2017-07-06 13:03:44 +02:00
|
|
|
package cmd
|
2017-04-26 20:21:18 +02:00
|
|
|
|
|
|
|
import (
|
2017-05-16 16:57:24 +02:00
|
|
|
"fmt"
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
"io"
|
|
|
|
|
2017-09-16 20:24:46 +02:00
|
|
|
"github.com/pkg/errors"
|
2017-04-26 20:21:18 +02:00
|
|
|
"github.com/zrepl/zrepl/rpc"
|
2017-04-26 20:25:53 +02:00
|
|
|
"github.com/zrepl/zrepl/zfs"
|
2017-04-26 20:21:18 +02:00
|
|
|
)
|
2017-04-26 20:25:53 +02:00
|
|
|
|
2017-08-05 21:15:37 +02:00
|
|
|
type DatasetMapping interface {
|
2017-08-06 13:04:29 +02:00
|
|
|
Map(source *zfs.DatasetPath) (target *zfs.DatasetPath, err error)
|
2017-08-05 21:15:37 +02:00
|
|
|
}
|
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
type FilesystemRequest struct {
|
|
|
|
Roots []string // may be nil, indicating interest in all filesystems
|
|
|
|
}
|
|
|
|
|
|
|
|
type FilesystemVersionsRequest struct {
|
|
|
|
Filesystem *zfs.DatasetPath
|
|
|
|
}
|
|
|
|
|
|
|
|
type InitialTransferRequest struct {
|
|
|
|
Filesystem *zfs.DatasetPath
|
|
|
|
FilesystemVersion zfs.FilesystemVersion
|
|
|
|
}
|
|
|
|
|
|
|
|
type IncrementalTransferRequest struct {
|
|
|
|
Filesystem *zfs.DatasetPath
|
|
|
|
From zfs.FilesystemVersion
|
|
|
|
To zfs.FilesystemVersion
|
|
|
|
}
|
|
|
|
|
2017-05-03 17:38:11 +02:00
|
|
|
type Handler struct {
|
2017-09-16 20:27:08 +02:00
|
|
|
logger Logger
|
|
|
|
dsf zfs.DatasetFilter
|
|
|
|
fsvf zfs.FilesystemVersionFilter
|
2017-09-16 20:24:46 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
func NewHandler(logger Logger, dsfilter zfs.DatasetFilter, snapfilter zfs.FilesystemVersionFilter) (h Handler) {
|
|
|
|
return Handler{logger, dsfilter, snapfilter}
|
2017-05-03 17:38:11 +02:00
|
|
|
}
|
2017-04-26 20:21:18 +02:00
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
func registerEndpoints(server rpc.RPCServer, handler Handler) (err error) {
|
|
|
|
err = server.RegisterEndpoint("FilesystemRequest", handler.HandleFilesystemRequest)
|
|
|
|
if err != nil {
|
|
|
|
panic(err)
|
|
|
|
}
|
|
|
|
err = server.RegisterEndpoint("FilesystemVersionsRequest", handler.HandleFilesystemVersionsRequest)
|
|
|
|
if err != nil {
|
|
|
|
panic(err)
|
|
|
|
}
|
|
|
|
err = server.RegisterEndpoint("InitialTransferRequest", handler.HandleInitialTransferRequest)
|
|
|
|
if err != nil {
|
|
|
|
panic(err)
|
|
|
|
}
|
|
|
|
err = server.RegisterEndpoint("IncrementalTransferRequest", handler.HandleIncrementalTransferRequest)
|
|
|
|
if err != nil {
|
|
|
|
panic(err)
|
|
|
|
}
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (h Handler) HandleFilesystemRequest(r *FilesystemRequest, roots *[]*zfs.DatasetPath) (err error) {
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("handling fsr: %#v", r)
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("using dsf: %#v", h.dsf)
|
2017-05-16 16:57:24 +02:00
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
allowed, err := zfs.ZFSListMapping(h.dsf)
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
if err != nil {
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("handle fsr err: %v\n", err)
|
2017-05-07 12:28:03 +02:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("returning: %#v", allowed)
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
*roots = allowed
|
2017-04-26 20:21:18 +02:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
func (h Handler) HandleFilesystemVersionsRequest(r *FilesystemVersionsRequest, versions *[]zfs.FilesystemVersion) (err error) {
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("handling filesystem versions request: %#v", r)
|
2017-08-05 19:40:11 +02:00
|
|
|
|
2017-05-07 12:28:03 +02:00
|
|
|
// allowed to request that?
|
2017-09-16 20:24:46 +02:00
|
|
|
if h.pullACLCheck(r.Filesystem, nil); err != nil {
|
2017-05-07 12:28:03 +02:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// find our versions
|
2017-09-16 20:27:08 +02:00
|
|
|
vs, err := zfs.ZFSListFilesystemVersions(r.Filesystem, h.fsvf)
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
if err != nil {
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("our versions error: %#v\n", err)
|
2017-05-07 12:28:03 +02:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("our versions: %#v\n", vs)
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
|
|
|
|
*versions = vs
|
2017-05-03 17:26:45 +02:00
|
|
|
return
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-05-03 17:12:15 +02:00
|
|
|
}
|
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
func (h Handler) HandleInitialTransferRequest(r *InitialTransferRequest, stream *io.Reader) (err error) {
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("handling initial transfer request: %#v", r)
|
2017-09-16 20:24:46 +02:00
|
|
|
if err = h.pullACLCheck(r.Filesystem, &r.FilesystemVersion); err != nil {
|
2017-05-07 12:28:03 +02:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("invoking zfs send")
|
2017-05-07 12:28:03 +02:00
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
s, err := zfs.ZFSSend(r.Filesystem, &r.FilesystemVersion, nil)
|
|
|
|
if err != nil {
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("error sending filesystem: %#v", err)
|
2017-05-07 12:28:03 +02:00
|
|
|
}
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
*stream = s
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-05-07 12:04:16 +02:00
|
|
|
return
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-04-26 20:21:18 +02:00
|
|
|
}
|
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
func (h Handler) HandleIncrementalTransferRequest(r *IncrementalTransferRequest, stream *io.Reader) (err error) {
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("handling incremental transfer request: %#v", r)
|
2017-09-16 20:24:46 +02:00
|
|
|
if err = h.pullACLCheck(r.Filesystem, &r.From); err != nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if err = h.pullACLCheck(r.Filesystem, &r.To); err != nil {
|
2017-05-07 12:28:03 +02:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("invoking zfs send")
|
2017-05-07 12:28:03 +02:00
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
s, err := zfs.ZFSSend(r.Filesystem, &r.From, &r.To)
|
|
|
|
if err != nil {
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf("error sending filesystem: %#v", err)
|
2017-05-07 12:28:03 +02:00
|
|
|
}
|
|
|
|
|
reimplement io.ReadWriteCloser based RPC mechanism
The existing ByteStreamRPC requires writing RPC stub + server code
for each RPC endpoint. Does not scale well.
Goal: adding a new RPC call should
- not require writing an RPC stub / handler
- not require modifications to the RPC lib
The wire format is inspired by HTTP2, the API by net/rpc.
Frames are used for framing messages, i.e. a message is made of multiple
frames which are glued together using a frame-bridging reader / writer.
This roughly corresponds to HTTP2 streams, although we're happy with
just one stream at any time and the resulting non-need for flow control,
etc.
Frames are typed using a header. The two most important types are
'Header' and 'Data'.
The RPC protocol is built on top of this:
- Client sends a header => multiple frames of type 'header'
- Client sends request body => mulitiple frames of type 'data'
- Server reads a header => multiple frames of type 'header'
- Server reads request body => mulitiple frames of type 'data'
- Server sends response header => ...
- Server sends response body => ...
An RPC header is serialized JSON and always the same structure.
The body is of the type specified in the header.
The RPC server and client use some semi-fancy reflection tequniques to
automatically infer the data type of the request/response body based on
the method signature of the server handler; or the client parameters,
respectively.
This boils down to a special-case for io.Reader, which are just dumped
into a series of data frames as efficiently as possible.
All other types are (de)serialized using encoding/json.
The RPC layer and Frame Layer log some arbitrary messages that proved
useful during debugging. By default, they log to a non-logger, which
should not have a big impact on performance.
pprof analysis shows the implementation spends its CPU time
60% waiting for syscalls
30% in memmove
10% ...
On a Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz CPU, Linux 4.12, the
implementation achieved ~3.6GiB/s.
Future optimization may include spice(2) / vmspice(2) on Linux, although
this doesn't fit so well with the heavy use of io.Reader / io.Writer
throughout the codebase.
The existing hackaround for local calls was re-implemented to fit the
new interface of PRCServer and RPCClient.
The 'R'PC method invocation is a bit slower because reflection is
involved inbetween, but otherwise performance should be no different.
The RPC code currently does not support multipart requests and thus does
not support the equivalent of a POST.
Thus, the switch to the new rpc code had the following fallout:
- Move request objects + constants from rpc package to main app code
- Sacrifice the hacky 'push = pull me' way of doing push
-> need to further extend RPC to support multipart requests or
something to implement this properly with additional interfaces
-> should be done after replication is abstracted better than separate
algorithms for doPull() and doPush()
2017-08-19 22:37:14 +02:00
|
|
|
*stream = s
|
2017-05-07 12:04:16 +02:00
|
|
|
return
|
2017-05-07 12:28:03 +02:00
|
|
|
|
2017-04-26 20:21:18 +02:00
|
|
|
}
|
2017-05-16 16:57:24 +02:00
|
|
|
|
2017-09-16 20:24:46 +02:00
|
|
|
func (h Handler) pullACLCheck(p *zfs.DatasetPath, v *zfs.FilesystemVersion) (err error) {
|
|
|
|
var fsAllowed, vAllowed bool
|
2017-09-16 20:27:08 +02:00
|
|
|
fsAllowed, err = h.dsf.Filter(p)
|
2017-08-05 19:40:11 +02:00
|
|
|
if err != nil {
|
|
|
|
err = fmt.Errorf("error evaluating ACL: %s", err)
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf(err.Error())
|
2017-08-05 19:40:11 +02:00
|
|
|
return
|
|
|
|
}
|
2017-09-16 20:24:46 +02:00
|
|
|
if !fsAllowed {
|
2017-08-05 19:40:11 +02:00
|
|
|
err = fmt.Errorf("ACL prohibits access to %s", p.ToString())
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf(err.Error())
|
2017-08-05 19:40:11 +02:00
|
|
|
return
|
|
|
|
}
|
2017-09-16 20:24:46 +02:00
|
|
|
if v == nil {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
2017-09-16 20:27:08 +02:00
|
|
|
vAllowed, err = h.fsvf.Filter(*v)
|
2017-09-16 20:24:46 +02:00
|
|
|
if err != nil {
|
|
|
|
err = errors.Wrap(err, "error evaluating version filter")
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf(err.Error())
|
2017-09-16 20:24:46 +02:00
|
|
|
return
|
|
|
|
}
|
|
|
|
if !vAllowed {
|
|
|
|
err = fmt.Errorf("ACL prohibits access to %s", v.ToAbsPath(p))
|
2017-09-16 20:27:08 +02:00
|
|
|
h.logger.Printf(err.Error())
|
2017-09-16 20:24:46 +02:00
|
|
|
return
|
|
|
|
}
|
2017-08-05 19:40:11 +02:00
|
|
|
return
|
|
|
|
}
|