mirror of
https://github.com/zrepl/zrepl.git
synced 2025-01-25 07:40:35 +01:00
178 lines
5.3 KiB
Go
178 lines
5.3 KiB
Go
package driver
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"sort"
|
|
"sync"
|
|
"sync/atomic"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/montanaflynn/stats"
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
// FIXME: this test relies on timing and is thus rather flaky
|
|
// (relies on scheduler responsivity of < 500ms)
|
|
func TestPqNotconcurrent(t *testing.T) {
|
|
var ctr uint32
|
|
q := newStepQueue()
|
|
var wg sync.WaitGroup
|
|
wg.Add(4)
|
|
go func() {
|
|
defer wg.Done()
|
|
defer q.WaitReady("1", time.Unix(9999, 0))()
|
|
ret := atomic.AddUint32(&ctr, 1)
|
|
assert.Equal(t, uint32(1), ret)
|
|
time.Sleep(1 * time.Second)
|
|
}()
|
|
|
|
// give goroutine "1" 500ms to enter queue, get the active slot and enter time.Sleep
|
|
defer q.Start(1)()
|
|
time.Sleep(500 * time.Millisecond)
|
|
|
|
// while "1" is still running, queue in "2", "3" and "4"
|
|
go func() {
|
|
defer wg.Done()
|
|
defer q.WaitReady("2", time.Unix(2, 0))()
|
|
ret := atomic.AddUint32(&ctr, 1)
|
|
assert.Equal(t, uint32(2), ret)
|
|
}()
|
|
go func() {
|
|
defer wg.Done()
|
|
defer q.WaitReady("3", time.Unix(3, 0))()
|
|
ret := atomic.AddUint32(&ctr, 1)
|
|
assert.Equal(t, uint32(3), ret)
|
|
}()
|
|
go func() {
|
|
defer wg.Done()
|
|
defer q.WaitReady("4", time.Unix(4, 0))()
|
|
ret := atomic.AddUint32(&ctr, 1)
|
|
assert.Equal(t, uint32(4), ret)
|
|
}()
|
|
|
|
wg.Wait()
|
|
}
|
|
|
|
type record struct {
|
|
fs int
|
|
step int
|
|
globalCtr uint32
|
|
wakeAt time.Duration // relative to begin
|
|
}
|
|
|
|
func (r record) String() string {
|
|
return fmt.Sprintf("fs %08d step %08d globalCtr %08d wakeAt %2.8f", r.fs, r.step, r.globalCtr, r.wakeAt.Seconds())
|
|
}
|
|
|
|
// This tests uses stepPq concurrently, simulating the following scenario:
|
|
// Given a number of filesystems F, each filesystem has N steps to take.
|
|
// The number of concurrent steps is limited to C.
|
|
// The target date for each step is the step number N.
|
|
// Hence, there are always F filesystems runnable (calling WaitReady)
|
|
// The priority queue prioritizes steps with lower target data (= lower step number).
|
|
// Hence, all steps with lower numbers should be woken up before steps with higher numbers.
|
|
// However, scheduling is not 100% deterministic (runtime, OS scheduler, etc).
|
|
// Hence, perform some statistics on the wakeup times and assert that the mean wakeup
|
|
// times for each step are close together.
|
|
func TestPqConcurrent(t *testing.T) {
|
|
|
|
q := newStepQueue()
|
|
var wg sync.WaitGroup
|
|
filesystems := 100
|
|
stepsPerFS := 20
|
|
sleepTimePerStep := 50 * time.Millisecond
|
|
wg.Add(filesystems)
|
|
var globalCtr uint32
|
|
|
|
begin := time.Now()
|
|
records := make(chan []record, filesystems)
|
|
for fs := 0; fs < filesystems; fs++ {
|
|
go func(fs int) {
|
|
defer wg.Done()
|
|
recs := make([]record, 0)
|
|
for step := 0; step < stepsPerFS; step++ {
|
|
pos := atomic.AddUint32(&globalCtr, 1)
|
|
t := time.Unix(int64(step), 0)
|
|
done := q.WaitReady(fs, t)
|
|
wakeAt := time.Since(begin)
|
|
time.Sleep(sleepTimePerStep)
|
|
done()
|
|
recs = append(recs, record{fs, step, pos, wakeAt})
|
|
}
|
|
records <- recs
|
|
}(fs)
|
|
}
|
|
concurrency := 5
|
|
defer q.Start(concurrency)()
|
|
wg.Wait()
|
|
close(records)
|
|
t.Logf("loop done")
|
|
|
|
flattenedRecs := make([]record, 0)
|
|
for recs := range records {
|
|
flattenedRecs = append(flattenedRecs, recs...)
|
|
}
|
|
|
|
sort.Slice(flattenedRecs, func(i, j int) bool {
|
|
return flattenedRecs[i].globalCtr < flattenedRecs[j].globalCtr
|
|
})
|
|
|
|
wakeTimesByStep := map[int][]float64{}
|
|
for _, rec := range flattenedRecs {
|
|
wakeTimes, ok := wakeTimesByStep[rec.step]
|
|
if !ok {
|
|
wakeTimes = []float64{}
|
|
}
|
|
wakeTimes = append(wakeTimes, rec.wakeAt.Seconds())
|
|
wakeTimesByStep[rec.step] = wakeTimes
|
|
}
|
|
|
|
meansByStepId := make([]float64, stepsPerFS)
|
|
interQuartileRangesByStepIdx := make([]float64, stepsPerFS)
|
|
for step := 0; step < stepsPerFS; step++ {
|
|
t.Logf("step %d", step)
|
|
mean, _ := stats.Mean(wakeTimesByStep[step])
|
|
meansByStepId[step] = mean
|
|
t.Logf("\tmean: %v", mean)
|
|
median, _ := stats.Median(wakeTimesByStep[step])
|
|
t.Logf("\tmedian: %v", median)
|
|
midhinge, _ := stats.Midhinge(wakeTimesByStep[step])
|
|
t.Logf("\tmidhinge: %v", midhinge)
|
|
min, _ := stats.Min(wakeTimesByStep[step])
|
|
t.Logf("\tmin: %v", min)
|
|
max, _ := stats.Max(wakeTimesByStep[step])
|
|
t.Logf("\tmax: %v", max)
|
|
quartiles, _ := stats.Quartile(wakeTimesByStep[step])
|
|
t.Logf("\t%#v", quartiles)
|
|
interQuartileRange, _ := stats.InterQuartileRange(wakeTimesByStep[step])
|
|
t.Logf("\tinter-quartile range: %v", interQuartileRange)
|
|
interQuartileRangesByStepIdx[step] = interQuartileRange
|
|
}
|
|
|
|
iqrMean, _ := stats.Mean(interQuartileRangesByStepIdx)
|
|
t.Logf("inter-quartile-range mean: %v", iqrMean)
|
|
iqrDev, _ := stats.StandardDeviation(interQuartileRangesByStepIdx)
|
|
t.Logf("inter-quartile-range deviation: %v", iqrDev)
|
|
|
|
// each step should have the same "distribution" (=~ "spread")
|
|
assert.True(t, iqrDev < 0.01)
|
|
|
|
minTimeForAllStepsWithIdxI := sleepTimePerStep.Seconds() * float64(filesystems) / float64(concurrency)
|
|
t.Logf("minTimeForAllStepsWithIdxI = %11.8f", minTimeForAllStepsWithIdxI)
|
|
for i, mean := range meansByStepId {
|
|
// we can't just do (i + 0.5) * minTimeforAllStepsWithIdxI
|
|
// because this doesn't account for drift
|
|
idealMean := 0.5 * minTimeForAllStepsWithIdxI
|
|
if i > 0 {
|
|
previousMean := meansByStepId[i-1]
|
|
idealMean = previousMean + minTimeForAllStepsWithIdxI
|
|
}
|
|
deltaFromIdeal := idealMean - mean
|
|
t.Logf("step %02d delta from ideal mean wake time: %11.8f - %11.8f = %11.8f", i, idealMean, mean, deltaFromIdeal)
|
|
assert.True(t, math.Abs(deltaFromIdeal) < 0.05)
|
|
}
|
|
|
|
}
|