easydiffusion/ui/sd_internal/__init__.py

93 lines
2.5 KiB
Python
Raw Normal View History

import json
class Request:
prompt: str = ""
init_image: str = None # base64
mask: str = None # base64
num_outputs: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
width: int = 512
height: int = 512
seed: int = 42
prompt_strength: float = 0.8
# allow_nsfw: bool = False
precision: str = "autocast" # or "full"
save_to_disk_path: str = None
turbo: bool = True
use_cpu: bool = False
use_full_precision: bool = False
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
show_only_filtered_image: bool = False
stream_progress_updates: bool = False
def json(self):
return {
"prompt": self.prompt,
"num_outputs": self.num_outputs,
"num_inference_steps": self.num_inference_steps,
"guidance_scale": self.guidance_scale,
"width": self.width,
"height": self.height,
"seed": self.seed,
"prompt_strength": self.prompt_strength,
"use_face_correction": self.use_face_correction,
"use_upscale": self.use_upscale,
}
def to_string(self):
return f'''
prompt: {self.prompt}
seed: {self.seed}
num_inference_steps: {self.num_inference_steps}
guidance_scale: {self.guidance_scale}
w: {self.width}
h: {self.height}
precision: {self.precision}
save_to_disk_path: {self.save_to_disk_path}
turbo: {self.turbo}
use_cpu: {self.use_cpu}
use_full_precision: {self.use_full_precision}
use_face_correction: {self.use_face_correction}
use_upscale: {self.use_upscale}
show_only_filtered_image: {self.show_only_filtered_image}
stream_progress_updates: {self.stream_progress_updates}'''
class Image:
data: str # base64
seed: int
is_nsfw: bool
path_abs: str = None
def __init__(self, data, seed):
self.data = data
self.seed = seed
def json(self):
return {
"data": self.data,
"seed": self.seed,
"path_abs": self.path_abs,
}
class Response:
request: Request
session_id: str
images: list
def json(self):
res = {
"status": 'succeeded',
"session_id": self.session_id,
"request": self.request.json(),
"output": [],
}
for image in self.images:
res["output"].append(image.json())
return res