zrepl/endpoint/endpoint.go
2021-02-20 17:20:58 +01:00

996 lines
33 KiB
Go

// Package endpoint implements replication endpoints for use with package replication.
package endpoint
import (
"bytes"
"context"
"fmt"
"io"
"path"
"github.com/kr/pretty"
"github.com/pkg/errors"
"github.com/zrepl/zrepl/daemon/logging/trace"
"github.com/zrepl/zrepl/replication/logic/pdu"
"github.com/zrepl/zrepl/util/chainedio"
"github.com/zrepl/zrepl/util/chainlock"
"github.com/zrepl/zrepl/util/envconst"
"github.com/zrepl/zrepl/util/nodefault"
"github.com/zrepl/zrepl/util/semaphore"
"github.com/zrepl/zrepl/zfs"
zfsprop "github.com/zrepl/zrepl/zfs/property"
)
type SenderConfig struct {
FSF zfs.DatasetFilter
JobID JobID
Encrypt *nodefault.Bool
SendRaw bool
SendProperties bool
SendBackupProperties bool
SendLargeBlocks bool
SendCompressed bool
SendEmbeddedData bool
SendSaved bool
}
func (c *SenderConfig) Validate() error {
c.JobID.MustValidate()
if err := c.Encrypt.ValidateNoDefault(); err != nil {
return errors.Wrap(err, "`Encrypt` field invalid")
}
if _, err := StepHoldTag(c.JobID); err != nil {
return fmt.Errorf("JobID cannot be used for hold tag: %s", err)
}
return nil
}
// Sender implements replication.ReplicationEndpoint for a sending side
type Sender struct {
pdu.UnsafeReplicationServer // prefer compilation errors over default 'method X not implemented' impl
FSFilter zfs.DatasetFilter
jobId JobID
config SenderConfig
}
func NewSender(conf SenderConfig) *Sender {
if err := conf.Validate(); err != nil {
panic("invalid config" + err.Error())
}
return &Sender{
FSFilter: conf.FSF,
jobId: conf.JobID,
config: conf,
}
}
func (s *Sender) filterCheckFS(fs string) (*zfs.DatasetPath, error) {
dp, err := zfs.NewDatasetPath(fs)
if err != nil {
return nil, err
}
if dp.Length() == 0 {
return nil, errors.New("empty filesystem not allowed")
}
pass, err := s.FSFilter.Filter(dp)
if err != nil {
return nil, err
}
if !pass {
return nil, fmt.Errorf("endpoint does not allow access to filesystem %s", fs)
}
return dp, nil
}
func (s *Sender) ListFilesystems(ctx context.Context, r *pdu.ListFilesystemReq) (*pdu.ListFilesystemRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
fss, err := zfs.ZFSListMapping(ctx, s.FSFilter)
if err != nil {
return nil, err
}
rfss := make([]*pdu.Filesystem, len(fss))
for i := range fss {
encEnabled, err := zfs.ZFSGetEncryptionEnabled(ctx, fss[i].ToString())
if err != nil {
return nil, errors.Wrap(err, "cannot get filesystem encryption status")
}
rfss[i] = &pdu.Filesystem{
Path: fss[i].ToString(),
// ResumeToken does not make sense from Sender
IsPlaceholder: false, // sender FSs are never placeholders
IsEncrypted: encEnabled,
}
}
res := &pdu.ListFilesystemRes{Filesystems: rfss}
return res, nil
}
func (s *Sender) ListFilesystemVersions(ctx context.Context, r *pdu.ListFilesystemVersionsReq) (*pdu.ListFilesystemVersionsRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
lp, err := s.filterCheckFS(r.GetFilesystem())
if err != nil {
return nil, err
}
fsvs, err := zfs.ZFSListFilesystemVersions(ctx, lp, zfs.ListFilesystemVersionsOptions{})
if err != nil {
return nil, err
}
rfsvs := make([]*pdu.FilesystemVersion, len(fsvs))
for i := range fsvs {
rfsvs[i] = pdu.FilesystemVersionFromZFS(&fsvs[i])
}
res := &pdu.ListFilesystemVersionsRes{Versions: rfsvs}
return res, nil
}
var maxConcurrentZFSSend = envconst.Int64("ZREPL_ENDPOINT_MAX_CONCURRENT_SEND", 10)
var maxConcurrentZFSSendSemaphore = semaphore.New(maxConcurrentZFSSend)
func uncheckedSendArgsFromPDU(fsv *pdu.FilesystemVersion) *zfs.ZFSSendArgVersion {
if fsv == nil {
return nil
}
return &zfs.ZFSSendArgVersion{RelName: fsv.GetRelName(), GUID: fsv.Guid}
}
func sendArgsFromPDUAndValidateExistsAndGetVersion(ctx context.Context, fs string, fsv *pdu.FilesystemVersion) (v zfs.FilesystemVersion, err error) {
sendArgs := uncheckedSendArgsFromPDU(fsv)
if sendArgs == nil {
return v, errors.New("must not be nil")
}
version, err := sendArgs.ValidateExistsAndGetVersion(ctx, fs)
if err != nil {
return v, err
}
return version, nil
}
func (s *Sender) Send(ctx context.Context, r *pdu.SendReq) (*pdu.SendRes, io.ReadCloser, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
_, err := s.filterCheckFS(r.Filesystem)
if err != nil {
return nil, nil, err
}
switch r.Encrypted {
case pdu.Tri_DontCare:
// use s.encrypt setting
// ok, fallthrough outer
case pdu.Tri_False:
if s.config.Encrypt.B {
return nil, nil, errors.New("only encrypted sends allowed (send -w + encryption!= off), but unencrypted send requested")
}
// fallthrough outer
case pdu.Tri_True:
if !s.config.Encrypt.B {
return nil, nil, errors.New("only unencrypted sends allowed, but encrypted send requested")
}
// fallthrough outer
default:
return nil, nil, fmt.Errorf("unknown pdu.Tri variant %q", r.Encrypted)
}
sendArgsUnvalidated := zfs.ZFSSendArgsUnvalidated{
FS: r.Filesystem,
From: uncheckedSendArgsFromPDU(r.GetFrom()), // validated by zfs.ZFSSendDry / zfs.ZFSSend
To: uncheckedSendArgsFromPDU(r.GetTo()), // validated by zfs.ZFSSendDry / zfs.ZFSSend
ZFSSendFlags: zfs.ZFSSendFlags{
ResumeToken: r.ResumeToken, // nil or not nil, depending on decoding success
Encrypted: s.config.Encrypt,
Properties: s.config.SendProperties,
BackupProperties: s.config.SendBackupProperties,
Raw: s.config.SendRaw,
LargeBlocks: s.config.SendLargeBlocks,
Compressed: s.config.SendCompressed,
EmbeddedData: s.config.SendEmbeddedData,
Saved: s.config.SendSaved,
},
}
sendArgs, err := sendArgsUnvalidated.Validate(ctx)
if err != nil {
return nil, nil, errors.Wrap(err, "validate send arguments")
}
getLogger(ctx).Debug("acquire concurrent send semaphore")
// TODO use try-acquire and fail with resource-exhaustion rpc status
// => would require handling on the client-side
// => this is a dataconn endpoint, doesn't have the status code semantics of gRPC
guard, err := maxConcurrentZFSSendSemaphore.Acquire(ctx)
if err != nil {
return nil, nil, err
}
defer guard.Release()
si, err := zfs.ZFSSendDry(ctx, sendArgs)
if err != nil {
return nil, nil, errors.Wrap(err, "zfs send dry failed")
}
// From now on, assume that sendArgs has been validated by ZFSSendDry
// (because validation involves shelling out, it's actually a little expensive)
var expSize int64 = 0 // protocol says 0 means no estimate
if si.SizeEstimate != -1 { // but si returns -1 for no size estimate
expSize = si.SizeEstimate
}
res := &pdu.SendRes{
ExpectedSize: expSize,
UsedResumeToken: r.ResumeToken != "",
}
if r.DryRun {
return res, nil, nil
}
// create holds or bookmarks of `From` and `To` to guarantee one of the following:
// - that the replication step can always be resumed (`holds`),
// - that the replication step can be interrupted and a future replication
// step with same or different `To` but same `From` is still possible (`bookmarks`)
// - nothing (`none`)
//
// ...
//
// ... actually create the abstractions
replicationGuaranteeOptions, err := replicationGuaranteeOptionsFromPDU(r.GetReplicationConfig().Protection)
if err != nil {
return nil, nil, err
}
replicationGuaranteeStrategy := replicationGuaranteeOptions.Strategy(sendArgs.From != nil)
liveAbs, err := replicationGuaranteeStrategy.SenderPreSend(ctx, s.jobId, &sendArgs)
if err != nil {
return nil, nil, err
}
for _, a := range liveAbs {
if a != nil {
abstractionsCacheSingleton.Put(a)
}
}
// cleanup the mess that _this function_ might have created in prior failed attempts:
//
// In summary, we delete every endpoint ZFS abstraction created on this filesystem for this job id,
// except for the ones we just created above.
//
// This is the most robust approach to avoid leaking (= forgetting to clean up) endpoint ZFS abstractions,
// all under the assumption that there will only ever be one send for a (jobId,fs) combination at any given time.
//
// Note that the SendCompleted rpc can't be relied upon for this purpose:
// - it might be lost due to network errors,
// - or never be sent by a potentially malicious or buggy client,
// - or never be send because the replication step failed at some point
// (potentially leaving a resumable state on the receiver, which is the case where we really do not want to blow away the step holds too soon.)
//
// Note further that a resuming send, due to the idempotent nature of func CreateReplicationCursor and HoldStep,
// will never lose its step holds because we just (idempotently re-)created them above, before attempting the cleanup.
func() {
ctx, endSpan := trace.WithSpan(ctx, "cleanup-stale-abstractions")
defer endSpan()
keep := func(a Abstraction) (keep bool) {
keep = false
for _, k := range liveAbs {
keep = keep || AbstractionEquals(a, k)
}
return keep
}
check := func(obsoleteAbs []Abstraction) {
// last line of defense: check that we don't destroy the incremental `from` and `to`
// if we did that, we might be about to blow away the last common filesystem version between sender and receiver
mustLiveVersions := []zfs.FilesystemVersion{sendArgs.ToVersion}
if sendArgs.FromVersion != nil {
mustLiveVersions = append(mustLiveVersions, *sendArgs.FromVersion)
}
for _, staleVersion := range obsoleteAbs {
for _, mustLiveVersion := range mustLiveVersions {
isSendArg := zfs.FilesystemVersionEqualIdentity(mustLiveVersion, staleVersion.GetFilesystemVersion())
stepHoldBasedGuaranteeStrategy := false
k := replicationGuaranteeStrategy.Kind()
switch k {
case ReplicationGuaranteeKindResumability:
stepHoldBasedGuaranteeStrategy = true
case ReplicationGuaranteeKindIncremental:
case ReplicationGuaranteeKindNone:
default:
panic(fmt.Sprintf("this is supposed to be an exhaustive match, got %v", k))
}
isSnapshot := mustLiveVersion.IsSnapshot()
if isSendArg && (!isSnapshot || stepHoldBasedGuaranteeStrategy) {
panic(fmt.Sprintf("impl error: %q would be destroyed because it is considered stale but it is part of of sendArgs=%s", mustLiveVersion.String(), pretty.Sprint(sendArgs)))
}
}
}
}
destroyTypes := AbstractionTypeSet{
AbstractionStepHold: true,
AbstractionTentativeReplicationCursorBookmark: true,
}
abstractionsCacheSingleton.TryBatchDestroy(ctx, s.jobId, sendArgs.FS, destroyTypes, keep, check)
}()
sendStream, err := zfs.ZFSSend(ctx, sendArgs)
if err != nil {
// it's ok to not destroy the abstractions we just created here, a new send attempt will take care of it
return nil, nil, errors.Wrap(err, "zfs send failed")
}
return res, sendStream, nil
}
func (p *Sender) SendCompleted(ctx context.Context, r *pdu.SendCompletedReq) (*pdu.SendCompletedRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
orig := r.GetOriginalReq() // may be nil, always use proto getters
fsp, err := p.filterCheckFS(orig.GetFilesystem())
if err != nil {
return nil, err
}
fs := fsp.ToString()
var from *zfs.FilesystemVersion
if orig.GetFrom() != nil {
f, err := sendArgsFromPDUAndValidateExistsAndGetVersion(ctx, fs, orig.GetFrom()) // no shadow
if err != nil {
return nil, errors.Wrap(err, "validate `from` exists")
}
from = &f
}
to, err := sendArgsFromPDUAndValidateExistsAndGetVersion(ctx, fs, orig.GetTo())
if err != nil {
return nil, errors.Wrap(err, "validate `to` exists")
}
replicationGuaranteeOptions, err := replicationGuaranteeOptionsFromPDU(orig.GetReplicationConfig().Protection)
if err != nil {
return nil, err
}
liveAbs, err := replicationGuaranteeOptions.Strategy(from != nil).SenderPostRecvConfirmed(ctx, p.jobId, fs, to)
if err != nil {
return nil, err
}
for _, a := range liveAbs {
if a != nil {
abstractionsCacheSingleton.Put(a)
}
}
keep := func(a Abstraction) (keep bool) {
keep = false
for _, k := range liveAbs {
keep = keep || AbstractionEquals(a, k)
}
return keep
}
destroyTypes := AbstractionTypeSet{
AbstractionStepHold: true,
AbstractionTentativeReplicationCursorBookmark: true,
AbstractionReplicationCursorBookmarkV2: true,
}
abstractionsCacheSingleton.TryBatchDestroy(ctx, p.jobId, fs, destroyTypes, keep, nil)
return &pdu.SendCompletedRes{}, nil
}
func (p *Sender) DestroySnapshots(ctx context.Context, req *pdu.DestroySnapshotsReq) (*pdu.DestroySnapshotsRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
dp, err := p.filterCheckFS(req.Filesystem)
if err != nil {
return nil, err
}
return doDestroySnapshots(ctx, dp, req.Snapshots)
}
func (p *Sender) Ping(ctx context.Context, req *pdu.PingReq) (*pdu.PingRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
res := pdu.PingRes{
Echo: req.GetMessage(),
}
return &res, nil
}
func (p *Sender) PingDataconn(ctx context.Context, req *pdu.PingReq) (*pdu.PingRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
return p.Ping(ctx, req)
}
func (p *Sender) WaitForConnectivity(ctx context.Context) error {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
return nil
}
func (p *Sender) ReplicationCursor(ctx context.Context, req *pdu.ReplicationCursorReq) (*pdu.ReplicationCursorRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
dp, err := p.filterCheckFS(req.Filesystem)
if err != nil {
return nil, err
}
cursor, err := GetMostRecentReplicationCursorOfJob(ctx, dp.ToString(), p.jobId)
if err != nil {
return nil, err
}
if cursor == nil {
return &pdu.ReplicationCursorRes{Result: &pdu.ReplicationCursorRes_Notexist{Notexist: true}}, nil
}
return &pdu.ReplicationCursorRes{Result: &pdu.ReplicationCursorRes_Guid{Guid: cursor.Guid}}, nil
}
func (p *Sender) Receive(ctx context.Context, r *pdu.ReceiveReq, _ io.ReadCloser) (*pdu.ReceiveRes, error) {
return nil, fmt.Errorf("sender does not implement Receive()")
}
type FSFilter interface { // FIXME unused
Filter(path *zfs.DatasetPath) (pass bool, err error)
}
// FIXME: can we get away without error types here?
type FSMap interface { // FIXME unused
FSFilter
Map(path *zfs.DatasetPath) (*zfs.DatasetPath, error)
Invert() (FSMap, error)
AsFilter() FSFilter
}
// NOTE: when adding members to this struct, remember
// to add them to `ReceiverConfig.copyIn()`
type ReceiverConfig struct {
JobID JobID
RootWithoutClientComponent *zfs.DatasetPath
AppendClientIdentity bool
InheritProperties []zfsprop.Property
OverrideProperties map[zfsprop.Property]string
}
func (c *ReceiverConfig) copyIn() {
c.RootWithoutClientComponent = c.RootWithoutClientComponent.Copy()
pInherit := make([]zfsprop.Property, len(c.InheritProperties))
copy(pInherit, c.InheritProperties)
c.InheritProperties = pInherit
pOverride := make(map[zfsprop.Property]string, len(c.OverrideProperties))
for key, value := range c.OverrideProperties {
pOverride[key] = value
}
c.OverrideProperties = pOverride
}
func (c *ReceiverConfig) Validate() error {
c.JobID.MustValidate()
for _, prop := range c.InheritProperties {
err := prop.Validate()
if err != nil {
return errors.Wrapf(err, "inherit property %q", prop)
}
}
for prop := range c.OverrideProperties {
err := prop.Validate()
if err != nil {
return errors.Wrapf(err, "override property %q", prop)
}
}
if c.RootWithoutClientComponent.Length() <= 0 {
return errors.New("RootWithoutClientComponent must not be an empty dataset path")
}
return nil
}
// Receiver implements replication.ReplicationEndpoint for a receiving side
type Receiver struct {
pdu.UnsafeReplicationServer // prefer compilation errors over default 'method X not implemented' impl
conf ReceiverConfig // validated
recvParentCreationMtx *chainlock.L
}
func NewReceiver(config ReceiverConfig) *Receiver {
config.copyIn()
if err := config.Validate(); err != nil {
panic(err)
}
return &Receiver{
conf: config,
recvParentCreationMtx: chainlock.New(),
}
}
func TestClientIdentity(rootFS *zfs.DatasetPath, clientIdentity string) error {
_, err := clientRoot(rootFS, clientIdentity)
return err
}
func clientRoot(rootFS *zfs.DatasetPath, clientIdentity string) (*zfs.DatasetPath, error) {
rootFSLen := rootFS.Length()
clientRootStr := path.Join(rootFS.ToString(), clientIdentity)
clientRoot, err := zfs.NewDatasetPath(clientRootStr)
if err != nil {
return nil, err
}
if rootFSLen+1 != clientRoot.Length() {
return nil, fmt.Errorf("client identity must be a single ZFS filesystem path component")
}
return clientRoot, nil
}
func (s *Receiver) clientRootFromCtx(ctx context.Context) *zfs.DatasetPath {
if !s.conf.AppendClientIdentity {
return s.conf.RootWithoutClientComponent.Copy()
}
clientIdentity, ok := ctx.Value(ClientIdentityKey).(string)
if !ok {
panic("ClientIdentityKey context value must be set")
}
clientRoot, err := clientRoot(s.conf.RootWithoutClientComponent, clientIdentity)
if err != nil {
panic(fmt.Sprintf("ClientIdentityContextKey must have been validated before invoking Receiver: %s", err))
}
return clientRoot
}
type subroot struct {
localRoot *zfs.DatasetPath
}
var _ zfs.DatasetFilter = subroot{}
// Filters local p
func (f subroot) Filter(p *zfs.DatasetPath) (pass bool, err error) {
return p.HasPrefix(f.localRoot) && !p.Equal(f.localRoot), nil
}
func (f subroot) MapToLocal(fs string) (*zfs.DatasetPath, error) {
p, err := zfs.NewDatasetPath(fs)
if err != nil {
return nil, err
}
if p.Length() == 0 {
return nil, errors.Errorf("cannot map empty filesystem")
}
c := f.localRoot.Copy()
c.Extend(p)
return c, nil
}
func (s *Receiver) ListFilesystems(ctx context.Context, req *pdu.ListFilesystemReq) (*pdu.ListFilesystemRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
// first make sure that root_fs is imported
if rphs, err := zfs.ZFSGetFilesystemPlaceholderState(ctx, s.conf.RootWithoutClientComponent); err != nil {
return nil, errors.Wrap(err, "cannot determine whether root_fs exists")
} else if !rphs.FSExists {
return nil, errors.New("root_fs does not exist")
}
root := s.clientRootFromCtx(ctx)
filtered, err := zfs.ZFSListMapping(ctx, subroot{root})
if err != nil {
return nil, err
}
// present filesystem without the root_fs prefix
fss := make([]*pdu.Filesystem, 0, len(filtered))
for _, a := range filtered {
l := getLogger(ctx).WithField("fs", a)
ph, err := zfs.ZFSGetFilesystemPlaceholderState(ctx, a)
if err != nil {
l.WithError(err).Error("error getting placeholder state")
return nil, errors.Wrapf(err, "cannot get placeholder state for fs %q", a)
}
l.WithField("placeholder_state", fmt.Sprintf("%#v", ph)).Debug("placeholder state")
if !ph.FSExists {
l.Error("inconsistent placeholder state: filesystem must exists")
err := errors.Errorf("inconsistent placeholder state: filesystem %q must exist in this context", a.ToString())
return nil, err
}
token, err := zfs.ZFSGetReceiveResumeTokenOrEmptyStringIfNotSupported(ctx, a)
if err != nil {
l.WithError(err).Error("cannot get receive resume token")
return nil, err
}
encEnabled, err := zfs.ZFSGetEncryptionEnabled(ctx, a.ToString())
if err != nil {
l.WithError(err).Error("cannot get encryption enabled status")
return nil, err
}
l.WithField("receive_resume_token", token).Debug("receive resume token")
a.TrimPrefix(root)
fs := &pdu.Filesystem{
Path: a.ToString(),
IsPlaceholder: ph.IsPlaceholder,
ResumeToken: token,
IsEncrypted: encEnabled,
}
fss = append(fss, fs)
}
if len(fss) == 0 {
getLogger(ctx).Debug("no filesystems found")
return &pdu.ListFilesystemRes{}, nil
}
return &pdu.ListFilesystemRes{Filesystems: fss}, nil
}
func (s *Receiver) ListFilesystemVersions(ctx context.Context, req *pdu.ListFilesystemVersionsReq) (*pdu.ListFilesystemVersionsRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
root := s.clientRootFromCtx(ctx)
lp, err := subroot{root}.MapToLocal(req.GetFilesystem())
if err != nil {
return nil, err
}
// TODO share following code with sender
fsvs, err := zfs.ZFSListFilesystemVersions(ctx, lp, zfs.ListFilesystemVersionsOptions{})
if err != nil {
return nil, err
}
rfsvs := make([]*pdu.FilesystemVersion, len(fsvs))
for i := range fsvs {
rfsvs[i] = pdu.FilesystemVersionFromZFS(&fsvs[i])
}
return &pdu.ListFilesystemVersionsRes{Versions: rfsvs}, nil
}
func (s *Receiver) Ping(ctx context.Context, req *pdu.PingReq) (*pdu.PingRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
res := pdu.PingRes{
Echo: req.GetMessage(),
}
return &res, nil
}
func (s *Receiver) PingDataconn(ctx context.Context, req *pdu.PingReq) (*pdu.PingRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
return s.Ping(ctx, req)
}
func (s *Receiver) WaitForConnectivity(ctx context.Context) error {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
return nil
}
func (s *Receiver) ReplicationCursor(ctx context.Context, _ *pdu.ReplicationCursorReq) (*pdu.ReplicationCursorRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
return nil, fmt.Errorf("ReplicationCursor not implemented for Receiver")
}
func (s *Receiver) Send(ctx context.Context, req *pdu.SendReq) (*pdu.SendRes, io.ReadCloser, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
return nil, nil, fmt.Errorf("receiver does not implement Send()")
}
var maxConcurrentZFSRecvSemaphore = semaphore.New(envconst.Int64("ZREPL_ENDPOINT_MAX_CONCURRENT_RECV", 10))
func (s *Receiver) Receive(ctx context.Context, req *pdu.ReceiveReq, receive io.ReadCloser) (*pdu.ReceiveRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
getLogger(ctx).Debug("incoming Receive")
defer receive.Close()
root := s.clientRootFromCtx(ctx)
lp, err := subroot{root}.MapToLocal(req.Filesystem)
if err != nil {
return nil, errors.Wrap(err, "`Filesystem` invalid")
}
to := uncheckedSendArgsFromPDU(req.GetTo())
if to == nil {
return nil, errors.New("`To` must not be nil")
}
if !to.IsSnapshot() {
return nil, errors.New("`To` must be a snapshot")
}
// create placeholder parent filesystems as appropriate
//
// Manipulating the ZFS dataset hierarchy must happen exclusively.
// TODO: Use fine-grained locking to allow separate clients / requests to pass
// through the following section concurrently when operating on disjoint
// ZFS dataset hierarchy subtrees.
var visitErr error
func() {
getLogger(ctx).Debug("begin acquire recvParentCreationMtx")
defer s.recvParentCreationMtx.Lock().Unlock()
getLogger(ctx).Debug("end acquire recvParentCreationMtx")
defer getLogger(ctx).Debug("release recvParentCreationMtx")
f := zfs.NewDatasetPathForest()
f.Add(lp)
getLogger(ctx).Debug("begin tree-walk")
f.WalkTopDown(func(v *zfs.DatasetPathVisit) (visitChildTree bool) {
if v.Path.Equal(lp) {
return false
}
ph, err := zfs.ZFSGetFilesystemPlaceholderState(ctx, v.Path)
getLogger(ctx).
WithField("fs", v.Path.ToString()).
WithField("placeholder_state", fmt.Sprintf("%#v", ph)).
WithField("err", fmt.Sprintf("%s", err)).
WithField("errType", fmt.Sprintf("%T", err)).
Debug("placeholder state for filesystem")
if err != nil {
visitErr = err
return false
}
if !ph.FSExists {
if s.conf.RootWithoutClientComponent.HasPrefix(v.Path) {
if v.Path.Length() == 1 {
visitErr = fmt.Errorf("pool %q not imported", v.Path.ToString())
} else {
visitErr = fmt.Errorf("root_fs %q does not exist", s.conf.RootWithoutClientComponent.ToString())
}
getLogger(ctx).WithError(visitErr).Error("placeholders are only created automatically below root_fs")
return false
}
l := getLogger(ctx).WithField("placeholder_fs", v.Path)
l.Debug("create placeholder filesystem")
err := zfs.ZFSCreatePlaceholderFilesystem(ctx, v.Path, v.Parent.Path)
if err != nil {
l.WithError(err).Error("cannot create placeholder filesystem")
visitErr = err
return false
}
return true
}
getLogger(ctx).WithField("filesystem", v.Path.ToString()).Debug("exists")
return true // leave this fs as is
})
}()
getLogger(ctx).WithField("visitErr", visitErr).Debug("complete tree-walk")
if visitErr != nil {
return nil, visitErr
}
log := getLogger(ctx).WithField("proto_fs", req.GetFilesystem()).WithField("local_fs", lp.ToString())
// determine whether we need to rollback the filesystem / change its placeholder state
var clearPlaceholderProperty bool
var recvOpts zfs.RecvOptions
ph, err := zfs.ZFSGetFilesystemPlaceholderState(ctx, lp)
if err != nil {
return nil, errors.Wrap(err, "cannot get placeholder state")
}
log.WithField("placeholder_state", fmt.Sprintf("%#v", ph)).Debug("placeholder state")
recvOpts.InheritProperties = s.conf.InheritProperties
recvOpts.OverrideProperties = s.conf.OverrideProperties
if ph.FSExists && ph.IsPlaceholder {
recvOpts.RollbackAndForceRecv = true
clearPlaceholderProperty = true
}
if clearPlaceholderProperty {
log.Info("clearing placeholder property")
if err := zfs.ZFSSetPlaceholder(ctx, lp, false); err != nil {
return nil, fmt.Errorf("cannot clear placeholder property for forced receive: %s", err)
}
}
if req.ClearResumeToken && ph.FSExists {
log.Info("clearing resume token")
if err := zfs.ZFSRecvClearResumeToken(ctx, lp.ToString()); err != nil {
return nil, errors.Wrap(err, "cannot clear resume token")
}
}
recvOpts.SavePartialRecvState, err = zfs.ResumeRecvSupported(ctx, lp)
if err != nil {
return nil, errors.Wrap(err, "cannot determine whether we can use resumable send & recv")
}
log.Debug("acquire concurrent recv semaphore")
// TODO use try-acquire and fail with resource-exhaustion rpc status
// => would require handling on the client-side
// => this is a dataconn endpoint, doesn't have the status code semantics of gRPC
guard, err := maxConcurrentZFSRecvSemaphore.Acquire(ctx)
if err != nil {
return nil, err
}
defer guard.Release()
var peek bytes.Buffer
var MaxPeek = envconst.Int64("ZREPL_ENDPOINT_RECV_PEEK_SIZE", 1<<20)
log.WithField("max_peek_bytes", MaxPeek).Info("peeking incoming stream")
if _, err := io.Copy(&peek, io.LimitReader(receive, MaxPeek)); err != nil {
log.WithError(err).Error("cannot read peek-buffer from send stream")
}
var peekCopy bytes.Buffer
if n, err := peekCopy.Write(peek.Bytes()); err != nil || n != peek.Len() {
panic(peek.Len())
}
log.WithField("opts", fmt.Sprintf("%#v", recvOpts)).Debug("start receive command")
snapFullPath := to.FullPath(lp.ToString())
if err := zfs.ZFSRecv(ctx, lp.ToString(), to, chainedio.NewChainedReader(&peek, receive), recvOpts); err != nil {
// best-effort rollback of placeholder state if the recv didn't start
_, resumableStatePresent := err.(*zfs.RecvFailedWithResumeTokenErr)
disablePlaceholderRestoration := envconst.Bool("ZREPL_ENDPOINT_DISABLE_PLACEHOLDER_RESTORATION", false)
placeholderRestored := !ph.IsPlaceholder
if !disablePlaceholderRestoration && !resumableStatePresent && recvOpts.RollbackAndForceRecv && ph.FSExists && ph.IsPlaceholder && clearPlaceholderProperty {
log.Info("restoring placeholder property")
if phErr := zfs.ZFSSetPlaceholder(ctx, lp, true); phErr != nil {
log.WithError(phErr).Error("cannot restore placeholder property after failed receive, subsequent replications will likely fail with a different error")
// fallthrough
} else {
placeholderRestored = true
}
// fallthrough
}
// deal with failing initial encrypted send & recv
if _, ok := err.(*zfs.RecvDestroyOrOverwriteEncryptedErr); ok && ph.IsPlaceholder && placeholderRestored {
msg := `cannot automatically replace placeholder filesystem with incoming send stream - please see receive-side log for details`
err := errors.New(msg)
log.Error(msg)
log.Error(`zrepl creates placeholder filesystems on the receiving side of a replication to match the sending side's dataset hierarchy`)
log.Error(`zrepl uses zfs receive -F to replace those placeholders with incoming full sends`)
log.Error(`OpenZFS native encryption prohibits zfs receive -F for encrypted filesystems`)
log.Error(`the current zrepl placeholder filesystem concept is thus incompatible with OpenZFS native encryption`)
tempStartFullRecvFS := lp.Copy().ToString() + ".zrepl.initial-recv"
tempStartFullRecvFSDP, dpErr := zfs.NewDatasetPath(tempStartFullRecvFS)
if dpErr != nil {
log.WithError(dpErr).Error("cannot determine temporary filesystem name for initial encrypted recv workaround")
return nil, err // yes, err, not dpErr
}
log := log.WithField("temp_recv_fs", tempStartFullRecvFS)
log.Error(`as a workaround, zrepl will now attempt to re-receive the beginning of the stream into a temporary filesystem temp_recv_fs`)
log.Error(`if that step succeeds: shut down zrepl and use 'zfs rename' to swap temp_recv_fs with local_fs, then restart zrepl`)
log.Error(`replication will then resume using resumable send+recv`)
tempPH, phErr := zfs.ZFSGetFilesystemPlaceholderState(ctx, tempStartFullRecvFSDP)
if phErr != nil {
log.WithError(phErr).Error("cannot determine placeholder state of temp_recv_fs")
return nil, err // yes, err, not dpErr
}
if tempPH.FSExists {
log.Error("temp_recv_fs already exists, assuming a (partial) initial recv to that filesystem has already been done")
return nil, err
}
recvOpts.RollbackAndForceRecv = false
recvOpts.SavePartialRecvState = true
rerecvErr := zfs.ZFSRecv(ctx, tempStartFullRecvFS, to, chainedio.NewChainedReader(&peekCopy), recvOpts)
if _, isResumable := rerecvErr.(*zfs.RecvFailedWithResumeTokenErr); rerecvErr == nil || isResumable {
log.Error("completed re-receive into temporary filesystem temp_recv_fs, now shut down zrepl and use zfs rename to swap temp_recv_fs with local_fs")
} else {
log.WithError(rerecvErr).Error("failed to receive the beginning of the stream into temporary filesystem temp_recv_fs")
log.Error("we advise you to collect the error log and current configuration, open an issue on GitHub, and revert to your previous configuration in the meantime")
}
log.Error(`if you would like to see improvements to this situation, please open an issue on GitHub`)
return nil, err
}
log.
WithError(err).
WithField("opts", fmt.Sprintf("%#v", recvOpts)).
Error("zfs receive failed")
return nil, err
}
// validate that we actually received what the sender claimed
toRecvd, err := to.ValidateExistsAndGetVersion(ctx, lp.ToString())
if err != nil {
msg := "receive request's `To` version does not match what we received in the stream"
log.WithError(err).WithField("snap", snapFullPath).Error(msg)
log.Error("aborting recv request, but keeping received snapshot for inspection")
return nil, errors.Wrap(err, msg)
}
replicationGuaranteeOptions, err := replicationGuaranteeOptionsFromPDU(req.GetReplicationConfig().Protection)
if err != nil {
return nil, err
}
replicationGuaranteeStrategy := replicationGuaranteeOptions.Strategy(ph.FSExists)
liveAbs, err := replicationGuaranteeStrategy.ReceiverPostRecv(ctx, s.conf.JobID, lp.ToString(), toRecvd)
if err != nil {
return nil, err
}
for _, a := range liveAbs {
if a != nil {
abstractionsCacheSingleton.Put(a)
}
}
keep := func(a Abstraction) (keep bool) {
keep = false
for _, k := range liveAbs {
keep = keep || AbstractionEquals(a, k)
}
return keep
}
check := func(obsoleteAbs []Abstraction) {
for _, abs := range obsoleteAbs {
if zfs.FilesystemVersionEqualIdentity(abs.GetFilesystemVersion(), toRecvd) {
panic(fmt.Sprintf("would destroy endpoint abstraction around the filesystem version we just received %s", abs))
}
}
}
destroyTypes := AbstractionTypeSet{
AbstractionLastReceivedHold: true,
}
abstractionsCacheSingleton.TryBatchDestroy(ctx, s.conf.JobID, lp.ToString(), destroyTypes, keep, check)
return &pdu.ReceiveRes{}, nil
}
func (s *Receiver) DestroySnapshots(ctx context.Context, req *pdu.DestroySnapshotsReq) (*pdu.DestroySnapshotsRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
root := s.clientRootFromCtx(ctx)
lp, err := subroot{root}.MapToLocal(req.Filesystem)
if err != nil {
return nil, err
}
return doDestroySnapshots(ctx, lp, req.Snapshots)
}
func (p *Receiver) SendCompleted(ctx context.Context, _ *pdu.SendCompletedReq) (*pdu.SendCompletedRes, error) {
defer trace.WithSpanFromStackUpdateCtx(&ctx)()
return &pdu.SendCompletedRes{}, nil
}
func doDestroySnapshots(ctx context.Context, lp *zfs.DatasetPath, snaps []*pdu.FilesystemVersion) (*pdu.DestroySnapshotsRes, error) {
reqs := make([]*zfs.DestroySnapOp, len(snaps))
ress := make([]*pdu.DestroySnapshotRes, len(snaps))
errs := make([]error, len(snaps))
for i, fsv := range snaps {
if fsv.Type != pdu.FilesystemVersion_Snapshot {
return nil, fmt.Errorf("version %q is not a snapshot", fsv.Name)
}
ress[i] = &pdu.DestroySnapshotRes{
Snapshot: fsv,
// Error set after batch operation
}
reqs[i] = &zfs.DestroySnapOp{
Filesystem: lp.ToString(),
Name: fsv.Name,
ErrOut: &errs[i],
}
}
zfs.ZFSDestroyFilesystemVersions(ctx, reqs)
for i := range reqs {
if errs[i] != nil {
if de, ok := errs[i].(*zfs.DestroySnapshotsError); ok && len(de.Reason) == 1 {
ress[i].Error = de.Reason[0]
} else {
ress[i].Error = errs[i].Error()
}
}
}
return &pdu.DestroySnapshotsRes{
Results: ress,
}, nil
}