whisper.cpp/examples/talk-llama/llama-kv-cache.cpp
Georgi Gerganov 26eb48cb08 talk-llama : sync llama.cpp
ggml-ci
2025-05-27 18:03:00 +03:00

2740 lines
87 KiB
C++

#include "llama-kv-cache.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include "llama-context.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <map>
#include <stdexcept>
//
// llama_kv_cache_unified
//
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}
llama_kv_cache_unified::llama_kv_cache_unified(
const llama_model & model,
layer_filter_cb && filter,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
uint32_t kv_size,
uint32_t n_seq_max,
uint32_t n_pad,
uint32_t n_swa,
llama_swa_type swa_type) :
model(model), hparams(model.hparams), v_trans(v_trans),
n_seq_max(n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
GGML_ASSERT(kv_size % n_pad == 0);
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*hparams.n_layer*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
head = 0;
cells.resize(kv_size);
for (uint32_t il = 0; il < hparams.n_layer; il++) {
if (filter && !filter(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il);
continue;
}
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(il);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
}
LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k;
ggml_tensor * v;
k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size);
v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size);
ggml_format_name(k, "cache_k_l%d", il);
ggml_format_name(v, "cache_v_l%d", il);
map_layer_ids[il] = layers.size();
layers.push_back({ il, k, v });
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
}
{
const size_t memory_size_k = size_k_bytes();
const size_t memory_size_v = size_v_bytes();
LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max,
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
}
void llama_kv_cache_unified::clear() {
cells.reset();
head = 0;
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
uint32_t new_head = cells.size();
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
return true;
}
void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id_src)) {
cells.seq_add(i, seq_id_dst);
}
}
}
void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
uint32_t new_head = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (cells.seq_keep(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
}
void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
if (shift == 0) {
return;
}
uint32_t new_head = cells.size();
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over all cells.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
if (cells.pos_add(i, shift)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
head = new_head != cells.size() ? new_head : 0;
}
void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
cells.pos_div(i, d);
}
}
}
llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const {
return cells.seq_pos_min(seq_id);
}
llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
return cells.seq_pos_max(seq_id);
}
void llama_kv_cache_unified::restore() {
for (auto & state : recovery.states) {
cells.set(state.i, state.cells);
}
recovery.clear();
}
void llama_kv_cache_unified::commit() {
if (recovery.states.empty()) {
LLAMA_LOG_WARN("%s: the recovery information upon a commit was empty - might indicate a bug (ref: %s)\n",
__func__, "https://github.com/ggml-org/llama.cpp/pull/13194");
return;
}
recovery.clear();
}
bool llama_kv_cache_unified::update(llama_context & lctx) {
bool need_reserve = false;
auto * sched = lctx.get_sched();
if (cells.get_has_shift()) {
if (!get_can_shift()) {
GGML_ABORT("The current KV cache / model configuration does not support K-shift");
}
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
// apply K-shift if needed
if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
ggml_backend_sched_reset(sched);
auto * gf = lctx.graph_init();
auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
ggml_backend_sched_alloc_graph(sched, gf);
res->set_inputs(nullptr);
lctx.graph_compute(gf, false);
need_reserve = true;
}
cells.reset_shift();
}
if (do_defrag) {
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
if (defrag_prepare(lctx.graph_max_nodes())) {
ggml_backend_sched_reset(sched);
auto * gf = lctx.graph_init();
auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
ggml_backend_sched_alloc_graph(sched, gf);
res->set_inputs(nullptr);
lctx.graph_compute(gf, false);
need_reserve = true;
}
do_defrag = false;
}
return need_reserve;
}
void llama_kv_cache_unified::defrag_sched(float thold) {
// - do not defrag small contexts (i.e. < 2048 tokens)
// - count the padding towards the number of used tokens
const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n)) : 0.0f;
// queue defragmentation for next llama_kv_cache_update
if (fragmentation > thold) {
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
do_defrag = true;
}
}
void llama_kv_cache_unified::set_full() {
n = cells.size();
// when simulating a full KV cache, the specific value of the "head" pointer is not important because it does not
// affect the shapes of the tensors in the compute graph - it only affects the offsets of the K/V views.
// we should only guarantee that the head position won't cause out-of-bounds view of the K, V tensors, so
// setting it to 0 is the simplest way to achieve that
// ref: https://github.com/ggml-org/llama.cpp/issues/13359
head = 0;
}
llama_sbatch llama_kv_cache_unified::sbatch_init(const llama_batch & batch, bool logits_all) {
return llama_sbatch(batch, hparams.n_embd, true, logits_all);
}
llama_ubatch llama_kv_cache_unified::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
GGML_UNUSED(embd_pooled);
return sbatch.split_simple(n_ubatch);
}
bool llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > cells.get_used() + 2*ubatch.n_tokens) {
head = 0;
}
// otherwise, one cell per token.
if (n_tokens > cells.size()) {
LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
return false;
}
//#define FIND_SLOT_DEBUG 1
#if FIND_SLOT_DEBUG
LLAMA_LOG_WARN("begin: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", n, used, head, n_swa);
// for debugging
{
std::string ss;
if (n_swa > 0) {
for (uint32_t i = 0; i < size; ++i) {
if (cells.is_empty(i)) {
ss += '.';
} else {
ss += 'x';
}
if (i%256 == 255) {
ss += '\n';
}
}
}
LLAMA_LOG_WARN("\n%s\n", ss.c_str());
}
#endif
uint32_t n_tested = 0;
while (true) {
if (head + n_tokens > cells.size()) {
n_tested += cells.size() - head;
head = 0;
continue;
}
bool found = true;
for (uint32_t i = 0; i < n_tokens; i++) {
// TODO: improve to accept cells that are masked by the SWA
if (!cells.is_empty(head + i)) {
found = false;
head += i + 1;
n_tested += i + 1;
break;
}
}
if (found) {
break;
}
if (n_tested >= cells.size()) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return false;
}
}
// store the old state of the cells in the recovery stack
recovery.states.push_back({head, cells.cp(head, n_tokens)});
for (uint32_t i = 0; i < n_tokens; ++i) {
cells.pos_set(head + i, ubatch.pos[i]);
for (int32_t j = 0; j < ubatch.n_seq_id[i]; j++) {
cells.seq_add(head + i, ubatch.seq_id[i][j]);
}
}
// a heuristic, to avoid attending the full cache if it is not yet utilized
// after enough generations, the benefit from this heuristic disappears
// if we start defragmenting the cache, the benefit from this will be more important
n = std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad)));
#ifdef FIND_SLOT_DEBUG
LLAMA_LOG_WARN("end: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", n, used, head, n_swa);
#endif
return true;
}
bool llama_kv_cache_unified::get_can_shift() const {
return true;
}
uint32_t llama_kv_cache_unified::get_n() const {
return n;
}
uint32_t llama_kv_cache_unified::get_size() const {
return cells.size();
}
ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
return ggml_view_3d(ctx, k,
hparams.n_embd_head_k, hparams.n_head_kv(il), n,
ggml_row_size(k->type, hparams.n_embd_head_k),
ggml_row_size(k->type, hparams.n_embd_k_gqa(il)),
0);
}
ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
if (!v_trans) {
// note: v->nb[1] <= v->nb[2]
return ggml_view_3d(ctx, v,
hparams.n_embd_head_v, hparams.n_head_kv(il), n,
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2]
0);
}
// note: v->nb[1] > v->nb[2]
return ggml_view_3d(ctx, v,
n, hparams.n_head_kv(il), hparams.n_embd_head_v,
ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, v->ne[1]), // v->nb[2]
0);
}
ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const int64_t n_tokens = k_cur->ne[2];
ggml_tensor * k_view = ggml_view_1d(ctx, k,
n_tokens*hparams.n_embd_k_gqa(il),
ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head);
return ggml_cpy(ctx, k_cur, k_view);
}
ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const int64_t n_tokens = v_cur->ne[2];
v_cur = ggml_reshape_2d(ctx, v_cur, hparams.n_embd_v_gqa(il), n_tokens);
ggml_tensor * v_view = nullptr;
if (!v_trans) {
v_view = ggml_view_1d(ctx, v,
n_tokens*hparams.n_embd_v_gqa(il),
ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head);
} else {
// note: the V cache is transposed when not using flash attention
v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il),
(v->ne[1])*ggml_element_size(v),
( head)*ggml_element_size(v));
v_cur = ggml_transpose(ctx, v_cur);
}
return ggml_cpy(ctx, v_cur, v_view);
}
void llama_kv_cache_unified::prune_swa(llama_seq_id seq_id, llama_pos pmin, llama_pos pmax) {
// no pruning is needed when the cache does not use SWA
GGML_ASSERT(swa_type != LLAMA_SWA_TYPE_NONE && "do not prune non-SWA cache");
int n_attended = 0;
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.seq_has(i, seq_id)) {
continue;
}
const llama_pos p0 = cells.pos_get(i);
if (p0 <= pmin && !is_masked_swa(p0, pmin)) {
n_attended++;
}
if (is_masked_swa(p0, pmax)) {
cells.seq_rm(i, seq_id);
}
}
if (n_attended < std::min<int>(n_swa, pmin)) {
LLAMA_LOG_WARN("%s: partial SWA cache detected - possible loss of information, pmin = %d, n_attended = %d, n_swa = %d\n", __func__, pmin, n_attended, n_swa);
}
}
void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
float * data = (float *) dst->data;
const int64_t n_kv = n;
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
// Causal mask:
// xxx-------
// xxxx------
// xxxxx-----
// Non-causal mask:
// xxxxx-----
// xxxxx-----
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
for (int h = 0; h < 1; ++h) {
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const llama_pos p1 = ubatch->pos[s*n_seq_tokens + j];
for (int i = 0; i < n_kv; ++i) {
float f = 0.0f;
bool masked = false;
if (cells.is_empty(i)) {
masked = true;
} else {
const llama_pos p0 = cells.pos_get(i);
// mask the token if not the same sequence
masked = masked || (!cells.seq_has(i, seq_id));
// mask future tokens
masked = masked || (causal_attn && p0 > p1);
// apply SWA if any
masked = masked || (is_masked_swa(p0, p1));
if (!masked && hparams.use_alibi) {
f = -std::abs(p0 - p1);
}
}
if (masked) {
f = -INFINITY;
}
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
}
}
// mask padded tokens
if (data) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
}
}
void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const {
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int32_t * data = (int32_t *) dst->data;
for (uint32_t i = 0; i < cells.size(); ++i) {
data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
}
}
void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
int32_t * data = (int32_t *) dst->data;
const int64_t n_kv = n;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_kv; ++i) {
// the position when the cells is empty is irrelevant - it will be masked out later in the attention
const llama_pos p0 = cells.is_empty(i) ? -1 : cells.pos_get(i);
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(p0, ubatch->pos[j], hparams.n_rel_attn_bkts, false);
}
}
}
}
size_t llama_kv_cache_unified::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_kv_cache_unified::size_k_bytes() const {
size_t size_k_bytes = 0;
for (const auto & layer : layers) {
size_k_bytes += ggml_nbytes(layer.k);
}
return size_k_bytes;
}
size_t llama_kv_cache_unified::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & layer : layers) {
size_v_bytes += ggml_nbytes(layer.v);
}
return size_v_bytes;
}
ggml_tensor * llama_kv_cache_unified::build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
tmp = ggml_rope_ext(ctx, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
tmp = ggml_cpy(ctx, tmp, cur);
} else {
// we rotate only the first n_rot dimensions
tmp = ggml_rope_ext_inplace(ctx, cur,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
}
return tmp;
}
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_k_shift() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * k_shift; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
};
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (k_shift) {
kv_self->set_input_k_shift(k_shift);
}
}
llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const {
auto res = std::make_unique<llm_graph_result>();
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
//GGML_ASSERT(kv_self->size == n_ctx);
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx);
ggml_set_input(inp->k_shift);
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor * k =
ggml_view_3d(ctx, layer.k,
n_embd_head_k, n_head_kv, cells.size(),
ggml_row_size(layer.k->type, n_embd_head_k),
ggml_row_size(layer.k->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
res->add_input(std::move(inp));
return res;
}
llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_cgraph * gf) const {
auto res = std::make_unique<llm_graph_result>();
const auto & ids = defrag_info.ids;
#if 0
// CPU defrag
//
// TODO: optimizations are possible:
// - multiple threads
// - avoid copying to the host memory when already there
//
// likely not worth the effort, as we have ggml_graph based defrag
//
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
const uint32_t kv_size = size;
std::vector<uint8_t> buf_k;
std::vector<uint8_t> buf_v;
for (uint32_t il = 0; il < n_layer; ++il) {
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
const size_t v_size_el = ggml_type_size(v_l[il]->type);
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
buf_k.resize(k_size);
buf_v.resize(v_size);
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
// batch move [i, i+nm) to [id, id+nm)
// note: cells can move only to a lower index
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t id = ids[i];
if (i == id || id == n_kv) {
continue;
}
uint32_t nm = 1;
while (i + nm < n_kv && ids[i + nm] == id + nm) {
nm++;
}
// move keys
{
const int64_t os = i*k_size_row;
const int64_t od = id*k_size_row;
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
}
// move values (note: they are transposed)
{
const int64_t os = i;
const int64_t od = id;
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
}
}
i += nm - 1;
}
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
}
#else
for (uint32_t i = 0; i < ids.size(); ++i) {
const uint32_t id = ids[i];
if (i == id || id == ids.size()) {
continue;
}
uint32_t nm = 1;
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
nm++;
}
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*i));
ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k,
n_embd_k_gqa, nm,
ggml_row_size(layer.k->type, n_embd_k_gqa),
ggml_row_size(layer.k->type, n_embd_k_gqa*id));
ggml_tensor * view_v_src;
ggml_tensor * view_v_dst;
if (cparams.flash_attn) {
// NOTE: the V cache is not transposed when using flash attention
view_v_src = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*i));
view_v_dst = ggml_view_2d(ctx, layer.v,
n_embd_v_gqa, nm,
ggml_row_size(layer.v->type, n_embd_v_gqa),
ggml_row_size(layer.v->type, n_embd_v_gqa*id));
} else {
view_v_src = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, i));
view_v_dst = ggml_view_2d(ctx, layer.v,
nm, n_embd_v_gqa,
ggml_row_size(layer.v->type, cells.size()),
ggml_row_size(layer.v->type, id));
}
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
}
i += nm - 1;
}
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
#endif
return res;
}
bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
const uint32_t n_layer = layers.size();
const uint32_t n_kv = cells.used_max_p1();
const uint32_t n_used = cells.get_used();
assert(n_used <= n_kv);
//const int64_t t_start = ggml_time_us();
// number of cells moved
uint32_t n_moves = 0;
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
// - source view, destination view, copy operation
// - x2 for keys and values
//const uint32_t max_moves = max_nodes()/(6*n_layer);
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
// determine which KV cells to move where
//
// cell i moves to ids[i]
//
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
//
auto & ids = defrag_info.ids;
ids.clear();
ids.resize(n_kv, n_kv);
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
if (!cells.is_empty(i0)) {
ids[i0] = i0;
continue;
}
// found a hole - fill it with data from the end of the cache
uint32_t nh = 1;
// determine the size of the hole
while (i0 + nh < n_used && cells.is_empty(i0 + nh)) {
nh++;
}
uint32_t nf = 0;
uint32_t is = n_kv - 1;
// starting from the end, find nh non-empty cells
for (; is > i0; --is) {
if (cells.is_empty(is) || ids[is] != n_kv) {
continue;
}
// non-empty cell which is not yet moved
nf++;
if (nf == nh) {
break;
}
}
// this can only happen if `n_used` is not accurate, which would be a bug
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
nf = 0;
uint32_t i1 = is;
// are we moving a continuous block of memory?
bool cont = false;
// should we stop searching for the next move?
bool stop = false;
// go back and move the nf cells to the hole
for (; i1 < n_kv; ++i1) {
if (cells.is_empty(i1) || ids[i1] != n_kv) {
if (n_moves == max_moves) {
stop = true;
break;
}
cont = false;
continue;
}
// this cell goes to (i0 + nf)
ids[i1] = i0 + nf;
// move the cell meta data
cells.mv(i1, i0 + nf);
head = n_used;
if (!cont) {
n_moves++;
cont = true;
}
nf++;
if (nf == nh) {
break;
}
}
if (stop || n_moves == max_moves) {
break;
}
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
i0 += nh - 1;
}
if (n_moves == 0) {
return false;
}
LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
return true;
}
bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const {
assert(p0 >= 0 && p1 >= 0);
switch (swa_type) {
case LLAMA_SWA_TYPE_NONE:
{
} break;
case LLAMA_SWA_TYPE_STANDARD:
{
if (p1 - p0 >= (int32_t) n_swa) {
return true;
}
} break;
case LLAMA_SWA_TYPE_CHUNKED:
{
const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
if (p0 < pos_chunk_start) {
return true;
}
} break;
}
return false;
}
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
++cell_count;
if (cell_range_begin == cells.size()) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != cells.size()) {
cell_ranges.emplace_back(cell_range_begin, i);
cell_range_begin = cells.size();
}
}
}
if (cell_range_begin != cells.size()) {
cell_ranges.emplace_back(cell_range_begin, cells.size());
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cell_ranges) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
state_write_meta(io, cell_ranges, seq_id);
state_write_data(io, cell_ranges);
}
void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
bool res = true;
res = res && state_read_meta(io, cell_count, seq_id);
res = res && state_read_data(io, cell_count);
if (!res) {
if (seq_id == -1) {
clear();
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
std::vector<llama_seq_id> seq_ids;
for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
if (cur == seq_id || seq_id == -1) {
if (cells.seq_has(i, cur)) {
seq_ids.push_back(cur);
}
}
}
const llama_pos pos = cells.pos_get(i);
const uint32_t n_seq_id = seq_ids.size();
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
for (const auto & seq_id : seq_ids) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
const uint32_t v_trans = this->v_trans ? 1 : 0;
const uint32_t n_layer = layers.size();
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Write key type
const int32_t k_type_i = (int32_t)layer.k->type;
io.write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
io.write_tensor(layer.k, range.first * k_size_row, buf_size);
}
}
if (!v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)layer.v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
io.write_tensor(layer.v, range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = cells.size();
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)layer.v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(layer.v->type);
io.write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
io.write_tensor(layer.v, src_offset, buf_size);
}
}
}
}
}
bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_sbatch sbatch;
llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
batch.n_tokens = cell_count;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 1) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
// read the sequence id, but directly discard it - we will use dest_seq_id instead
{
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
}
batch.pos[i] = pos;
batch.n_seq_id[i] = n_seq_id;
batch.seq_id[i] = &dest_seq_id;
}
if (!find_slot(batch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
commit();
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head + cell_count <= cells.size());
GGML_ASSERT(cells.pos_get(head) == batch.pos[0]);
GGML_ASSERT(cells.pos_get(head + cell_count - 1) == batch.pos[cell_count - 1]);
GGML_ASSERT(cells.seq_has(head, dest_seq_id));
GGML_ASSERT(cells.seq_has(head + cell_count - 1, dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear();
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cells.pos_set(i, pos);
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
return false;
}
cells.seq_add(i, seq_id);
}
}
head = 0;
}
return true;
}
bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != layers.size()) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
return false;
}
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
return false;
}
if (this->v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Read type of key
int32_t k_type_i_ref;
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t) layer.k->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(layer.k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
}
}
if (!this->v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)layer.v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)layer.v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(layer.v->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * cells.size()) * v_size_el;
ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}
//
// llama_kv_cache_unified_iswa
//
llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
bool swa_full,
uint32_t kv_size,
uint32_t n_seq_max,
uint32_t n_batch,
uint32_t n_pad) : hparams(model.hparams) {
llama_kv_cache_unified::layer_filter_cb filter_base = [&](int32_t il) { return !model.hparams.is_swa(il); };
llama_kv_cache_unified::layer_filter_cb filter_swa = [&](int32_t il) { return model.hparams.is_swa(il); };
const uint32_t size_base = kv_size;
uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*n_seq_max + n_batch, n_pad));
// when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size and disable pruning
if (swa_full) {
LLAMA_LOG_WARN("%s: using full-size SWA cache (ref: %s)\n",
__func__, "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
size_swa = size_base;
do_prune = false;
}
LLAMA_LOG_INFO("%s: creating non-SWA KV cache, size = %u cells\n", __func__, size_base);
kv_base = std::make_unique<llama_kv_cache_unified>(
model, std::move(filter_base), type_k, type_v,
v_trans, offload, size_base, n_seq_max, n_pad,
0, LLAMA_SWA_TYPE_NONE);
LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa);
kv_swa = std::make_unique<llama_kv_cache_unified>(
model, std::move(filter_swa), type_k, type_v,
v_trans, offload, size_swa, n_seq_max, n_pad,
hparams.n_swa, hparams.swa_type);
}
void llama_kv_cache_unified_iswa::clear() {
kv_base->clear();
kv_swa ->clear();
}
bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
bool res = true;
res = res & kv_base->seq_rm(seq_id, p0, p1);
res = res & kv_swa ->seq_rm(seq_id, p0, p1);
return res;
}
void llama_kv_cache_unified_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
kv_base->seq_cp(seq_id_src, seq_id_dst, p0, p1);
kv_swa ->seq_cp(seq_id_src, seq_id_dst, p0, p1);
}
void llama_kv_cache_unified_iswa::seq_keep(llama_seq_id seq_id) {
kv_base->seq_keep(seq_id);
kv_swa ->seq_keep(seq_id);
}
void llama_kv_cache_unified_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
kv_base->seq_add(seq_id, p0, p1, shift);
kv_swa ->seq_add(seq_id, p0, p1, shift);
}
void llama_kv_cache_unified_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
kv_base->seq_div(seq_id, p0, p1, d);
kv_swa ->seq_div(seq_id, p0, p1, d);
}
llama_pos llama_kv_cache_unified_iswa::seq_pos_min(llama_seq_id seq_id) const {
// the base cache is a superset of the SWA cache, so we can just check the SWA cache
return kv_swa->seq_pos_min(seq_id);
}
llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
return kv_swa->seq_pos_max(seq_id);
}
void llama_kv_cache_unified_iswa::restore() {
kv_base->restore();
kv_swa ->restore();
}
void llama_kv_cache_unified_iswa::commit() {
kv_base->commit();
kv_swa ->commit();
// slide the attention window, forgetting/pruning old tokens that are outside the window
if (do_prune) {
for (const auto & [seq_id, entry] : pending.pos) {
kv_swa->prune_swa(seq_id, entry.pmin, entry.pmax);
}
}
pending.clear();
}
bool llama_kv_cache_unified_iswa::update(llama_context & lctx) {
bool res = true;
res = res & kv_base->update(lctx);
res = res & kv_swa ->update(lctx);
return res;
}
void llama_kv_cache_unified_iswa::defrag_sched(float thold) {
kv_base->defrag_sched(thold);
kv_swa ->defrag_sched(thold);
}
void llama_kv_cache_unified_iswa::set_full() {
kv_base->set_full();
kv_swa ->set_full();
}
llama_sbatch llama_kv_cache_unified_iswa::sbatch_init(const llama_batch & batch, bool logits_all) {
pending.clear();
if (do_prune) {
for (int i = 0; i < batch.n_tokens; ++i) {
for (int s = 0; s < batch.n_seq_id[i]; ++s) {
const llama_seq_id seq_id = batch.seq_id[i][s];
const llama_pos pos = batch.pos[i];
if (pending.pos.find(seq_id) == pending.pos.end()) {
pending.pos[seq_id].pmin = pos;
pending.pos[seq_id].pmax = pos;
} else {
pending.pos[seq_id].pmin = std::min(pending.pos[seq_id].pmin, pos);
pending.pos[seq_id].pmax = std::max(pending.pos[seq_id].pmax, pos);
}
}
}
}
return llama_sbatch(batch, hparams.n_embd, true, logits_all);
}
llama_ubatch llama_kv_cache_unified_iswa::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
GGML_UNUSED(embd_pooled);
return sbatch.split_simple(n_ubatch);
}
bool llama_kv_cache_unified_iswa::find_slot(const llama_ubatch & batch) {
bool res = true;
res = res & kv_base->find_slot(batch);
res = res & kv_swa ->find_slot(batch);
return res;
}
bool llama_kv_cache_unified_iswa::get_can_shift() const {
return kv_base->get_size() == kv_swa->get_size();
}
void llama_kv_cache_unified_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
kv_base->state_write(io, seq_id);
kv_swa ->state_write(io, seq_id);
}
void llama_kv_cache_unified_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
kv_base->state_read(io, seq_id);
kv_swa ->state_read(io, seq_id);
}
llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_kv_base() const {
return kv_base.get();
}
llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_kv_swa() const {
return kv_swa.get();
}
//
// llama_kv_cache_recurrent
//
llama_kv_cache_recurrent::llama_kv_cache_recurrent(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool offload,
uint32_t kv_size,
uint32_t n_seq_max) : hparams(model.hparams), n_seq_max(n_seq_max) {
const int32_t n_layer = hparams.n_layer;
LLAMA_LOG_INFO("%s: kv_size = %u, n_seq_max = %u, type_k = '%s', type_v = '%s', n_layer = %d\n",
__func__, kv_size, n_seq_max, ggml_type_name(type_k), ggml_type_name(type_v), n_layer);
head = 0;
size = kv_size;
used = 0;
cells.clear();
cells.resize(kv_size);
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
k_l.reserve(n_layer);
v_l.reserve(n_layer);
for (int i = 0; i < n_layer; i++) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(i);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
}
LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
ggml_format_name(k, "cache_k_l%d", i);
ggml_format_name(v, "cache_v_l%d", i);
k_l.push_back(k);
v_l.push_back(v);
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
bufs.emplace_back(buf);
}
{
const size_t memory_size_k = size_k_bytes();
const size_t memory_size_v = size_v_bytes();
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
}
void llama_kv_cache_recurrent::clear() {
for (int32_t i = 0; i < (int32_t) size; ++i) {
cells[i].pos = -1;
cells[i].seq_id.clear();
cells[i].src = -1;
cells[i].tail = -1;
}
head = 0;
used = 0;
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
uint32_t new_head = size;
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// models like Mamba or RWKV can't have a state partially erased
if (seq_id >= (int64_t) size) {
// could be fatal
return false;
}
if (0 <= seq_id) {
int32_t & tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
const kv_cell & cell = cells[tail_id];
// partial intersection is invalid
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
return false;
}
// invalidate tails which will be cleared
if (p0 <= cell.pos && cell.pos < p1) {
tail_id = -1;
}
}
} else {
// seq_id is negative, then the range should include everything or nothing
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
return false;
}
}
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].pos >= p0 && cells[i].pos < p1) {
if (seq_id < 0) {
cells[i].seq_id.clear();
} else if (cells[i].has_seq_id(seq_id)) {
cells[i].seq_id.erase(seq_id);
} else {
continue;
}
if (cells[i].is_empty()) {
// keep count of the number of used cells
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
if (new_head == size) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
return true;
}
void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
kv_cell & tail_src = cells[seq_id_src];
kv_cell & tail_dst = cells[seq_id_dst];
if (tail_dst.tail >= 0) {
// clear destination seq_id if it wasn't empty
kv_cell & cell_dst = cells[tail_dst.tail];
cell_dst.seq_id.erase(seq_id_dst);
tail_dst.tail = -1;
if (cell_dst.seq_id.empty()) {
cell_dst.pos = -1;
cell_dst.src = -1;
used -= 1;
}
}
if (tail_src.tail >= 0) {
kv_cell & cell_src = cells[tail_src.tail];
cell_src.seq_id.insert(seq_id_dst);
tail_dst.tail = tail_src.tail;
}
}
}
void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) {
uint32_t new_head = size;
for (uint32_t i = 0; i < size; ++i) {
if ((llama_seq_id) i != seq_id) {
cells[i].tail = -1;
}
if (!cells[i].has_seq_id(seq_id)) {
if (cells[i].pos >= 0) {
used--;
}
cells[i].pos = -1;
cells[i].src = -1;
cells[i].seq_id.clear();
if (new_head == size){
new_head = i;
}
} else {
cells[i].seq_id.clear();
cells[i].seq_id.insert(seq_id);
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != size && new_head < head) {
head = new_head;
}
}
void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
if (shift == 0) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the
if (p0 == p1) {
return;
}
// for Mamba-like or RWKV models, only the pos needs to be shifted
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos += shift;
}
}
}
}
void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
// for Mamba-like or RWKV models, only the pos needs to be changed
if (0 <= seq_id && seq_id < (int64_t) size) {
const int32_t tail_id = cells[seq_id].tail;
if (tail_id >= 0) {
kv_cell & cell = cells[tail_id];
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
cell.pos /= d;
}
}
}
}
llama_pos llama_kv_cache_recurrent::seq_pos_min(llama_seq_id seq_id) const {
llama_pos result = std::numeric_limits<llama_pos>::max();
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id)) {
result = std::min(result, cells[i].pos);
}
}
if (result == std::numeric_limits<llama_pos>::max()) {
result = -1;
}
return result;
}
llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
llama_pos result = -1;
for (uint32_t i = 0; i < size; ++i) {
if (cells[i].has_seq_id(seq_id)) {
result = std::max(result, cells[i].pos);
}
}
return result;
}
void llama_kv_cache_recurrent::restore() {
if (pending.ranges.empty()) {
return;
}
seq_rm(-1, -1, -1);
}
void llama_kv_cache_recurrent::commit() {
pending.ranges.clear();
}
bool llama_kv_cache_recurrent::update(llama_context & ctx) {
GGML_UNUSED(ctx);
return false;
}
void llama_kv_cache_recurrent::defrag_sched(float thold) {
GGML_UNUSED(thold);
// noop
}
void llama_kv_cache_recurrent::set_full() {
n = size;
head = 0;
}
llama_sbatch llama_kv_cache_recurrent::sbatch_init(
const llama_batch & batch,
bool logits_all) {
return llama_sbatch(batch, hparams.n_embd, false, logits_all);
}
llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
if (embd_pooled) {
// Pooled embeddings cannot be split across ubatches (yet)
return sbatch.split_seq(n_ubatch);
}
return sbatch.split_equal(n_ubatch);
}
bool llama_kv_cache_recurrent::find_slot(
const llama_ubatch & ubatch) {
const uint32_t n_tokens = ubatch.n_tokens;
const uint32_t n_seqs = ubatch.n_seqs;
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head > used + 2*n_tokens) {
head = 0;
}
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
// A slot should be always be contiguous.
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(ubatch.equal_seqs);
int32_t min = size - 1;
int32_t max = 0;
// everything should fit if all seq_ids are smaller than the max
for (uint32_t s = 0; s < n_seqs; ++s) {
const uint32_t n_seq_id = ubatch.n_seq_id[s];
for (uint32_t j = 0; j < n_seq_id; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
if (seq_id < 0 || (uint32_t) seq_id >= size) {
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n", __func__, seq_id, n_seq_max);
return false;
}
if (j > 0) {
kv_cell & seq = cells[seq_id];
if (seq.tail >= 0) {
kv_cell & cell = cells[seq.tail];
// clear cells from seq_ids that become shared
// (should not normally happen, but let's handle it anyway)
cell.seq_id.erase(seq_id);
seq.tail = -1;
if (cell.seq_id.empty()) {
cell.pos = -1;
cell.src = -1;
used -= 1;
}
}
}
}
}
#ifndef NDEBUG
{
std::vector<int32_t> tails_verif;
tails_verif.assign(size, -1);
for (uint32_t i = 0; i < size; ++i) {
kv_cell & cell = cells[i];
for (llama_seq_id seq_id : cell.seq_id) {
if (tails_verif[seq_id] != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
}
tails_verif[seq_id] = i;
}
}
for (uint32_t i = 0; i < size; ++i) {
if (tails_verif[i] != cells[i].tail) {
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
}
}
}
#endif
// find next empty cell
uint32_t next_empty_cell = head;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
// find usable cell range
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
kv_cell & seq_meta = cells[seq_id];
bool has_cell = false;
if (seq_meta.tail >= 0) {
kv_cell & cell = cells[seq_meta.tail];
GGML_ASSERT(cell.has_seq_id(seq_id));
// does this seq_id "own" the cell?
if (cell.seq_id.size() == 1) { has_cell = true; }
}
if (!has_cell) {
kv_cell & empty_cell = cells[next_empty_cell];
GGML_ASSERT(empty_cell.is_empty());
// copy old tail into the empty cell
if (seq_meta.tail >= 0) {
kv_cell & orig_cell = cells[seq_meta.tail];
empty_cell.pos = orig_cell.pos;
empty_cell.src = orig_cell.src;
orig_cell.seq_id.erase(seq_id);
empty_cell.seq_id.insert(seq_id); // will be overwritten
}
seq_meta.tail = next_empty_cell;
// find next empty cell
if (s + 1 < n_seqs) {
next_empty_cell += 1;
for (uint32_t i = 0; i < size; ++i) {
if (next_empty_cell >= size) { next_empty_cell -= size; }
kv_cell & cell = cells[next_empty_cell];
if (cell.is_empty()) { break; }
next_empty_cell += 1;
}
}
}
if (min > seq_meta.tail) { min = seq_meta.tail; }
if (max < seq_meta.tail) { max = seq_meta.tail; }
}
// gather and re-order
for (uint32_t s = 0; s < n_seqs; ++s) {
int32_t dst_id = s + min;
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
if (dst_id != src_id) {
kv_cell & dst_cell = cells[dst_id];
kv_cell & src_cell = cells[src_id];
std::swap(dst_cell.pos, src_cell.pos);
std::swap(dst_cell.src, src_cell.src);
std::swap(dst_cell.seq_id, src_cell.seq_id);
// swap tails (assuming they NEVER overlap)
for (const llama_seq_id seq_id : src_cell.seq_id) {
cells[seq_id].tail = src_id;
}
for (const llama_seq_id seq_id : dst_cell.seq_id) {
cells[seq_id].tail = dst_id;
}
}
}
// update the pos of the used seqs
for (uint32_t s = 0; s < n_seqs; ++s) {
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
int32_t cell_id = s + min;
kv_cell & cell = cells[cell_id];
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
// What should happen when the pos backtracks or skips a value?
// Clearing the state mid-batch would require special-casing which isn't done.
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
}
cell.pos = last_pos;
cell.seq_id.clear();
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
const llama_seq_id seq_id = ubatch.seq_id[s][j];
cell.seq_id.insert(seq_id);
cells[seq_id].tail = cell_id;
}
}
// allow getting the range of used cells, from head to head + n
head = min;
n = max - min + 1;
used = std::count_if(cells.begin(), cells.end(),
[](const kv_cell & cell){ return !cell.is_empty(); });
// sanity check
return n >= n_seqs;
}
bool llama_kv_cache_recurrent::get_can_shift() const {
return false;
}
int32_t llama_kv_cache_recurrent::s_copy(int i) const {
const uint32_t cell_id = i + head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
// prevent out-of-bound sources
if (cell.src < 0 || (uint32_t) cell.src >= size) {
cell.src = cell_id;
}
int32_t res = cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (cell.src != (int32_t) cell_id) {
cell.src = cell_id;
}
return res;
}
float llama_kv_cache_recurrent::s_mask(int i) const {
const uint32_t cell_id = i + head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
float res = (float) (cell.src >= 0);
// only clear once
if (cell.src < 0) {
cell.src = cell_id;
}
return res;
}
uint32_t llama_kv_cache_recurrent::cell_max() const {
for (uint32_t i = size; i > 0; --i) {
const kv_cell & cell = cells[i - 1];
if (cell.pos >= 0 && !cell.is_empty()) {
return i;
}
}
return 0;
}
size_t llama_kv_cache_recurrent::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_kv_cache_recurrent::size_k_bytes() const {
size_t size_k_bytes = 0;
for (const auto & k : k_l) {
size_k_bytes += ggml_nbytes(k);
}
return size_k_bytes;
}
size_t llama_kv_cache_recurrent::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & v : v_l) {
size_v_bytes += ggml_nbytes(v);
}
return size_v_bytes;
}
void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
uint32_t cell_count = 0;
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = size;
for (uint32_t i = 0; i < size; ++i) {
const auto & cell = cells[i];
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
++cell_count;
if (cell_range_begin == size) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, i);
cell_range_begin = size;
}
}
}
if (cell_range_begin != size) {
cell_ranges.emplace_back(cell_range_begin, size);
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cell_ranges) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
state_write_meta(io, cell_ranges, seq_id);
state_write_data(io, cell_ranges);
}
void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
bool res = true;
res = res && state_read_meta(io, cell_count, seq_id);
res = res && state_read_data(io, cell_count);
if (!res) {
if (seq_id == -1) {
clear();
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
const auto & cell = cells[i];
const llama_pos pos = cell.pos;
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id) {
for (auto seq_id : cell.seq_id) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
}
void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
const uint32_t v_trans = 0;
const uint32_t n_layer = hparams.n_layer;
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Write key type
const int32_t k_type_i = (int32_t)k_l[il]->type;
io.write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
}
}
if (!v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)v_l[il]->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = size;
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)v_l[il]->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
io.write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
io.write_tensor(v_l[il], src_offset, buf_size);
}
}
}
}
}
bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_sbatch sbatch;
llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
batch.n_tokens = cell_count;
batch.n_seq_tokens = cell_count;
batch.n_seqs = 1;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 0) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
batch.pos[i] = pos;
}
batch.n_seq_id[0] = 1;
batch.seq_id[0] = &dest_seq_id;
if (!find_slot(batch)) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
commit();
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head + cell_count <= size);
GGML_ASSERT(cells[head].pos == batch.pos[0]);
GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear();
for (uint32_t i = 0; i < cell_count; ++i) {
kv_cell & cell = cells[i];
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cell.pos = pos;
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
// TODO: llama_kv_cache_recurrent should have a notion of max sequences
//if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
if (seq_id < 0) {
//LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
return false;
}
cell.seq_id.insert(seq_id);
int32_t & tail = cells[seq_id].tail;
if (tail != -1) {
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
return false;
}
tail = i;
}
}
head = 0;
used = cell_count;
}
for (uint32_t i = 0; i < cell_count; ++i) {
uint32_t cell_id = head + i;
// make sure the recurrent states will keep their restored state
cells[cell_id].src = cell_id;
}
return true;
}
bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != hparams.n_layer) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
return false;
}
if (cell_count > size) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
return false;
}
if (false != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Read type of key
int32_t k_type_i_ref;
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t) k_l[il]->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
}
}
if (!v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t)v_l[il]->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(v_l[il]->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * size) * v_size_el;
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}