHT, "_model.encoder.2.reparam_conv.weight"},
{VAD_TENSOR_ENC_2_BIAS, "_model.encoder.2.reparam_conv.bias"},
{VAD_TENSOR_ENC_3_WEIGHT, "_model.encoder.3.reparam_conv.weight"},
{VAD_TENSOR_ENC_3_BIAS, "_model.encoder.3.reparam_conv.bias"},
{VAD_TENSOR_LSTM_WEIGHT_IH, "_model.decoder.rnn.weight_ih"},
{VAD_TENSOR_LSTM_WEIGHT_HH, "_model.decoder.rnn.weight_hh"},
{VAD_TENSOR_LSTM_BIAS_IH, "_model.decoder.rnn.bias_ih"},
{VAD_TENSOR_LSTM_BIAS_HH, "_model.decoder.rnn.bias_hh"},
{VAD_TENSOR_FINAL_CONV_WEIGHT, "_model.decoder.decoder.2.weight"},
{VAD_TENSOR_FINAL_CONV_BIAS, "_model.decoder.decoder.2.bias"}
};