mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-05-16 22:20:48 +02:00
282 lines
14 KiB
C++
282 lines
14 KiB
C++
#include "llama-model-saver.h"
|
|
|
|
#include "gguf.h"
|
|
|
|
#include "llama.h"
|
|
#include "llama-hparams.h"
|
|
#include "llama-model.h"
|
|
#include "llama-vocab.h"
|
|
|
|
#include <string>
|
|
|
|
llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) {
|
|
gguf_ctx = gguf_init_empty();
|
|
}
|
|
|
|
llama_model_saver::~llama_model_saver() {
|
|
gguf_free(gguf_ctx);
|
|
}
|
|
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) {
|
|
gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value);
|
|
}
|
|
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) {
|
|
gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value);
|
|
}
|
|
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const float value) {
|
|
gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value);
|
|
}
|
|
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const bool value) {
|
|
gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value);
|
|
}
|
|
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const char * value) {
|
|
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value);
|
|
}
|
|
|
|
[[noreturn]]
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const char value) {
|
|
GGML_UNUSED(key);
|
|
GGML_UNUSED(value);
|
|
GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile
|
|
}
|
|
|
|
template <typename Container>
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) {
|
|
const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size();
|
|
GGML_ASSERT(n_values <= value.size());
|
|
|
|
if (n_values == 0) {
|
|
return;
|
|
}
|
|
|
|
if (per_layer) {
|
|
bool all_values_the_same = true;
|
|
for (size_t i = 1; i < n_values; ++i) {
|
|
if (value[i] != value[0]) {
|
|
all_values_the_same = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_values_the_same) {
|
|
add_kv(key, value[0]);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (std::is_same<typename Container::value_type, uint8_t>::value) {
|
|
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values);
|
|
} else if (std::is_same<typename Container::value_type, int8_t>::value) {
|
|
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values);
|
|
} else if (std::is_same<typename Container::value_type, uint32_t>::value) {
|
|
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values);
|
|
} else if (std::is_same<typename Container::value_type, int32_t>::value) {
|
|
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values);
|
|
} else if (std::is_same<typename Container::value_type, float>::value) {
|
|
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values);
|
|
} else if (std::is_same<Container, std::string>::value) {
|
|
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data()));
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
|
|
void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) {
|
|
std::vector<const char *> tmp(value.size());
|
|
for (size_t i = 0; i < value.size(); ++i) {
|
|
tmp[i] = value[i].c_str();
|
|
}
|
|
gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size());
|
|
}
|
|
|
|
void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) {
|
|
if (!tensor) {
|
|
return;
|
|
}
|
|
if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) {
|
|
GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME
|
|
return;
|
|
}
|
|
gguf_add_tensor(gguf_ctx, tensor);
|
|
}
|
|
|
|
void llama_model_saver::add_kv_from_model() {
|
|
const llama_hparams & hparams = model.hparams;
|
|
const llama_vocab & vocab = model.vocab;
|
|
|
|
const int32_t n_vocab = vocab.n_tokens();
|
|
std::vector<std::string> tokens(n_vocab);
|
|
std::vector<float> scores(n_vocab);
|
|
std::vector<int32_t> token_types(n_vocab);
|
|
|
|
for (int32_t id = 0; id < n_vocab; ++id) {
|
|
const llama_vocab::token_data & token_data = vocab.get_token_data(id);
|
|
|
|
tokens[id] = token_data.text;
|
|
scores[id] = token_data.score;
|
|
|
|
switch(token_data.attr) {
|
|
case LLAMA_TOKEN_ATTR_UNKNOWN: token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN; break;
|
|
case LLAMA_TOKEN_ATTR_UNUSED: token_types[id] = LLAMA_TOKEN_TYPE_UNUSED; break;
|
|
case LLAMA_TOKEN_ATTR_NORMAL: token_types[id] = LLAMA_TOKEN_TYPE_NORMAL; break;
|
|
case LLAMA_TOKEN_ATTR_CONTROL: token_types[id] = LLAMA_TOKEN_TYPE_CONTROL; break;
|
|
case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break;
|
|
case LLAMA_TOKEN_ATTR_BYTE: token_types[id] = LLAMA_TOKEN_TYPE_BYTE; break;
|
|
case LLAMA_TOKEN_ATTR_UNDEFINED:
|
|
default: token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED; break;
|
|
}
|
|
}
|
|
|
|
// add_kv(LLM_KV_GENERAL_TYPE, ???);
|
|
add_kv(LLM_KV_GENERAL_ARCHITECTURE, model.arch_name());
|
|
// add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION, ???);
|
|
// add_kv(LLM_KV_GENERAL_ALIGNMENT, ???);
|
|
add_kv(LLM_KV_GENERAL_NAME, model.name);
|
|
// add_kv(LLM_KV_GENERAL_AUTHOR, ???);
|
|
// add_kv(LLM_KV_GENERAL_VERSION, ???);
|
|
// add_kv(LLM_KV_GENERAL_URL, ???);
|
|
// add_kv(LLM_KV_GENERAL_DESCRIPTION, ???);
|
|
// add_kv(LLM_KV_GENERAL_LICENSE, ???);
|
|
// add_kv(LLM_KV_GENERAL_SOURCE_URL, ???);
|
|
// add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO, ???);
|
|
|
|
add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens());
|
|
add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
|
|
add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
|
|
add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
|
add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
|
add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true);
|
|
add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
|
add_kv(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
|
|
// add_kv(LLM_KV_TENSOR_DATA_LAYOUT, ???);
|
|
add_kv(LLM_KV_EXPERT_COUNT, hparams.n_expert);
|
|
add_kv(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
|
|
add_kv(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
|
add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
|
add_kv(LLM_KV_POOLING_TYPE, uint32_t(hparams.pooling_type));
|
|
add_kv(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
|
add_kv(LLM_KV_DECODER_START_TOKEN_ID, hparams.dec_start_token_id);
|
|
add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping);
|
|
add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping);
|
|
add_kv(LLM_KV_SWIN_NORM, hparams.swin_norm);
|
|
add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers);
|
|
add_kv(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
|
|
add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
|
|
add_kv(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
|
|
add_kv(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
|
|
|
|
add_kv(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, true);
|
|
add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, true);
|
|
add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
|
|
add_kv(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
|
|
add_kv(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k);
|
|
add_kv(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v);
|
|
add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
|
add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
add_kv(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
|
add_kv(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
|
|
add_kv(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
|
|
add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
|
|
add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
|
add_kv(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
|
|
|
|
const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train;
|
|
|
|
add_kv(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot);
|
|
add_kv(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train);
|
|
// add_kv(LLM_KV_ROPE_SCALE_LINEAR, rope_scaling_factor); // old name
|
|
add_kv(LLM_KV_ROPE_SCALING_TYPE, llama_rope_scaling_type_name(hparams.rope_scaling_type_train));
|
|
add_kv(LLM_KV_ROPE_SCALING_FACTOR, rope_scaling_factor);
|
|
add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor);
|
|
add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn);
|
|
add_kv(LLM_KV_ROPE_SCALING_FINETUNED, hparams.rope_finetuned);
|
|
add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
|
|
|
|
// TODO: implement split file support
|
|
// add_kv(LLM_KV_SPLIT_NO, ???);
|
|
// add_kv(LLM_KV_SPLIT_COUNT, ???);
|
|
// add_kv(LLM_KV_SPLIT_TENSORS_COUNT, ???);
|
|
|
|
add_kv(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
|
add_kv(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
|
add_kv(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
|
add_kv(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
|
add_kv(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms);
|
|
|
|
add_kv(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
|
|
|
|
add_kv(LLM_KV_TOKENIZER_MODEL, vocab.get_tokenizer_model());
|
|
add_kv(LLM_KV_TOKENIZER_PRE, vocab.get_tokenizer_pre());
|
|
add_kv(LLM_KV_TOKENIZER_LIST, tokens);
|
|
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE, token_types);
|
|
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, vocab.n_token_types());
|
|
add_kv(LLM_KV_TOKENIZER_SCORES, scores);
|
|
add_kv(LLM_KV_TOKENIZER_MERGES, vocab.get_bpe_merges());
|
|
// FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though
|
|
add_kv(LLM_KV_TOKENIZER_BOS_ID, uint32_t(vocab.token_bos()));
|
|
add_kv(LLM_KV_TOKENIZER_EOS_ID, uint32_t(vocab.token_eos()));
|
|
add_kv(LLM_KV_TOKENIZER_EOT_ID, uint32_t(vocab.token_eot()));
|
|
add_kv(LLM_KV_TOKENIZER_EOM_ID, uint32_t(vocab.token_eom()));
|
|
add_kv(LLM_KV_TOKENIZER_UNK_ID, uint32_t(vocab.token_unk()));
|
|
add_kv(LLM_KV_TOKENIZER_SEP_ID, uint32_t(vocab.token_sep()));
|
|
add_kv(LLM_KV_TOKENIZER_PAD_ID, uint32_t(vocab.token_pad()));
|
|
// add_kv(LLM_KV_TOKENIZER_CLS_ID, uint32_t(vocab.token_bos())); // deprecated
|
|
// add_kv(LLM_KV_TOKENIZER_MASK_ID, ???);
|
|
add_kv(LLM_KV_TOKENIZER_ADD_BOS, vocab.get_add_bos());
|
|
add_kv(LLM_KV_TOKENIZER_ADD_EOS, vocab.get_add_eos());
|
|
add_kv(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.get_add_space_prefix());
|
|
add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.get_remove_extra_whitespaces());
|
|
add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, vocab.get_precompiled_charsmap());
|
|
// add_kv(LLM_KV_TOKENIZER_HF_JSON, ???);
|
|
// add_kv(LLM_KV_TOKENIZER_RWKV, ???);
|
|
add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID, uint32_t(vocab.token_fim_pre()));
|
|
add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID, uint32_t(vocab.token_fim_suf()));
|
|
add_kv(LLM_KV_TOKENIZER_FIM_MID_ID, uint32_t(vocab.token_fim_mid()));
|
|
add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID, uint32_t(vocab.token_fim_pad()));
|
|
add_kv(LLM_KV_TOKENIZER_FIM_REP_ID, uint32_t(vocab.token_fim_rep()));
|
|
add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID, uint32_t(vocab.token_fim_sep()));
|
|
|
|
// TODO: implement LoRA support
|
|
// add_kv(LLM_KV_ADAPTER_TYPE, ???);
|
|
// add_kv(LLM_KV_ADAPTER_LORA_ALPHA, ???);
|
|
|
|
// deprecated
|
|
// add_kv(LLM_KV_TOKENIZER_PREFIX_ID, ???);
|
|
// add_kv(LLM_KV_TOKENIZER_SUFFIX_ID, ???);
|
|
// add_kv(LLM_KV_TOKENIZER_MIDDLE_ID, ???);
|
|
}
|
|
|
|
void llama_model_saver::add_tensors_from_model() {
|
|
if (std::string(model.output->name) != std::string(model.tok_embd->name)) {
|
|
add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output
|
|
}
|
|
add_tensor(model.type_embd);
|
|
add_tensor(model.pos_embd);
|
|
add_tensor(model.tok_norm);
|
|
add_tensor(model.tok_norm_b);
|
|
add_tensor(model.output_norm);
|
|
add_tensor(model.output_norm_b);
|
|
add_tensor(model.output);
|
|
add_tensor(model.output_b);
|
|
add_tensor(model.output_norm_enc);
|
|
add_tensor(model.cls);
|
|
add_tensor(model.cls_b);
|
|
add_tensor(model.cls_out);
|
|
add_tensor(model.cls_out_b);
|
|
|
|
for (const struct llama_layer & layer : model.layers) {
|
|
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
|
|
add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void llama_model_saver::save(const std::string & path_model) {
|
|
gguf_write_to_file(gguf_ctx, path_model.c_str(), false);
|
|
}
|
|
|