easydiffusion/ui/sd_internal/ddim_callback.patch

163 lines
6.2 KiB
Diff
Raw Normal View History

diff --git a/optimizedSD/ddpm.py b/optimizedSD/ddpm.py
index 79058bc..a473411 100644
--- a/optimizedSD/ddpm.py
+++ b/optimizedSD/ddpm.py
@@ -564,12 +564,12 @@ class UNet(DDPM):
unconditional_guidance_scale=unconditional_guidance_scale,
callback=callback, img_callback=img_callback)
+ yield from samples
+
if(self.turbo):
self.model1.to("cpu")
self.model2.to("cpu")
- return samples
-
@torch.no_grad()
def plms_sampling(self, cond,b, img,
ddim_use_original_steps=False,
@@ -608,10 +608,10 @@ class UNet(DDPM):
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
- if callback: callback(i)
- if img_callback: img_callback(pred_x0, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(pred_x0, i)
- return img
+ yield from img_callback(img, len(iterator)-1)
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
@@ -740,13 +740,13 @@ class UNet(DDPM):
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
- if callback: callback(i)
- if img_callback: img_callback(x_dec, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x_dec, i)
2022-11-22 17:51:54 +01:00
if mask is not None:
- return x0 * mask + (1. - mask) * x_dec
+ x_dec = x0 * mask + (1. - mask) * x_dec
- return x_dec
+ yield from img_callback(x_dec, len(iterator)-1)
@torch.no_grad()
@@ -820,12 +820,12 @@ class UNet(DDPM):
d = to_d(x, sigma_hat, denoised)
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
- return x
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, img_callback=None):
@@ -852,14 +852,14 @@ class UNet(DDPM):
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
x = x + torch.randn_like(x) * sigma_up
- return x
+ yield from img_callback(x, len(sigmas)-1)
@@ -892,8 +892,8 @@ class UNet(DDPM):
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
d = to_d(x, sigma_hat, denoised)
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
@@ -913,7 +913,7 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
- return x
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
@@ -944,8 +944,8 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
2022-11-22 17:51:54 +01:00
d = to_d(x, sigma_hat, denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
@@ -966,7 +966,7 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
- return x
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
@@ -994,8 +994,8 @@ class UNet(DDPM):
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
@@ -1016,7 +1016,7 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = x + torch.randn_like(x) * sigma_up
- return x
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
@@ -1042,8 +1042,8 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
- if callback: callback(i)
- if img_callback: img_callback(x, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
ds.append(d)
@@ -1054,4 +1054,4 @@ class UNet(DDPM):
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
- return x
+ yield from img_callback(x, len(sigmas)-1)