mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-03 20:48:59 +01:00
09d7d2b68e
* examples : refactor common code into a library * examples : refactor common SDL code into a library * make : update Makefile to use common libs * common : fix MSVC M_PI .. * addon.node : link common lib
368 lines
14 KiB
C++
368 lines
14 KiB
C++
// Talk with AI
|
|
//
|
|
|
|
#include "common.h"
|
|
#include "common-sdl.h"
|
|
#include "whisper.h"
|
|
#include "gpt-2.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <fstream>
|
|
#include <regex>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include <regex>
|
|
|
|
// command-line parameters
|
|
struct whisper_params {
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
int32_t voice_ms = 10000;
|
|
int32_t capture_id = -1;
|
|
int32_t max_tokens = 32;
|
|
int32_t audio_ctx = 0;
|
|
|
|
float vad_thold = 0.6f;
|
|
float freq_thold = 100.0f;
|
|
|
|
bool speed_up = false;
|
|
bool translate = false;
|
|
bool print_special = false;
|
|
bool print_energy = false;
|
|
bool no_timestamps = true;
|
|
|
|
std::string person = "Santa";
|
|
std::string language = "en";
|
|
std::string model_wsp = "models/ggml-base.en.bin";
|
|
std::string model_gpt = "models/ggml-gpt-2-117M.bin";
|
|
std::string speak = "./examples/talk/speak.sh";
|
|
std::string fname_out;
|
|
};
|
|
|
|
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
|
|
|
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
|
for (int i = 1; i < argc; i++) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "-h" || arg == "--help") {
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
|
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
|
|
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
|
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
|
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
|
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
|
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
|
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
|
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
|
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
|
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
|
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
|
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
|
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
|
else if (arg == "-mg" || arg == "--model-gpt") { params.model_gpt = argv[++i]; }
|
|
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
|
|
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
|
else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
|
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
|
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
|
|
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
|
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
|
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
|
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
|
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
|
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
|
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
|
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
|
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
|
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
|
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
|
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
|
fprintf(stderr, " -mg FILE, --model-gpt [%-7s] gpt model file\n", params.model_gpt.c_str());
|
|
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
|
|
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
prob = 0.0f;
|
|
t_ms = 0;
|
|
|
|
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
|
|
|
wparams.print_progress = false;
|
|
wparams.print_special = params.print_special;
|
|
wparams.print_realtime = false;
|
|
wparams.print_timestamps = !params.no_timestamps;
|
|
wparams.translate = params.translate;
|
|
wparams.no_context = true;
|
|
wparams.single_segment = true;
|
|
wparams.max_tokens = params.max_tokens;
|
|
wparams.language = params.language.c_str();
|
|
wparams.n_threads = params.n_threads;
|
|
|
|
wparams.audio_ctx = params.audio_ctx;
|
|
wparams.speed_up = params.speed_up;
|
|
|
|
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
|
return "";
|
|
}
|
|
|
|
int prob_n = 0;
|
|
std::string result;
|
|
|
|
const int n_segments = whisper_full_n_segments(ctx);
|
|
for (int i = 0; i < n_segments; ++i) {
|
|
const char * text = whisper_full_get_segment_text(ctx, i);
|
|
|
|
result += text;
|
|
|
|
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
|
for (int j = 0; j < n_tokens; ++j) {
|
|
const auto token = whisper_full_get_token_data(ctx, i, j);
|
|
|
|
prob += token.p;
|
|
++prob_n;
|
|
}
|
|
}
|
|
|
|
if (prob_n > 0) {
|
|
prob /= prob_n;
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
|
|
|
return result;
|
|
}
|
|
|
|
const std::string k_prompt =
|
|
R"(This is a dialogue between {0} (A) and a person (B). The dialogue so far is:
|
|
|
|
B: Hello {0}, how are you?
|
|
A: I'm fine, thank you.
|
|
{1}
|
|
Here is how {0} (A) continues the dialogue:
|
|
|
|
A:)";
|
|
|
|
int main(int argc, char ** argv) {
|
|
whisper_params params;
|
|
|
|
if (whisper_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (whisper_lang_id(params.language.c_str()) == -1) {
|
|
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
|
|
// whisper init
|
|
|
|
struct whisper_context * ctx_wsp = whisper_init_from_file(params.model_wsp.c_str());
|
|
|
|
// gpt init
|
|
|
|
struct gpt2_context * ctx_gpt = gpt2_init(params.model_gpt.c_str());
|
|
|
|
// print some info about the processing
|
|
{
|
|
fprintf(stderr, "\n");
|
|
if (!whisper_is_multilingual(ctx_wsp)) {
|
|
if (params.language != "en" || params.translate) {
|
|
params.language = "en";
|
|
params.translate = false;
|
|
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
|
}
|
|
}
|
|
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
|
__func__,
|
|
params.n_threads,
|
|
params.language.c_str(),
|
|
params.translate ? "translate" : "transcribe",
|
|
params.no_timestamps ? 0 : 1);
|
|
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
|
|
// init audio
|
|
|
|
audio_async audio(30*1000);
|
|
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
|
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
audio.resume();
|
|
|
|
int n_iter = 0;
|
|
|
|
bool is_running = true;
|
|
bool force_speak = false;
|
|
|
|
float prob0 = 0.0f;
|
|
|
|
std::vector<float> pcmf32_cur;
|
|
std::vector<float> pcmf32_prompt;
|
|
|
|
gpt2_set_prompt(ctx_gpt, "");
|
|
|
|
const int voice_id = rand()%6;
|
|
|
|
fprintf(stderr, "gpt-2: prompt:\n");
|
|
fprintf(stderr, "========================\n\n");
|
|
fprintf(stderr, "%s\n", ::replace(k_prompt, "{0}", params.person).c_str());
|
|
fprintf(stderr, "========================\n\n");
|
|
|
|
// main loop
|
|
while (is_running) {
|
|
// handle Ctrl + C
|
|
is_running = sdl_poll_events();
|
|
|
|
if (!is_running) {
|
|
break;
|
|
}
|
|
|
|
// delay
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
|
|
|
int64_t t_ms = 0;
|
|
|
|
{
|
|
audio.get(2000, pcmf32_cur);
|
|
|
|
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
|
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
|
|
|
audio.get(params.voice_ms, pcmf32_cur);
|
|
|
|
std::string text_heard;
|
|
|
|
if (!force_speak) {
|
|
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prob0, t_ms));
|
|
}
|
|
|
|
// remove text between brackets using regex
|
|
{
|
|
std::regex re("\\[.*?\\]");
|
|
text_heard = std::regex_replace(text_heard, re, "");
|
|
}
|
|
|
|
// remove text between brackets using regex
|
|
{
|
|
std::regex re("\\(.*?\\)");
|
|
text_heard = std::regex_replace(text_heard, re, "");
|
|
}
|
|
|
|
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
|
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
|
|
|
// take first line
|
|
text_heard = text_heard.substr(0, text_heard.find_first_of('\n'));
|
|
|
|
// remove leading and trailing whitespace
|
|
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
|
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
|
|
|
const std::vector<gpt_vocab::id> tokens = gpt2_tokenize(ctx_gpt, text_heard.c_str());
|
|
|
|
if (text_heard.empty() || tokens.empty() || force_speak) {
|
|
fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
|
|
audio.clear();
|
|
|
|
continue;
|
|
}
|
|
|
|
force_speak = false;
|
|
|
|
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", text_heard.c_str(), "\033[0m", (int) t_ms);
|
|
|
|
std::string prompt_base = gpt2_get_prompt(ctx_gpt);
|
|
|
|
std::string text_to_speak;
|
|
|
|
{
|
|
prompt_base += "B: " + text_heard + "\n";
|
|
|
|
std::string prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base);
|
|
|
|
text_to_speak = gpt2_gen_text(ctx_gpt, prompt.c_str(), params.max_tokens);
|
|
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
|
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of('\n'));
|
|
|
|
// remove first 2 lines of base prompt
|
|
if (n_iter > 4) {
|
|
{
|
|
const size_t pos = prompt_base.find_first_of('\n');
|
|
if (pos != std::string::npos) {
|
|
prompt_base = prompt_base.substr(pos + 1);
|
|
}
|
|
}
|
|
{
|
|
const size_t pos = prompt_base.find_first_of('\n');
|
|
if (pos != std::string::npos) {
|
|
prompt_base = prompt_base.substr(pos + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
prompt_base += "A:" + text_to_speak + "\n";
|
|
|
|
{
|
|
prompt = ::replace(::replace(k_prompt, "{0}", params.person), "{1}", prompt_base);
|
|
|
|
printf("===============\n");
|
|
printf("prompt:\n");
|
|
printf("%s\n", prompt.c_str());
|
|
printf("===============\n");
|
|
}
|
|
}
|
|
|
|
//printf("========================\n");
|
|
//printf("gpt-2: prompt_base:\n%s\n", prompt_base.c_str());
|
|
//printf("========================\n");
|
|
|
|
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
|
|
|
|
text_to_speak = ::replace(text_to_speak, params.person + ": ", "");
|
|
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
|
|
|
audio.clear();
|
|
|
|
++n_iter;
|
|
}
|
|
}
|
|
}
|
|
|
|
audio.pause();
|
|
|
|
whisper_print_timings(ctx_wsp);
|
|
whisper_free(ctx_wsp);
|
|
|
|
return 0;
|
|
}
|