// Package replication implements replication of filesystems with existing // versions (snapshots) from a sender to a receiver. package replication import ( "context" "errors" "fmt" "github.com/prometheus/client_golang/prometheus" "github.com/zrepl/zrepl/daemon/job/wakeup" "github.com/zrepl/zrepl/util/watchdog" "math/bits" "net" "sync" "time" "github.com/zrepl/zrepl/replication/fsrep" . "github.com/zrepl/zrepl/replication/internal/diff" . "github.com/zrepl/zrepl/replication/internal/queue" "github.com/zrepl/zrepl/replication/pdu" ) //go:generate enumer -type=State type State uint const ( Planning State = 1 << iota PlanningError Working WorkingWait Completed PermanentError ) func (s State) rsf() state { idx := bits.TrailingZeros(uint(s)) if idx == bits.UintSize { panic(s) // invalid value } m := []state{ statePlanning, statePlanningError, stateWorking, stateWorkingWait, nil, nil, } return m[idx] } func (s State) IsTerminal() bool { return s.rsf() == nil } // Replication implements the replication of multiple file systems from a Sender to a Receiver. // // It is a state machine that is driven by the Drive method // and provides asynchronous reporting via the Report method (i.e. from another goroutine). type Replication struct { // not protected by lock promSecsPerState *prometheus.HistogramVec // labels: state promBytesReplicated *prometheus.CounterVec // labels: filesystem Progress watchdog.KeepAlive // lock protects all fields of this struct (but not the fields behind pointers!) lock sync.Mutex state State // Working, WorkingWait, Completed, ContextDone queue *ReplicationQueue completed []*fsrep.Replication active *ReplicationQueueItemHandle // for PlanningError, WorkingWait and ContextError and Completed err error // PlanningError, WorkingWait sleepUntil time.Time } type Report struct { Status string Problem string SleepUntil time.Time Completed []*fsrep.Report Pending []*fsrep.Report Active *fsrep.Report } func NewReplication(secsPerState *prometheus.HistogramVec, bytesReplicated *prometheus.CounterVec) *Replication { r := Replication{ promSecsPerState: secsPerState, promBytesReplicated: bytesReplicated, state: Planning, } return &r } // Endpoint represents one side of the replication. // // An endpoint is either in Sender or Receiver mode, represented by the correspondingly // named interfaces defined in this package. type Endpoint interface { // Does not include placeholder filesystems ListFilesystems(ctx context.Context) ([]*pdu.Filesystem, error) // FIXME document FilteredError handling ListFilesystemVersions(ctx context.Context, fs string) ([]*pdu.FilesystemVersion, error) // fix depS DestroySnapshots(ctx context.Context, req *pdu.DestroySnapshotsReq) (*pdu.DestroySnapshotsRes, error) } type Sender interface { Endpoint fsrep.Sender } type Receiver interface { Endpoint fsrep.Receiver } type FilteredError struct{ fs string } func NewFilteredError(fs string) *FilteredError { return &FilteredError{fs} } func (f FilteredError) Error() string { return "endpoint does not allow access to filesystem " + f.fs } type updater func(func(*Replication)) (newState State) type state func(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state // Drive starts the state machine and returns only after replication has finished (with or without errors). // The Logger in ctx is used for both debug and error logging, but is not guaranteed to be stable // or end-user friendly. // User-facing replication progress reports and can be obtained using the Report method, // whose output will not change after Drive returns. // // FIXME: Drive may be only called once per instance of Replication func (r *Replication) Drive(ctx context.Context, sender Sender, receiver Receiver) { var u updater = func(f func(*Replication)) State { r.lock.Lock() defer r.lock.Unlock() if f != nil { f(r) } return r.state } var s state = statePlanning var pre, post State for s != nil { preTime := time.Now() pre = u(nil) s = s(ctx, &r.Progress, sender, receiver, u) delta := time.Now().Sub(preTime) r.promSecsPerState.WithLabelValues(pre.String()).Observe(delta.Seconds()) post = u(nil) getLogger(ctx). WithField("transition", fmt.Sprintf("%s => %s", pre, post)). WithField("duration", delta). Debug("main state transition") if post == Working && pre != post { getLogger(ctx).Info("start working") } } getLogger(ctx). WithField("final_state", post). Debug("main final state") } func resolveConflict(conflict error) (path []*pdu.FilesystemVersion, msg string) { if noCommonAncestor, ok := conflict.(*ConflictNoCommonAncestor); ok { if len(noCommonAncestor.SortedReceiverVersions) == 0 { // TODO this is hard-coded replication policy: most recent snapshot as source var mostRecentSnap *pdu.FilesystemVersion for n := len(noCommonAncestor.SortedSenderVersions) - 1; n >= 0; n-- { if noCommonAncestor.SortedSenderVersions[n].Type == pdu.FilesystemVersion_Snapshot { mostRecentSnap = noCommonAncestor.SortedSenderVersions[n] break } } if mostRecentSnap == nil { return nil, "no snapshots available on sender side" } return []*pdu.FilesystemVersion{mostRecentSnap}, fmt.Sprintf("start replication at most recent snapshot %s", mostRecentSnap.RelName()) } } return nil, "no automated way to handle conflict type" } var PlanningRetryInterval = 10 * time.Second // FIXME make constant onfigurable func isPermanent(err error) bool { switch err { case context.Canceled: return true case context.DeadlineExceeded: return true } if operr, ok := err.(net.Error); ok { return !operr.Temporary() } return false } func statePlanning(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state { log := getLogger(ctx) log.Info("start planning") handlePlanningError := func(err error) state { return u(func(r *Replication) { r.err = err if isPermanent(err) { r.state = PermanentError } else { r.sleepUntil = time.Now().Add(PlanningRetryInterval) r.state = PlanningError } }).rsf() } sfss, err := sender.ListFilesystems(ctx) if err != nil { log.WithError(err).Error("error listing sender filesystems") return handlePlanningError(err) } rfss, err := receiver.ListFilesystems(ctx) if err != nil { log.WithError(err).Error("error listing receiver filesystems") return handlePlanningError(err) } q := NewReplicationQueue() mainlog := log for _, fs := range sfss { log := mainlog.WithField("filesystem", fs.Path) log.Debug("assessing filesystem") sfsvs, err := sender.ListFilesystemVersions(ctx, fs.Path) if err != nil { log.WithError(err).Error("cannot get remote filesystem versions") return handlePlanningError(err) } if len(sfsvs) < 1 { err := errors.New("sender does not have any versions") log.Error(err.Error()) q.Add(fsrep.NewReplicationWithPermanentError(fs.Path, err)) continue } receiverFSExists := false for _, rfs := range rfss { if rfs.Path == fs.Path { receiverFSExists = true } } var rfsvs []*pdu.FilesystemVersion if receiverFSExists { rfsvs, err = receiver.ListFilesystemVersions(ctx, fs.Path) if err != nil { if _, ok := err.(*FilteredError); ok { log.Info("receiver ignores filesystem") continue } log.WithError(err).Error("receiver error") return handlePlanningError(err) } } else { rfsvs = []*pdu.FilesystemVersion{} } path, conflict := IncrementalPath(rfsvs, sfsvs) if conflict != nil { var msg string path, msg = resolveConflict(conflict) // no shadowing allowed! if path != nil { log.WithField("conflict", conflict).Info("conflict") log.WithField("resolution", msg).Info("automatically resolved") } else { log.WithField("conflict", conflict).Error("conflict") log.WithField("problem", msg).Error("cannot resolve conflict") } } if path == nil { q.Add(fsrep.NewReplicationWithPermanentError(fs.Path, conflict)) continue } var promBytesReplicated *prometheus.CounterVec u(func(replication *Replication) { // FIXME args struct like in pruner (also use for sender and receiver) promBytesReplicated = replication.promBytesReplicated }) fsrfsm := fsrep.BuildReplication(fs.Path, promBytesReplicated.WithLabelValues(fs.Path)) if len(path) == 1 { fsrfsm.AddStep(nil, path[0]) } else { for i := 0; i < len(path)-1; i++ { fsrfsm.AddStep(path[i], path[i+1]) } } qitem := fsrfsm.Done() log.Debug("compute send size estimate") if err = qitem.UpdateSizeEsitmate(ctx, sender); err != nil { log.WithError(err).Error("error computing size estimate") return handlePlanningError(err) } q.Add(qitem) } ka.MadeProgress() return u(func(r *Replication) { r.completed = nil r.queue = q r.err = nil r.state = Working }).rsf() } func statePlanningError(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state { var sleepUntil time.Time u(func(r *Replication) { sleepUntil = r.sleepUntil }) t := time.NewTimer(sleepUntil.Sub(time.Now())) getLogger(ctx).WithField("until", sleepUntil).Info("retry wait after planning error") defer t.Stop() select { case <-ctx.Done(): return u(func(r *Replication) { r.state = PermanentError r.err = ctx.Err() }).rsf() case <-t.C: case <-wakeup.Wait(ctx): } return u(func(r *Replication) { r.state = Planning }).rsf() } func stateWorking(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state { var active *ReplicationQueueItemHandle rsfNext := u(func(r *Replication) { done, next := r.queue.GetNext() r.completed = append(r.completed, done...) if next == nil { r.state = Completed } r.active = next active = next }).rsf() if active == nil { return rsfNext } retryWaitUntil := active.GetFSReplication().RetryWaitUntil() if retryWaitUntil.After(time.Now()) { return u(func(r *Replication) { r.sleepUntil = retryWaitUntil r.state = WorkingWait }).rsf() } state, nextStepDate, retryWaitUntil := active.GetFSReplication().TakeStep(ctx, ka, sender, receiver) return u(func(r *Replication) { active.Update(state, nextStepDate, retryWaitUntil) r.active = nil }).rsf() select { case <-ctx.Done(): return u(func(r *Replication) { r.err = ctx.Err() r.state = PermanentError }).rsf() default: } return u(nil).rsf() } func stateWorkingWait(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state { var sleepUntil time.Time u(func(r *Replication) { sleepUntil = r.sleepUntil }) t := time.NewTimer(PlanningRetryInterval) getLogger(ctx).WithField("until", sleepUntil).Info("retry wait because no filesystems are ready") defer t.Stop() select { case <-ctx.Done(): return u(func(r *Replication) { r.state = PermanentError r.err = ctx.Err() }).rsf() case <-t.C: case <-wakeup.Wait(ctx): } return u(func(r *Replication) { r.state = Working }).rsf() } // Report provides a summary of the progress of the Replication, // i.e., a condensed dump of the internal state machine. // Report is safe to be called asynchronously while Drive is running. func (r *Replication) Report() *Report { r.lock.Lock() defer r.lock.Unlock() rep := Report{ Status: r.state.String(), SleepUntil: r.sleepUntil, } if r.state&(Planning|PlanningError|PermanentError) != 0 { if r.err != nil { rep.Problem = r.err.Error() } return &rep } rep.Pending = make([]*fsrep.Report, 0, r.queue.Len()) rep.Completed = make([]*fsrep.Report, 0, len(r.completed)) // room for active (potentially) var active *fsrep.Replication if r.active != nil { active = r.active.GetFSReplication() rep.Active = active.Report() } r.queue.Foreach(func(h *ReplicationQueueItemHandle) { fsr := h.GetFSReplication() if active != fsr { rep.Pending = append(rep.Pending, fsr.Report()) } }) for _, fsr := range r.completed { rep.Completed = append(rep.Completed, fsr.Report()) } return &rep } func (r *Replication) State() State { r.lock.Lock() defer r.lock.Unlock() return r.state }