zrepl/replication/mainfsm.go
Christian Schwarz 796c5ad42d rpc rewrite: control RPCs using gRPC + separate RPC for data transfer
transport/ssh: update go-netssh to new version
    => supports CloseWrite and Deadlines
    => build: require Go 1.11 (netssh requires it)
2019-03-13 13:53:48 +01:00

561 lines
15 KiB
Go

// Package replication implements replication of filesystems with existing
// versions (snapshots) from a sender to a receiver.
package replication
import (
"context"
"errors"
"fmt"
"github.com/prometheus/client_golang/prometheus"
"github.com/zrepl/zrepl/daemon/job/wakeup"
"github.com/zrepl/zrepl/util/envconst"
"github.com/zrepl/zrepl/util/watchdog"
"math/bits"
"net"
"sort"
"sync"
"time"
"github.com/zrepl/zrepl/replication/fsrep"
. "github.com/zrepl/zrepl/replication/internal/diff"
"github.com/zrepl/zrepl/replication/pdu"
)
//go:generate enumer -type=State
type State uint
const (
Planning State = 1 << iota
PlanningError
Working
WorkingWait
Completed
PermanentError
)
func (s State) rsf() state {
idx := bits.TrailingZeros(uint(s))
if idx == bits.UintSize {
panic(s) // invalid value
}
m := []state{
statePlanning,
statePlanningError,
stateWorking,
stateWorkingWait,
nil,
nil,
}
return m[idx]
}
func (s State) IsTerminal() bool {
return s.rsf() == nil
}
// Replication implements the replication of multiple file systems from a Sender to a Receiver.
//
// It is a state machine that is driven by the Drive method
// and provides asynchronous reporting via the Report method (i.e. from another goroutine).
type Replication struct {
// not protected by lock
promSecsPerState *prometheus.HistogramVec // labels: state
promBytesReplicated *prometheus.CounterVec // labels: filesystem
Progress watchdog.KeepAlive
// lock protects all fields of this struct (but not the fields behind pointers!)
lock sync.Mutex
state State
// Working, WorkingWait, Completed, ContextDone
queue []*fsrep.Replication
completed []*fsrep.Replication
active *fsrep.Replication // == queue[0] or nil, unlike in Report
// for PlanningError, WorkingWait and ContextError and Completed
err error
// PlanningError, WorkingWait
sleepUntil time.Time
}
type Report struct {
Status string
Problem string
SleepUntil time.Time
Completed []*fsrep.Report
Pending []*fsrep.Report
Active *fsrep.Report // not contained in Pending, unlike in struct Replication
}
func NewReplication(secsPerState *prometheus.HistogramVec, bytesReplicated *prometheus.CounterVec) *Replication {
r := Replication{
promSecsPerState: secsPerState,
promBytesReplicated: bytesReplicated,
state: Planning,
}
return &r
}
// Endpoint represents one side of the replication.
//
// An endpoint is either in Sender or Receiver mode, represented by the correspondingly
// named interfaces defined in this package.
type Endpoint interface {
// Does not include placeholder filesystems
ListFilesystems(ctx context.Context, req *pdu.ListFilesystemReq) (*pdu.ListFilesystemRes, error)
ListFilesystemVersions(ctx context.Context, req *pdu.ListFilesystemVersionsReq) (*pdu.ListFilesystemVersionsRes, error)
DestroySnapshots(ctx context.Context, req *pdu.DestroySnapshotsReq) (*pdu.DestroySnapshotsRes, error)
}
type Sender interface {
Endpoint
fsrep.Sender
}
type Receiver interface {
Endpoint
fsrep.Receiver
}
type FilteredError struct{ fs string }
func NewFilteredError(fs string) *FilteredError {
return &FilteredError{fs}
}
func (f FilteredError) Error() string { return "endpoint does not allow access to filesystem " + f.fs }
type updater func(func(*Replication)) (newState State)
type state func(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state
// Drive starts the state machine and returns only after replication has finished (with or without errors).
// The Logger in ctx is used for both debug and error logging, but is not guaranteed to be stable
// or end-user friendly.
// User-facing replication progress reports and can be obtained using the Report method,
// whose output will not change after Drive returns.
//
// FIXME: Drive may be only called once per instance of Replication
func (r *Replication) Drive(ctx context.Context, sender Sender, receiver Receiver) {
var u updater = func(f func(*Replication)) State {
r.lock.Lock()
defer r.lock.Unlock()
if f != nil {
f(r)
}
return r.state
}
var s state = statePlanning
var pre, post State
for s != nil {
preTime := time.Now()
pre = u(nil)
s = s(ctx, &r.Progress, sender, receiver, u)
delta := time.Now().Sub(preTime)
r.promSecsPerState.WithLabelValues(pre.String()).Observe(delta.Seconds())
post = u(nil)
getLogger(ctx).
WithField("transition", fmt.Sprintf("%s => %s", pre, post)).
WithField("duration", delta).
Debug("main state transition")
if post == Working && pre != post {
getLogger(ctx).Info("start working")
}
}
getLogger(ctx).
WithField("final_state", post).
Debug("main final state")
}
func resolveConflict(conflict error) (path []*pdu.FilesystemVersion, msg string) {
if noCommonAncestor, ok := conflict.(*ConflictNoCommonAncestor); ok {
if len(noCommonAncestor.SortedReceiverVersions) == 0 {
// TODO this is hard-coded replication policy: most recent snapshot as source
var mostRecentSnap *pdu.FilesystemVersion
for n := len(noCommonAncestor.SortedSenderVersions) - 1; n >= 0; n-- {
if noCommonAncestor.SortedSenderVersions[n].Type == pdu.FilesystemVersion_Snapshot {
mostRecentSnap = noCommonAncestor.SortedSenderVersions[n]
break
}
}
if mostRecentSnap == nil {
return nil, "no snapshots available on sender side"
}
return []*pdu.FilesystemVersion{mostRecentSnap}, fmt.Sprintf("start replication at most recent snapshot %s", mostRecentSnap.RelName())
}
}
return nil, "no automated way to handle conflict type"
}
var RetryInterval = envconst.Duration("ZREPL_REPLICATION_RETRY_INTERVAL", 10 * time.Second)
type Error interface {
error
Temporary() bool
}
var _ Error = fsrep.Error(nil)
var _ Error = net.Error(nil)
func isPermanent(err error) bool {
if e, ok := err.(Error); ok {
return !e.Temporary()
}
return true
}
func statePlanning(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state {
log := getLogger(ctx)
log.Info("start planning")
handlePlanningError := func(err error) state {
return u(func(r *Replication) {
ge := GlobalError{Err: err, Temporary: !isPermanent(err)}
log.WithError(ge).Error("encountered global error while planning replication")
r.err = ge
if !ge.Temporary {
r.state = PermanentError
} else {
r.sleepUntil = time.Now().Add(RetryInterval)
r.state = PlanningError
}
}).rsf()
}
slfssres, err := sender.ListFilesystems(ctx, &pdu.ListFilesystemReq{})
if err != nil {
log.WithError(err).WithField("errType", fmt.Sprintf("%T", err)).Error("error listing sender filesystems")
return handlePlanningError(err)
}
sfss := slfssres.GetFilesystems()
// no progress here since we could run in a live-lock on connectivity issues
rlfssres, err := receiver.ListFilesystems(ctx, &pdu.ListFilesystemReq{})
if err != nil {
log.WithError(err).WithField("errType", fmt.Sprintf("%T", err)).Error("error listing receiver filesystems")
return handlePlanningError(err)
}
rfss := rlfssres.GetFilesystems()
ka.MadeProgress() // for both sender and receiver
q := make([]*fsrep.Replication, 0, len(sfss))
mainlog := log
for _, fs := range sfss {
log := mainlog.WithField("filesystem", fs.Path)
log.Debug("assessing filesystem")
sfsvsres, err := sender.ListFilesystemVersions(ctx, &pdu.ListFilesystemVersionsReq{Filesystem: fs.Path})
if err != nil {
log.WithError(err).Error("cannot get remote filesystem versions")
return handlePlanningError(err)
}
sfsvs := sfsvsres.GetVersions()
ka.MadeProgress()
if len(sfsvs) < 1 {
err := errors.New("sender does not have any versions")
log.Error(err.Error())
q = append(q, fsrep.NewReplicationConflictError(fs.Path, err))
continue
}
receiverFSExists := false
for _, rfs := range rfss {
if rfs.Path == fs.Path {
receiverFSExists = true
}
}
var rfsvs []*pdu.FilesystemVersion
if receiverFSExists {
rfsvsres, err := receiver.ListFilesystemVersions(ctx, &pdu.ListFilesystemVersionsReq{Filesystem: fs.Path})
if err != nil {
if _, ok := err.(*FilteredError); ok {
log.Info("receiver ignores filesystem")
continue
}
log.WithError(err).Error("receiver error")
return handlePlanningError(err)
}
rfsvs = rfsvsres.GetVersions()
} else {
rfsvs = []*pdu.FilesystemVersion{}
}
ka.MadeProgress()
path, conflict := IncrementalPath(rfsvs, sfsvs)
if conflict != nil {
var msg string
path, msg = resolveConflict(conflict) // no shadowing allowed!
if path != nil {
log.WithField("conflict", conflict).Info("conflict")
log.WithField("resolution", msg).Info("automatically resolved")
} else {
log.WithField("conflict", conflict).Error("conflict")
log.WithField("problem", msg).Error("cannot resolve conflict")
}
}
ka.MadeProgress()
if path == nil {
q = append(q, fsrep.NewReplicationConflictError(fs.Path, conflict))
continue
}
var promBytesReplicated *prometheus.CounterVec
u(func(replication *Replication) { // FIXME args struct like in pruner (also use for sender and receiver)
promBytesReplicated = replication.promBytesReplicated
})
fsrfsm := fsrep.BuildReplication(fs.Path, promBytesReplicated.WithLabelValues(fs.Path))
if len(path) == 1 {
fsrfsm.AddStep(nil, path[0])
} else {
for i := 0; i < len(path)-1; i++ {
fsrfsm.AddStep(path[i], path[i+1])
}
}
qitem := fsrfsm.Done()
ka.MadeProgress()
log.Debug("compute send size estimate")
if err = qitem.UpdateSizeEsitmate(ctx, sender); err != nil {
log.WithError(err).Error("error computing size estimate")
return handlePlanningError(err)
}
ka.MadeProgress()
q = append(q, qitem)
}
ka.MadeProgress()
return u(func(r *Replication) {
r.completed = nil
r.queue = q
r.err = nil
r.state = Working
}).rsf()
}
func statePlanningError(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state {
var sleepUntil time.Time
u(func(r *Replication) {
sleepUntil = r.sleepUntil
})
t := time.NewTimer(sleepUntil.Sub(time.Now()))
getLogger(ctx).WithField("until", sleepUntil).Info("retry wait after planning error")
defer t.Stop()
select {
case <-ctx.Done():
return u(func(r *Replication) {
r.state = PermanentError
r.err = ctx.Err()
}).rsf()
case <-t.C:
case <-wakeup.Wait(ctx):
}
return u(func(r *Replication) {
r.state = Planning
}).rsf()
}
type GlobalError struct {
Err error
Temporary bool
}
func (e GlobalError) Error() string {
errClass := "temporary"
if !e.Temporary {
errClass = "permanent"
}
return fmt.Sprintf("%s global error: %s", errClass, e.Err)
}
type FilesystemsReplicationFailedError struct {
FilesystemsWithError []*fsrep.Replication
}
func (e FilesystemsReplicationFailedError) Error() string {
allSame := true
lastErr := e.FilesystemsWithError[0].Err().Error()
for _, fs := range e.FilesystemsWithError {
fsErr := fs.Err().Error()
allSame = allSame && lastErr == fsErr
}
fsstr := "multiple filesystems"
if len(e.FilesystemsWithError) == 1 {
fsstr = fmt.Sprintf("filesystem %s", e.FilesystemsWithError[0].FS())
}
errorStr := lastErr
if !allSame {
errorStr = "multiple different errors"
}
return fmt.Sprintf("%s could not be replicated: %s", fsstr, errorStr)
}
func stateWorking(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state {
var active *fsrep.Replication
rsfNext := u(func(r *Replication) {
r.err = nil
newq := make([]*fsrep.Replication, 0, len(r.queue))
for i := range r.queue {
if r.queue[i].CanRetry() {
newq = append(newq, r.queue[i])
} else {
r.completed = append(r.completed, r.queue[i])
}
}
sort.SliceStable(newq, func(i, j int) bool {
return newq[i].NextStepDate().Before(newq[j].NextStepDate())
})
r.queue = newq
if len(r.queue) == 0 {
r.state = Completed
fsWithErr := FilesystemsReplicationFailedError{ // prepare it
FilesystemsWithError: make([]*fsrep.Replication, 0, len(r.completed)),
}
for _, fs := range r.completed {
if fs.CanRetry() {
panic(fmt.Sprintf("implementation error: completed contains retryable FS %s %#v",
fs.FS(), fs.Err()))
}
if fs.Err() != nil {
fsWithErr.FilesystemsWithError = append(fsWithErr.FilesystemsWithError, fs)
}
}
if len(fsWithErr.FilesystemsWithError) > 0 {
r.err = fsWithErr
r.state = PermanentError
}
return
}
active = r.queue[0] // do not dequeue: if it's done, it will be sorted the next time we check for more work
r.active = active
}).rsf()
if active == nil {
return rsfNext
}
activeCtx := fsrep.WithLogger(ctx, getLogger(ctx).WithField("fs", active.FS()))
err := active.Retry(activeCtx, ka, sender, receiver)
u(func(r *Replication) {
r.active = nil
}).rsf()
if err != nil {
if err.ContextErr() && ctx.Err() != nil {
getLogger(ctx).WithError(err).
Info("filesystem replication was cancelled")
u(func(r*Replication) {
r.err = GlobalError{Err: err, Temporary: false}
r.state = PermanentError
})
} else if err.LocalToFS() {
getLogger(ctx).WithError(err).
Error("filesystem replication encountered a filesystem-specific error")
// we stay in this state and let the queuing logic above de-prioritize this failing FS
} else if err.Temporary() {
getLogger(ctx).WithError(err).
Error("filesystem encountered a non-filesystem-specific temporary error, enter retry-wait")
u(func(r *Replication) {
r.err = GlobalError{Err: err, Temporary: true}
r.sleepUntil = time.Now().Add(RetryInterval)
r.state = WorkingWait
}).rsf()
} else {
getLogger(ctx).WithError(err).
Error("encountered a permanent non-filesystem-specific error")
u(func(r *Replication) {
r.err = GlobalError{Err: err, Temporary: false}
r.state = PermanentError
}).rsf()
}
}
return u(nil).rsf()
}
func stateWorkingWait(ctx context.Context, ka *watchdog.KeepAlive, sender Sender, receiver Receiver, u updater) state {
var sleepUntil time.Time
u(func(r *Replication) {
sleepUntil = r.sleepUntil
})
t := time.NewTimer(RetryInterval)
getLogger(ctx).WithField("until", sleepUntil).Info("retry wait after error")
defer t.Stop()
select {
case <-ctx.Done():
return u(func(r *Replication) {
r.state = PermanentError
r.err = ctx.Err()
}).rsf()
case <-t.C:
case <-wakeup.Wait(ctx):
}
return u(func(r *Replication) {
r.state = Working
}).rsf()
}
// Report provides a summary of the progress of the Replication,
// i.e., a condensed dump of the internal state machine.
// Report is safe to be called asynchronously while Drive is running.
func (r *Replication) Report() *Report {
r.lock.Lock()
defer r.lock.Unlock()
rep := Report{
Status: r.state.String(),
SleepUntil: r.sleepUntil,
}
if r.err != nil {
rep.Problem = r.err.Error()
}
if r.state&(Planning|PlanningError) != 0 {
return &rep
}
rep.Pending = make([]*fsrep.Report, 0, len(r.queue))
rep.Completed = make([]*fsrep.Report, 0, len(r.completed)) // room for active (potentially)
// since r.active == r.queue[0], do not contain it in pending output
pending := r.queue
if r.active != nil {
rep.Active = r.active.Report()
pending = r.queue[1:]
}
for _, fsr := range pending {
rep.Pending= append(rep.Pending, fsr.Report())
}
for _, fsr := range r.completed {
rep.Completed = append(rep.Completed, fsr.Report())
}
return &rep
}
func (r *Replication) State() State {
r.lock.Lock()
defer r.lock.Unlock()
return r.state
}