forked from extern/Thorsten-Voice
158 lines
5.2 KiB
Python
158 lines
5.2 KiB
Python
# This script generates the folder structure for ljspeech-1.1 processing from mimic-recording-studio database
|
||
|
||
# Changelog
|
||
# v1.0 - Initial release by Thorsten Müller (https://github.com/thorstenMueller/deep-learning-german-tts)
|
||
# v1.1 - Great improvements by Peter Schmalfeldt (https://github.com/manifestinteractive)
|
||
# - Audio processing with ffmpeg (mono and samplerate of 22.050 Hz)
|
||
# - Much better Python coding than my original version
|
||
# - Greater logging output to command line
|
||
# - See more details here: https://gist.github.com/manifestinteractive/6fd9be62d0ede934d4e1171e5e751aba
|
||
# - Thanks Peter, it's a great contribution :-)
|
||
# v1.2 - Added choice for choosing which recording session should be exported as LJSpeech
|
||
# v1.3 - Added parameter mrs_dir to pass directory of Mimic-Recording-Studio
|
||
# v1.4 - Script won't crash when audio recorded has been deleted on disk
|
||
# v1.5 - Added parameter "ffmpeg" to make converting with ffmpeg optional
|
||
|
||
from genericpath import exists
|
||
import glob
|
||
import sqlite3
|
||
import os
|
||
import argparse
|
||
import sys
|
||
|
||
from shutil import copyfile
|
||
from shutil import rmtree
|
||
|
||
# Setup Directory Data
|
||
cwd = os.path.dirname(os.path.abspath(__file__))
|
||
output_dir = os.path.join(cwd, "dataset")
|
||
output_dir_audio = ""
|
||
output_dir_audio_temp=""
|
||
output_dir_speech = ""
|
||
|
||
# Create folders needed for ljspeech
|
||
def create_folders():
|
||
global output_dir
|
||
global output_dir_audio
|
||
global output_dir_audio_temp
|
||
global output_dir_speech
|
||
|
||
print('→ Creating Dataset Folders')
|
||
|
||
output_dir_speech = os.path.join(output_dir, "LJSpeech-1.1")
|
||
|
||
# Delete existing folder if exists for clean run
|
||
if os.path.exists(output_dir_speech):
|
||
rmtree(output_dir_speech)
|
||
|
||
output_dir_audio = os.path.join(output_dir_speech, "wavs")
|
||
output_dir_audio_temp = os.path.join(output_dir_speech, "temp")
|
||
|
||
# Create Clean Folders
|
||
os.makedirs(output_dir_speech)
|
||
os.makedirs(output_dir_audio)
|
||
os.makedirs(output_dir_audio_temp)
|
||
|
||
def convert_audio():
|
||
global output_dir_audio
|
||
global output_dir_audio_temp
|
||
|
||
recordings = len([name for name in os.listdir(output_dir_audio_temp) if os.path.isfile(os.path.join(output_dir_audio_temp,name))])
|
||
|
||
print('→ Converting %s Audio Files to 22050 Hz, 16 Bit, Mono\n' % "{:,}".format(recordings))
|
||
|
||
# Please use `pip install ffmpeg-python`
|
||
import ffmpeg
|
||
|
||
for idx, wav in enumerate(glob.glob(os.path.join(output_dir_audio_temp, "*.wav"))):
|
||
|
||
percent = (idx + 1) / recordings
|
||
|
||
print('› \033[96m%s\033[0m \033[2m%s / %s (%s)\033[0m ' % (os.path.basename(wav), "{:,}".format((idx + 1)), "{:,}".format(recordings), "{:.0%}".format(percent)))
|
||
|
||
# Convert WAV file to required format
|
||
(ffmpeg
|
||
.input(wav)
|
||
.output(os.path.join(output_dir_audio, os.path.basename(wav)), acodec='pcm_s16le', ac=1, ar=22050, loglevel='error')
|
||
.overwrite_output()
|
||
.run(capture_stdout=True)
|
||
)
|
||
|
||
|
||
def copy_audio():
|
||
global output_dir_audio
|
||
|
||
print('→ Using ffmpeg to convert recordings')
|
||
recordings = len([name for name in os.listdir(output_dir_audio_temp) if os.path.isfile(os.path.join(output_dir_audio_temp,name))])
|
||
|
||
print('→ Copy %s Audio Files to LJSpeech Dataset\n' % "{:,}".format(recordings))
|
||
|
||
for idx, wav in enumerate(glob.glob(os.path.join(output_dir_audio_temp, "*.wav"))):
|
||
copyfile(wav,os.path.join(output_dir_audio, os.path.basename(wav)))
|
||
|
||
def create_meta_data(mrs_dir):
|
||
print('→ Creating META Data')
|
||
|
||
conn = sqlite3.connect(os.path.join(mrs_dir, "backend", "db", "mimicstudio.db"))
|
||
c = conn.cursor()
|
||
|
||
# Create metadata.csv for ljspeech
|
||
metadata = open(os.path.join(output_dir_speech, "metadata.csv"), mode="w", encoding="utf8")
|
||
|
||
# List available recording sessions
|
||
user_models = c.execute('SELECT uuid, user_name from usermodel ORDER BY created_date DESC').fetchall()
|
||
user_id = user_models[0][0]
|
||
|
||
for row in user_models:
|
||
print(row[0] + ' -> ' + row[1])
|
||
|
||
user_answer = input('Please choose ID of recording session to export (default is newest session) [' + user_id + ']: ')
|
||
|
||
if user_answer:
|
||
user_id = user_answer
|
||
|
||
|
||
for row in c.execute('SELECT audio_id, prompt, lower(prompt) FROM audiomodel WHERE user_id = "' + user_id + '" ORDER BY length(prompt)'):
|
||
source_file = os.path.join(mrs_dir, "backend", "audio_files", user_id, row[0] + ".wav")
|
||
if exists(source_file):
|
||
metadata.write(row[0] + "|" + row[1] + "|" + row[2] + "\n")
|
||
copyfile(source_file, os.path.join(output_dir_audio_temp, row[0] + ".wav"))
|
||
else:
|
||
print("Wave file {} not found.".format(source_file))
|
||
|
||
metadata.close()
|
||
conn.close()
|
||
|
||
def cleanup():
|
||
global output_dir_audio_temp
|
||
|
||
# Remove Temp Folder
|
||
rmtree(output_dir_audio_temp)
|
||
|
||
def main():
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--mrs_dir', required=True)
|
||
parser.add_argument('--ffmpeg', required=False, default=False)
|
||
args = parser.parse_args()
|
||
|
||
if not os.path.isdir(os.path.join(args.mrs_dir,"backend")):
|
||
sys.exit("Passed directory is no valid Mimic-Recording-Studio main directory!")
|
||
|
||
print('\n\033[48;5;22m MRS to LJ Speech Processor \033[0m\n')
|
||
|
||
create_folders()
|
||
create_meta_data(args.mrs_dir)
|
||
|
||
if(args.ffmpeg):
|
||
convert_audio()
|
||
|
||
else:
|
||
copy_audio()
|
||
|
||
cleanup()
|
||
|
||
print('\n\033[38;5;86;1m✔\033[0m COMPLETE【ツ】\n')
|
||
|
||
if __name__ == '__main__':
|
||
main()
|