easydiffusion/ui/sd_internal/runtime.py

563 lines
20 KiB
Python
Raw Normal View History

import json
import os, re
import traceback
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from einops import rearrange, repeat
from ldm.util import instantiate_from_config
from optimizedSD.optimUtils import split_weighted_subprompts
from transformers import logging
from gfpgan import GFPGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import uuid
logging.set_verbosity_error()
# consts
config_yaml = "optimizedSD/v1-inference.yaml"
filename_regex = re.compile('[^a-zA-Z0-9]')
# api stuff
from . import Request, Response, Image as ResponseImage
import base64
from io import BytesIO
# local
session_id = str(uuid.uuid4())[-8:]
stop_processing = False
ckpt_file = None
gfpgan_file = None
real_esrgan_file = None
model = None
modelCS = None
modelFS = None
model_gfpgan = None
model_real_esrgan = None
model_is_half = False
model_fs_is_half = False
device = None
unet_bs = 1
precision = 'autocast'
sampler_plms = None
sampler_ddim = None
has_valid_gpu = False
force_full_precision = False
try:
gpu = torch.cuda.current_device()
gpu_name = torch.cuda.get_device_name(gpu)
2022-09-12 07:42:41 +02:00
print('GPU detected: ', gpu_name)
force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
if force_full_precision:
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name)
mem_free, mem_total = torch.cuda.mem_get_info(gpu)
mem_total /= float(10**9)
if mem_total < 3.0:
print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion")
raise Exception()
has_valid_gpu = True
except:
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!')
pass
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast', half_model_fs=False):
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
ckpt_file = ckpt_to_use
device = device_to_use if has_valid_gpu else 'cpu'
precision = precision_to_use if not force_full_precision else 'full'
unet_bs = unet_bs_to_use
if device == 'cpu':
precision = 'full'
sd = load_model_from_config(f"{ckpt_file}.ckpt")
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config_yaml}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.cdevice = device
model.unet_bs = unet_bs
model.turbo = turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = device
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if device != "cpu" and precision == "autocast":
model.half()
modelCS.half()
model_is_half = True
else:
model_is_half = False
if half_model_fs:
modelFS.half()
model_fs_is_half = True
else:
model_fs_is_half = False
print('loaded ', ckpt_file, 'to', device, 'precision', precision)
def load_model_gfpgan(gfpgan_to_use):
global gfpgan_file, model_gfpgan
if gfpgan_to_use is None:
return
gfpgan_file = gfpgan_to_use
model_path = gfpgan_to_use + ".pth"
if device == 'cpu':
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
else:
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda'))
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision)
def load_model_real_esrgan(real_esrgan_to_use):
global real_esrgan_file, model_real_esrgan
if real_esrgan_to_use is None:
return
real_esrgan_file = real_esrgan_to_use
model_path = real_esrgan_to_use + ".pth"
RealESRGAN_models = {
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
}
model_to_use = RealESRGAN_models[real_esrgan_to_use]
if device == 'cpu':
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
model_real_esrgan.device = torch.device('cpu')
model_real_esrgan.model.to('cpu')
else:
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half)
model_real_esrgan.model.name = real_esrgan_to_use
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision)
def mk_img(req: Request):
global modelFS, device
global model_gfpgan, model_real_esrgan
global stop_processing
stop_processing = False
res = Response()
res.session_id = session_id
res.request = req
res.images = []
model.turbo = req.turbo
if req.use_cpu:
if device != 'cpu':
device = 'cpu'
if model_is_half:
load_model_ckpt(ckpt_file, device)
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
else:
if has_valid_gpu:
prev_device = device
device = 'cuda'
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
(precision == 'full' and not req.use_full_precision and not force_full_precision) or \
(req.init_image is None and model_fs_is_half) or \
(req.init_image is not None and not model_fs_is_half and not force_full_precision):
load_model_ckpt(ckpt_file, device, model.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'), half_model_fs=(req.init_image is not None and not req.use_full_precision))
if prev_device != device:
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
if req.use_face_correction != gfpgan_file:
load_model_gfpgan(req.use_face_correction)
if req.use_upscale != real_esrgan_file:
load_model_real_esrgan(req.use_upscale)
model.cdevice = device
modelCS.cond_stage_model.device = device
opt_prompt = req.prompt
opt_seed = req.seed
opt_n_samples = req.num_outputs
opt_n_iter = 1
opt_scale = req.guidance_scale
opt_C = 4
opt_H = req.height
opt_W = req.width
opt_f = 8
opt_ddim_steps = req.num_inference_steps
opt_ddim_eta = 0.0
opt_strength = req.prompt_strength
opt_save_to_disk_path = req.save_to_disk_path
opt_init_img = req.init_image
opt_use_face_correction = req.use_face_correction
opt_use_upscale = req.use_upscale
opt_show_only_filtered = req.show_only_filtered_image
opt_format = 'png'
print(req.to_string(), '\n device', device)
print('\n\n Using precision:', precision)
seed_everything(opt_seed)
batch_size = opt_n_samples
prompt = opt_prompt
assert prompt is not None
data = [batch_size * [prompt]]
if precision == "autocast" and device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
if req.init_image is None:
handler = _txt2img
init_latent = None
t_enc = None
else:
handler = _img2img
init_image = load_img(req.init_image, opt_W, opt_H)
init_image = init_image.to(device)
if device != "cpu" and precision == "autocast":
init_image = init_image.half()
modelFS.to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
assert 0. <= opt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(opt_strength * opt_ddim_steps)
print(f"target t_enc is {t_enc} steps")
if opt_save_to_disk_path is not None:
session_out_path = os.path.join(opt_save_to_disk_path, session_id)
os.makedirs(session_out_path, exist_ok=True)
else:
session_out_path = None
seeds = ""
with torch.no_grad():
for n in trange(opt_n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if opt_scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
partial_x_samples = None
def img_callback(x_samples, i):
nonlocal partial_x_samples
partial_x_samples = x_samples
if req.stream_progress_updates:
yield json.dumps({"step": i, "total_steps": opt_ddim_steps})
if stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
# run the handler
try:
if handler == _txt2img:
x_samples = _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, req.stream_progress_updates)
else:
x_samples = _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, req.stream_progress_updates)
if req.stream_progress_updates:
yield from x_samples
x_samples = partial_x_samples
except UserInitiatedStop:
if partial_x_samples is None:
continue
x_samples = partial_x_samples
modelFS.to(device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
if opt_save_to_disk_path is not None:
prompt_flattened = filename_regex.sub('_', prompts[0])
prompt_flattened = prompt_flattened[:50]
img_id = str(uuid.uuid4())[-8:]
file_path = f"{prompt_flattened}_{img_id}"
img_out_path = os.path.join(session_out_path, f"{file_path}.{opt_format}")
meta_out_path = os.path.join(session_out_path, f"{file_path}.txt")
if not opt_show_only_filtered:
save_image(img, img_out_path)
save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_strength, opt_use_face_correction, opt_use_upscale)
if not opt_show_only_filtered:
img_data = img_to_base64_str(img)
res_image_orig = ResponseImage(data=img_data, seed=opt_seed)
res.images.append(res_image_orig)
if opt_save_to_disk_path is not None:
res_image_orig.path_abs = img_out_path
if (opt_use_face_correction is not None and opt_use_face_correction.startswith('GFPGAN')) or \
(opt_use_upscale is not None and opt_use_upscale.startswith('RealESRGAN')):
gc()
filters_applied = []
if opt_use_face_correction:
_, _, output = model_gfpgan.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_face_correction)
if opt_use_upscale:
output, _ = model_real_esrgan.enhance(x_sample[:,:,::-1])
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_upscale)
filtered_image = Image.fromarray(x_sample)
filtered_img_data = img_to_base64_str(filtered_image)
res_image_filtered = ResponseImage(data=filtered_img_data, seed=opt_seed)
res.images.append(res_image_filtered)
filters_applied = "_".join(filters_applied)
if opt_save_to_disk_path is not None:
filtered_img_out_path = os.path.join(session_out_path, f"{file_path}_{filters_applied}.{opt_format}")
save_image(filtered_image, filtered_img_out_path)
res_image_filtered.path_abs = filtered_img_out_path
seeds += str(opt_seed) + ","
opt_seed += 1
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
del x_samples
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
if req.stream_progress_updates:
yield json.dumps(res.json())
else:
return res
def save_image(img, img_out_path):
try:
img.save(img_out_path)
except:
print('could not save the file', traceback.format_exc())
def save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_prompt_strength, opt_correct_face, opt_upscale):
metadata = f"{prompts[0]}\nWidth: {opt_W}\nHeight: {opt_H}\nSeed: {opt_seed}\nSteps: {opt_ddim_steps}\nGuidance Scale: {opt_scale}\nPrompt Strength: {opt_prompt_strength}\nUse Face Correction: {opt_correct_face}\nUse Upscaling: {opt_upscale}"
try:
with open(meta_out_path, 'w') as f:
f.write(metadata)
except:
print('could not save the file', traceback.format_exc())
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, streaming_callbacks):
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f]
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
samples_ddim = model.sample(
S=opt_ddim_steps,
conditioning=c,
seed=opt_seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
eta=opt_ddim_eta,
x_T=start_code,
img_callback=img_callback,
streaming_callbacks=streaming_callbacks,
sampler = 'plms',
)
if streaming_callbacks:
yield from samples_ddim
else:
return samples_ddim
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, streaming_callbacks):
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(device),
opt_seed,
opt_ddim_eta,
opt_ddim_steps,
)
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
img_callback=img_callback,
streaming_callbacks=streaming_callbacks,
sampler = 'ddim'
)
if streaming_callbacks:
yield from samples_ddim
else:
return samples_ddim
def gc():
if device == 'cpu':
return
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# internal
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
# utils
class UserInitiatedStop(Exception):
pass
def load_img(img_str, w0, h0):
image = base64_str_to_img(img_str).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from base64")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
image = image.resize((w, h), resample=Image.Resampling.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
# https://stackoverflow.com/a/61114178
def img_to_base64_str(img):
buffered = BytesIO()
img.save(buffered, format="PNG")
buffered.seek(0)
img_byte = buffered.getvalue()
img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode()
return img_str
def base64_str_to_img(img_str):
img_str = img_str[len("data:image/png;base64,"):]
data = base64.b64decode(img_str)
buffered = BytesIO(data)
img = Image.open(buffered)
return img