Merge pull request #483 from cmdr2/beta

v2.4.4
This commit is contained in:
cmdr2 2022-11-16 12:10:01 +05:30 committed by GitHub
commit 5e0f525932
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 2682 additions and 918 deletions

View File

@ -50,7 +50,7 @@ if "%update_branch%"=="" (
)
)
@xcopy sd-ui-files\ui ui /s /i /Y
@xcopy sd-ui-files\ui ui /s /i /Y /q
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y

View File

@ -199,7 +199,9 @@ call WHERE uvicorn > .tmp
if not exist "..\models\stable-diffusion" mkdir "..\models\stable-diffusion"
if not exist "..\models\vae" mkdir "..\models\vae"
echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
echo. > "..\models\vae\Put your VAE files here.txt"
@if exist "sd-v1-4.ckpt" (
for %%I in ("sd-v1-4.ckpt") do if "%%~zI" EQU "4265380512" (
@ -329,6 +331,36 @@ echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" EQU "334695179" (
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
) else (
echo. & echo "The default VAE (sd-vae-ft-mse-original) file present at models\vae\vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt"
)
)
@if not exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
@echo. & echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).." & echo.
@call curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" NEQ "334695179" (
echo. & echo "Error: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
@echo sd_weights_downloaded >> ..\scripts\install_status.txt

View File

@ -159,7 +159,9 @@ fi
mkdir -p "../models/stable-diffusion"
mkdir -p "../models/vae"
echo "" > "../models/stable-diffusion/Put your custom ckpt files here.txt"
echo "" > "../models/vae/Put your VAE files here.txt"
if [ -f "sd-v1-4.ckpt" ]; then
model_size=`find "sd-v1-4.ckpt" -printf "%s"`
@ -269,6 +271,38 @@ if [ ! -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
fi
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
if [ "$model_size" -eq "334695179" ]; then
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
else
printf "\n\nThe model file present at models/vae/vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
rm ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
fi
fi
if [ ! -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).."
curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
if [ ! "$model_size" -eq "334695179" ]; then
printf "\n\nError: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: $model_size\n\n"
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
read -p "Press any key to continue"
exit
fi
else
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
read -p "Press any key to continue"
exit
fi
fi
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
echo sd_weights_downloaded >> ../scripts/install_status.txt
echo sd_install_complete >> ../scripts/install_status.txt

View File

@ -1,14 +1,15 @@
<!DOCTYPE html>
<html>
<head>
<title>Stable Diffusion UI</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="icon" type="image/png" href="/media/images/favicon-16x16.png" sizes="16x16">
<link rel="icon" type="image/png" href="/media/images/favicon-32x32.png" sizes="32x32">
<link rel="stylesheet" href="/media/css/fonts.css?v=1">
<link rel="stylesheet" href="/media/css/themes.css?v=1">
<link rel="stylesheet" href="/media/css/main.css?v=3">
<link rel="stylesheet" href="/media/css/auto-save.css?v=2">
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css?v=2">
<link rel="stylesheet" href="/media/css/themes.css?v=3">
<link rel="stylesheet" href="/media/css/main.css?v=17">
<link rel="stylesheet" href="/media/css/auto-save.css?v=5">
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css?v=4">
<link rel="stylesheet" href="/media/css/fontawesome-all.min.css?v=1">
<link rel="stylesheet" href="/media/css/drawingboard.min.css">
<script src="/media/js/jquery-3.6.1.min.js"></script>
@ -18,59 +19,39 @@
<div id="container">
<div id="top-nav">
<div id="logo">
<h1>Stable Diffusion UI <small>v2.3.5 <span id="updateBranchLabel"></span></small></h1>
<h1>Stable Diffusion UI <small>v2.4.4 <span id="updateBranchLabel"></span></small></h1>
</div>
<ul id="top-nav-items">
<li class="dropdown">
<span><i class="fa fa-comments icon"></i> Help & Community</span>
<ul id="community-links" class="dropdown-content">
<li><a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/" target="_blank"><i class="fa-solid fa-book fa-fw"></i> User guide</a></li>
<li><a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Usual problems and solutions</a></li>
<li><a href="https://discord.com/invite/u9yhsFmEkB" target="_blank"><i class="fa-brands fa-discord fa-fw"></i> Discord user community</a></li>
<li><a href="https://www.reddit.com/r/StableDiffusionUI/" target="_blank"><i class="fa-brands fa-reddit fa-fw"></i> Reddit community</a></li>
<li><a href="https://github.com/cmdr2/stable-diffusion-ui" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
</ul>
</li>
<li class="dropdown">
<span><i class="fa fa-gear icon"></i> Settings</span>
<div id="system-settings" class="panel-box settings-box dropdown-content">
<ul id="system-settings-entries">
<li><b class="settings-subheader">System Settings</b></li>
<br/>
<li><label for="theme">Theme: </label><select id="theme" name="theme"><option value="theme-default">Default</option></select></li>
<li><input id="save_to_disk" name="save_to_disk" type="checkbox"> <label for="save_to_disk">Automatically save to <input id="diskPath" name="diskPath" size="40" disabled></label></li>
<li><input id="sound_toggle" name="sound_toggle" type="checkbox" checked> <label for="sound_toggle">Play sound on task completion</label></li>
<li><input id="turbo" name="turbo" type="checkbox" checked> <label for="turbo">Turbo mode <small>(generates images faster, but uses an additional 1 GB of GPU memory)</small></label></li>
<li><input id="use_cpu" name="use_cpu" type="checkbox"> <label for="use_cpu">Use CPU instead of GPU <small>(warning: this will be *very* slow)</small></label></li>
<li><input id="use_full_precision" name="use_full_precision" type="checkbox"> <label for="use_full_precision">Use full precision <small>(for GPU-only. warning: this will consume more VRAM)</small></label></li>
<li>
<input id="auto_save_settings" name="auto_save_settings" checked type="checkbox">
<label for="auto_save_settings">Automatically save settings <small>(settings restored on browser load)</small></label>
<br/>
<button id="configureSettingsSaveBtn">Configure</button>
</li>
<!-- <li><input id="allow_nsfw" name="allow_nsfw" type="checkbox"> <label for="allow_nsfw">Allow NSFW Content (You confirm you are above 18 years of age)</label></li> -->
<br/>
<li><input id="use_beta_channel" name="use_beta_channel" type="checkbox"> <label for="use_beta_channel">🔥Beta channel. Get the latest features immediately (but could be less stable). Please restart the program after changing this.</label></li>
</ul>
</div>
</li>
</ul>
</div>
<div class="flex-container">
<div id="editor" class="col-fixed-10">
<div id="server-status">
<div id="server-status-color"></div>
<span id="server-status-msg">Stable Diffusion is starting..</span>
</div>
<div id="tab-container">
<span id="tab-main" class="tab active">
<span><i class="fa fa-image icon"></i> Generate</span>
</span>
<span id="tab-settings" class="tab">
<span><i class="fa fa-gear icon"></i> Settings</span>
</span>
<span id="tab-about" class="tab">
<span><i class="fa fa-comments icon"></i> Help & Community</span>
</span>
</div>
</div>
<div id="tab-content-wrapper">
<div id="tab-content-main" class="tab-content active flex-container">
<div id="editor">
<div id="editor-inputs">
<div id="editor-inputs-prompt" class="row">
<label for="prompt"><b>Enter Prompt</b></label> <small>or</small> <button id="promptsFromFileBtn">Load from a file</button>
<textarea id="prompt" class="col-free">a photograph of an astronaut riding a horse</textarea>
<input id="prompt_from_file" name="prompt_from_file" type="file" /> <!-- hidden -->
<label for="negative_prompt" class="collapsible" id="negative_prompt_handle">Negative Prompt <small>(optional)</small></label>
<label for="negative_prompt" class="collapsible" id="negative_prompt_handle">
Negative Prompt
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about Negative Prompts</span></i></a>
<small>(optional)</small>
</label>
<div class="collapsible-content">
<input id="negative_prompt" name="negative_prompt" placeholder="list the things to remove from the image (e.g. fog, green)">
</div>
@ -87,7 +68,12 @@
</div>
<br/>
<input id="enable_mask" name="enable_mask" type="checkbox"> <label for="enable_mask">In-Painting (beta) <small>(select the area which the AI will paint into)</small></label>
<input id="enable_mask" name="enable_mask" type="checkbox">
<label for="enable_mask">
In-Painting (beta)
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Inpainting" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about InPainting</span></i></a>
<small>(select the area which the AI will paint into)</small>
</label>
<div id="inpaintingEditor"></div>
</div>
</div>
@ -101,19 +87,19 @@
<button id="stopImage" class="secondaryButton">Stop All</button>
</div>
<div class="line-separator">&nbsp;</div>
<span class="line-separator"></span>
<div id="editor-settings" class="panel-box settings-box">
<div id="editor-settings" class="settings-box panel-box">
<h4 class="collapsible">
Image Settings
<i id="reset-image-settings" class="fa-solid fa-arrow-rotate-left">
<span class="simple-tooltip right">
<i id="reset-image-settings" class="fa-solid fa-arrow-rotate-left section-button">
<span class="simple-tooltip left">
Reset Image Settings
</span>
</i>
</h4>
<ul id="editor-settings-entries" class="collapsible-content">
<li><table>
<div id="editor-settings-entries" class="collapsible-content">
<div><table>
<tr><b class="settings-subheader">Image Settings</b></tr>
<tr class="pl-5"><td><label for="seed">Seed:</label></td><td><input id="seed" name="seed" size="10" value="30000" onkeypress="preventNonNumericalInput(event)"> <input id="random_seed" name="random_seed" type="checkbox" checked><label for="random_seed">Random</label></td></tr>
<tr class="pl-5"><td><label for="num_outputs_total">Number of Images:</label></td><td><input id="num_outputs_total" name="num_outputs_total" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label><small>(total)</small></label> <input id="num_outputs_parallel" name="num_outputs_parallel" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label for="num_outputs_parallel"><small>(in parallel)</small></label></td></tr>
@ -121,6 +107,13 @@
<select id="stable_diffusion_model" name="stable_diffusion_model">
<!-- <option value="sd-v1-4" selected>sd-v1-4</option> -->
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about custom models</span></i></a>
</td></tr>
<tr class="pl-5"><td><label for="vae_model">Custom VAE:</i></label></td><td>
<select id="vae_model" name="vae_model">
<!-- <option value="" selected>None</option> -->
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about VAEs</span></i></a>
</td></tr>
<tr id="samplerSelection" class="pl-5"><td><label for="sampler">Sampler:</label></td><td>
<select id="sampler" name="sampler">
@ -133,6 +126,7 @@
<option value="dpm2_a">dpm2_a</option>
<option value="lms">lms</option>
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click to learn more about samplers</span></i></a>
</td></tr>
<tr class="pl-5"><td><label>Image Size: </label></td><td>
<select id="width" name="width" value="512">
@ -189,12 +183,11 @@
<option value="png">png</option>
</select>
</td></tr>
</li></table>
<br/>
</table></div>
<div><ul>
<li><b class="settings-subheader">Render Settings</b></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slightly slower image creation)</small></label></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, and slower image creation)</small></label></li>
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes <small>(uses GFPGAN)</small></label></li>
<li class="pl-5">
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Upscale image by 4x with </label>
@ -204,12 +197,19 @@
</select>
</li>
<li class="pl-5"><input id="show_only_filtered_image" name="show_only_filtered_image" type="checkbox" checked> <label for="show_only_filtered_image">Show only the corrected/upscaled image</label></li>
</ul>
</ul></div>
</div>
</div>
<div id="editor-modifiers" class="panel-box">
<button id="modifier-settings-btn" title="Add custom modifiers"><i class="fa fa-gear"></i></button>
<h4 class="collapsible">Image Modifiers (art styles, tags etc)</h4>
<h4 class="collapsible">
Image Modifiers (art styles, tags etc)
<i id="modifier-settings-btn" class="fa-solid fa-gear section-button">
<span class="simple-tooltip left">
Add Custom Modifiers
</span>
</i>
</h4>
<div id="editor-modifiers-entries" class="collapsible-content">
<div id="editor-modifiers-entries-toolbar">
<label for="preview-image">Image Style:</label>
@ -238,19 +238,74 @@
</div>
</div>
<div id="save-settings-config" style="display:none">
<div id="tab-content-settings" class="tab-content">
<div id="system-settings" class="tab-content-inner">
<h1>System Settings</h1>
<table class="form-table"></table>
<br/>
<button id="save-system-settings-btn" class="primaryButton">Save</button>
<br/><br/>
<div>
<span id="save-settings-config-close-btn">X</span>
<h3><i class="fa fa-microchip icon"></i> System Info</h3>
<div id="system-info"></div>
</div>
</div>
</div>
<div id="tab-content-about" class="tab-content">
<div class="tab-content-inner">
<div class="float-container">
<div class="float-child">
<h1>Help</h1>
<ul id="help-links">
<li><span class="help-section">Using the software</span>
<ul>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-To-Use" target="_blank"><i class="fa-solid fa-book fa-fw"></i> How to use</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Overview" target="_blank"><i class="fa-solid fa-list fa-fw"></i> UI Overview</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-Prompts" target="_blank"><i class="fa-solid fa-pen-to-square fa-fw"></i> Writing prompts</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Inpainting" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Inpainting</a>
</ul>
<li><span class="help-section">Installation</span>
<ul>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Troubleshooting</a>
</ul>
<li><span class="help-section">Downloadable Content</span>
<ul>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-images fa-fw"></i> Custom Models</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Plugins" target="_blank"><i class="fa-solid fa-puzzle-piece fa-fw"></i> UI Plugins</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-hand-sparkles fa-fw"></i> VAE Variational Auto Encoder</a>
</ul>
</ul>
</div>
<div class="float-child">
<h1>Community</h1>
<ul id="community-links">
<li><a href="https://discord.com/invite/u9yhsFmEkB" target="_blank"><i class="fa-brands fa-discord fa-fw"></i> Discord user community</a></li>
<li><a href="https://www.reddit.com/r/StableDiffusionUI/" target="_blank"><i class="fa-brands fa-reddit fa-fw"></i> Reddit community</a></li>
<li><a href="https://github.com/cmdr2/stable-diffusion-ui" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
<div id="save-settings-config" class="popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
<h1>Save Settings Configuration</h1>
<p>Select which settings should be remembered when restarting the browser</p>
<table id="save-settings-config-table">
<table id="save-settings-config-table" class="form-table">
</table>
</div>
</div>
<div id="modifier-settings-config" style="display:none">
<div id="modifier-settings-config" class="popup">
<div>
<span id="modifier-settings-config-close-btn">X</span>
<i class="close-button fa-solid fa-xmark"></i>
<h1>Modifier Settings</h1>
<p>Set your custom modifiers (one per line)</p>
<textarea id="custom-modifiers-input" placeholder="Enter your custom modifiers, one-per-line"></textarea>
@ -258,9 +313,9 @@
</div>
</div>
<div id="footer-spacer"></div>
<div id="footer">
<div class="line-separator">&nbsp;</div>
<div id="footer" class="panel-box">
<p>If you found this project useful and want to help keep it alive, please <a href="https://ko-fi.com/cmdr2_stablediffusion_ui" target="_blank"><img src="/media/images/kofi.png" id="coffeeButton"></a> to help cover the cost of development and maintenance! Thank you for your support!</p>
<p>Please feel free to join the <a href="https://discord.com/invite/u9yhsFmEkB" target="_blank">discord community</a> or <a href="https://github.com/cmdr2/stable-diffusion-ui/issues" target="_blank">file an issue</a> if you have any problems or suggestions in using this interface.</p>
<div id="footer-legal">
@ -272,13 +327,15 @@
</div>
</body>
<script src="media/js/parameters.js?v=8"></script>
<script src="media/js/plugins.js?v=1"></script>
<script src="media/js/utils.js?v=5"></script>
<script src="media/js/utils.js?v=6"></script>
<script src="media/js/inpainting-editor.js?v=1"></script>
<script src="media/js/image-modifiers.js?v=3"></script>
<script src="media/js/auto-save.js?v=2.3"></script>
<script src="media/js/main.js?v=5"></script>
<script src="media/js/themes.js?v=2"></script>
<script src="media/js/image-modifiers.js?v=6"></script>
<script src="media/js/auto-save.js?v=8"></script>
<script src="media/js/main.js?v=22.1"></script>
<script src="media/js/themes.js?v=4"></script>
<script src="media/js/dnd.js?v=9"></script>
<script>
async function init() {
await initSettings()
@ -287,6 +344,7 @@ async function init() {
await getAppConfig()
await loadModifiers()
await loadUIPlugins()
await getDevices()
setInterval(healthCheck, HEALTH_PING_INTERVAL * 1000)
healthCheck()

View File

@ -6,69 +6,43 @@
display: none;
}
#save-settings-config {
position: absolute;
background: rgba(32, 33, 36, 50%);
top: 0px;
left: 0px;
right: 0px;
bottom: 0px;
z-index: 1000;
}
#save-settings-config > div {
background: var(--background-color3);
max-width: 600px;
margin: auto;
margin-top: 50px;
border-radius: 6px;
padding: 30px;
text-align: center;
}
#save-settings-config-table {
.form-table {
margin: auto;
}
#save-settings-config-table th {
.form-table th {
padding-top: 15px;
padding-bottom: 5px;
}
#save-settings-config-table td:first-child,
#save-settings-config-table th:first-child {
.form-table td:first-child > *,
.form-table th:first-child > * {
float: right;
white-space: nowrap;
}
#save-settings-config-table td:last-child,
#save-settings-config-table th:last-child {
.form-table td:last-child > *,
.form-table th:last-child > * {
float: left;
}
#save-settings-config-table td small {
.form-table small {
color: rgb(153, 153, 153);
}
#save-settings-config-close-btn {
float: right;
cursor: pointer;
padding: 10px;
transform: translate(50%, -50%) scaleX(130%);
#system-settings .form-table td {
height: 24px;
}
#reset-image-settings {
cursor: pointer;
float: right;
padding: 8px;
opacity: 1;
transition: opacity 0.5;
#system-settings .form-table td:last-child div {
display: flex;
align-items: center;
}
#system-settings .form-table td:last-child div > :not([type="checkbox"]):first-child {
margin-left: 3px;
}
.collapsible:not(.active) #reset-image-settings {
display: none;
}
#reset-image-settings.hidden {
opacity: 0;
pointer-events: none;
#system-settings .form-table td:last-child div small {
padding-left: 5px;
text-align: left;
}

View File

@ -8,6 +8,7 @@ html {
}
body {
margin: 0;
font-size: 11pt;
background-color: var(--background-color1);
color: var(--text-color);
@ -26,9 +27,10 @@ label {
height: 65pt;
font-size: 13px;
margin-bottom: 6px;
margin-top: 5px;
display: block;
}
.image_preview_container {
/* display: none; */
margin-top: 10pt;
}
.image_clear_btn {
@ -64,17 +66,17 @@ label {
font-size: small;
padding-bottom: 3pt;
}
#progressBar {
font-size: small;
}
#footer {
font-size: small;
padding-left: 10pt;
padding: 10pt;
background: none;
}
#footer-legal {
font-size: 8pt;
}
#footer-spacer {
flex: 0.7
}
.imgSeedLabel {
font-size: 0.8em;
background-color: var(--background-color2);
@ -107,33 +109,42 @@ label {
margin-bottom: 7px;
}
#container {
width: 95%;
margin-left: auto;
margin-right: auto;
}
@media screen and (max-width: 1800px) {
#container {
min-height: 100vh;
width: 100%;
}
margin: 0px;
display: flex;
flex-direction: column;
}
#logo small {
font-size: 11pt;
}
#editor {
padding: 5px;
background: var(--background-color1);
padding: 16px;
display: flex;
flex-direction: column;
flex: 0 0 370pt;
}
#editor label {
font-weight: normal;
}
#editor h4 {
margin: 0px;
white-space: nowrap;
}
#editor .collapsible-content {
width: 100%;
}
.settings-box label small {
color: rgb(153, 153, 153);
margin-right: 10px;
}
#preview {
padding: 5px;
padding: 8px;
background: var(--background-color1);
}
#editor-inputs {
margin-bottom: 20px;
#preview .collapsible-content {
padding: 0px 15px;
}
#editor-inputs-prompt {
flex: 1;
@ -151,7 +162,7 @@ label {
#makeImage {
flex: 0 0 70px;
background: var(--accent-color);
border: var(--make-image-border);
border: var(--primary-button-border);
color: rgb(255, 221, 255);
width: 100%;
height: 30pt;
@ -168,6 +179,7 @@ label {
height: 30pt;
border-radius: 6px;
display: none;
margin-top: 2pt;
}
#stopImage:hover {
background: rgb(177, 27, 0);
@ -176,12 +188,6 @@ label {
display: flex;
width: 100%;
}
.col-50 {
flex: 50%;
}
.col-fixed-10 {
flex: 0 0 350pt;
}
.col-free {
flex: 1;
}
@ -189,7 +195,7 @@ label {
cursor: pointer;
}
.collapsible-content {
display: none;
display: block;
padding-left: 15px;
}
.collapsible-content h5 {
@ -201,50 +207,40 @@ label {
color: white;
padding-right: 5px;
}
.panel-box {
background: var(--background-color2);
border: 1px solid var(--background-color3);
border-radius: 7px;
padding: 5px;
margin-bottom: 15px;
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
.collapsible:not(.active) ~ .collapsible-content {
display: none !important;
}
.panel-box h4 {
margin: 0;
padding: 2px 0;
#editor-modifiers {
max-width: 600px;
overflow-y: auto;
overflow-x: hidden;
}
#editor-modifiers .editor-modifiers-leaf {
padding-top: 10pt;
padding-bottom: 10pt;
}
#preview {
margin-left: 10pt;
}
img {
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
}
.line-separator {
background: rgb(56, 56, 56);
background: var(--background-color3);
height: 1pt;
margin: 15pt 0;
margin: 16px 0px;
}
#editor-inputs-tags-container {
margin-top: 5pt;
display: none;
}
#server-status {
display: inline;
float: right;
transform: translateY(-5pt);
position: absolute;
right: 16px;
top: 50%;
transform: translateY(-50%);
text-align: right;
}
#server-status-color {
/* width: 8pt;
height: 8pt;
border-radius: 4pt; */
font-size: 14pt;
color: rgb(200, 139, 0);
/* background-color: rgb(197, 1, 1); */
/* transform: translateY(15%); */
display: inline;
}
#server-status-msg {
@ -288,16 +284,19 @@ img {
}
#top-nav {
padding-top: 3pt;
padding-bottom: 15pt;
position: relative;
background: var(--background-color4);
display: flex;
}
#top-nav .icon {
.tab .icon {
padding-right: 4pt;
font-size: 14pt;
transform: translateY(1pt);
}
#logo {
display: inline;
padding: 12px;
white-space: nowrap;
}
#logo h1 {
display: inline;
@ -311,6 +310,8 @@ img {
float: left;
display: inline;
padding-left: 20pt;
}
#top-nav-items > li:first-child {
cursor: default;
}
#initial-text {
@ -324,26 +325,12 @@ img {
.pl-5 {
padding-left: 5pt;
}
#system-settings {
width: 360pt;
transform: translateX(-100%) translateX(70pt);
padding-top: 10pt;
padding-bottom: 10pt;
}
#system-settings ul {
margin: 0;
padding: 0;
}
#system-settings li {
padding-left: 5pt;
}
#community-links {
display: inline-block;
list-style-type: none;
margin: 0;
padding: 12pt;
padding-bottom: 0pt;
transform: translateX(-15%);
text-align: left;
margin: auto;
padding: 0px;
}
#community-links li {
padding-bottom: 12pt;
@ -357,6 +344,35 @@ img {
color: var(--text-color);
text-decoration: none;
}
.float-child h1 {
border-bottom: var(--button-border);
}
#help-links {
display: inline-block;
list-style-type: none;
text-align: left;
margin: auto;
padding: 0px;
}
#help-links li {
padding-bottom: 12pt;
display: block;
font-size: 10pt;
}
#help-links li .fa-fw {
padding-right: 2pt;
}
#help-links li a {
color: var(--text-color);
text-decoration: none;
}
#help-links li ul {
padding-inline-start: 10px;
margin-top: 8px;
}
.help-section {
font-size: 130%;
}
.dropdown {
overflow: hidden;
}
@ -383,6 +399,9 @@ img {
border-radius: 5pt;
box-shadow: 0 20px 28px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
}
.imageTaskContainer > div > .collapsible-handle {
display: none;
}
.taskStatusLabel {
float: left;
font-size: 8pt;
@ -402,6 +421,12 @@ img {
border: 1px solid rgb(107, 75, 0);
color:rgb(255, 242, 211)
}
.primaryButton {
flex: 0 0 70px;
background: var(--accent-color);
border: var(--primary-button-border);
color: rgb(255, 221, 255);
}
.secondaryButton {
background: rgb(132, 8, 0);
border: 1px solid rgb(122, 29, 0);
@ -433,6 +458,8 @@ img {
#init_image_preview {
max-width: 150px;
max-height: 150px;
height: 100%;
width: 100%;
object-fit: contain;
border-radius: 6px;
transition: all 1s ease-in-out;
@ -441,6 +468,7 @@ img {
#init_image_preview:hover {
max-width: 500px;
max-height: 1000px;
transition: all 1s 0.5s ease-in-out;
}
@ -462,6 +490,20 @@ img {
border-radius: 6px 0px;
}
#editor-settings-entries {
display: flex;
flex-direction: column;
}
#editor-settings-entries > div {
margin-top: 15px;
}
#editor-settings-entries ul {
margin: 0px;
padding: 0px;
}
#editor-settings-entries table td {
padding: 0px;
line-height: 28px;
@ -477,6 +519,7 @@ img {
width: 100%;
}
/* INPUTS STYLING */
button,
input[type="file"],
input[type="checkbox"],
@ -536,13 +579,16 @@ input::file-selector-button {
height: 19px;
}
/* MOBILE SUPPORT */
@media screen and (max-width: 700px) {
#top-nav {
flex-direction: column;
}
body {
margin: 0px;
}
#container {
margin: 0px;
padding: 10px
}
.flex-container {
flex-direction: column;
@ -571,21 +617,98 @@ input::file-selector-button {
left: 0px;
right: 0px;
}
#editor {
padding: 16px 8px;
}
.tab-content-inner {
margin: 0px;
}
.tab {
font-size: 0;
}
.tab .icon {
padding-right: 0px;
}
#server-status {
display: none;
}
.popup > div {
padding-left: 5px !important;
padding-right: 5px !important;
}
.popup > div input, .popup > div select {
max-width: 40vw;
}
.popup .close-button {
padding: 0px !important;
margin: 24px !important;
}
.simple-tooltip.right {
right: initial;
left: 0px;
top: 50%;
transform: translate(calc(-100% + 15%), -50%);
}
:hover > .simple-tooltip.right {
transform: translate(100%, -50%);
}
}
@media (min-width: 700px) {
/* #editor {
max-width: 480px;
} */
.float-container {
padding: 20px;
}
.float-child {
width: 50%;
float: left;
padding: 20px;
}
}
.help-btn {
position: relative;
}
#promptsFromFileBtn {
font-size: 9pt;
}
#reset-image-settings {
.section-button {
position: relative;
transform: translateY(-13%);
}
.collapsible:not(.active) #copy-image-settings {
display: none;
}
.section-button {
cursor: pointer;
float: right;
padding: 8px;
opacity: 1;
transition: opacity 0.5;
}
.section-button {
cursor: pointer;
float: right;
padding: 8px;
opacity: 1;
transition: opacity 0.5;
}
.collapsible:not(.active) .section-button {
display: none;
}
/* SIMPLE TOOTIP */
.simple-tooltip {
border-radius: 3px;
font-weight: bold;
font-size: 16px;
font-size: 12px;
background-color: var(--background-color3);
visibility: hidden;
@ -604,8 +727,6 @@ input::file-selector-button {
visibility: visible;
}
}
/* position specific */
.simple-tooltip.right {
right: 0px;
top: 50%;
@ -641,3 +762,154 @@ input::file-selector-button {
:hover > .simple-tooltip.bottom {
transform: translate(-50%, 100%);
}
/* PROGRESS BAR */
.progress-bar {
background: var(--background-color3);
border-radius: 4px;
border: 2px solid var(--background-color3);
height: 16px;
position: relative;
transition: 0.25s 1s border, 0.25s 1s height;
}
.progress-bar > div {
background: var(--accent-color);
border-radius: 4px;
position: absolute;
left: 0;
top: 0;
bottom: 0;
width: 0%;
transition: width 1s ease-in-out;
}
.progress-bar.active {
background: repeating-linear-gradient(-65deg,
var(--background-color2),
var(--background-color2) 4px,
var(--background-color3) 5px,
var(--background-color3) 9px,
var(--background-color2) 10px);
background-size: 200% auto;
background-position: 0 100%;
animation: progress-anim 2s infinite;
animation-fill-mode: forwards;
animation-timing-function: linear;
}
@keyframes progress-anim {
0% { background-position: -55px 0; }
100% { background-position: 0 0; }
}
/* POPUPS */
.popup:not(.active) {
visibility: hidden;
opacity: 0;
}
.popup {
position: absolute;
background: rgba(32, 33, 36, 50%);
top: 0px;
left: 0px;
right: 0px;
bottom: 0px;
z-index: 1000;
opacity: 1;
transition: 0s visibility, 0.3s opacity;
}
@media only screen and (min-height: 1050px) {
.popup {
position: fixed;
}
}
.popup > div {
position: relative;
background: var(--background-color2);
border: solid 1px var(--background-color3);
max-width: 700px;
margin: auto;
margin-top: 50px;
border-radius: 6px;
padding: 30px;
text-align: center;
box-shadow: 0px 0px 30px black;
}
.popup .close-button {
position: absolute;
right: 0px;
top: 0px;
transform: scale(150%);
cursor: pointer;
padding: 24px;
}
/* TABS */
#tab-container {
display: flex;
align-items: flex-end;
}
.tab {
padding: 8px 16px;
border-radius: 4px 4px 0px 0px;
margin-left: 8px;
cursor: pointer;
background: var(--background-color1);
opacity: 50%;
transition: opacity 0.25s;
}
.tab:hover {
opacity: 75%;
}
.tab.active {
opacity: 100%;
}
.tab-content:not(.active) {
display: none;
}
#tab-content-wrapper {
border-top: 8px solid var(--background-color1);
}
.tab-content-inner {
margin: auto;
max-width: 600px;
text-align: center;
padding: 20px 10px;
}
.panel-box {
background: var(--background-color2);
border: 1px solid var(--background-color3);
border-radius: 7px;
padding: 7px;
margin-bottom: 15px;
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
}
i.active {
background: var(--accent-color);
}
#system-info {
max-width: 800px;
font-size: 10pt;
}
#system-info .value {
text-align: left;
padding-left: 10pt;
}
#system-info label {
float: right;
font-weight: bold;
}
#save-system-settings-btn {
padding: 4pt 8pt;
}

View File

@ -217,32 +217,6 @@
#modifier-settings-btn {
float: right;
}
#modifier-settings-config {
position: fixed;
background: rgba(32, 33, 36, 50%);
top: 0px;
left: 0px;
width: 100vw;
height: 100vh;
z-index: 1000;
}
#modifier-settings-config > div {
background: var(--background-color2);
max-width: 600px;
margin: auto;
margin-top: 100px;
border-radius: 6px;
padding: 30px;
text-align: center;
}
#modifier-settings-config-close-btn {
float: right;
cursor: pointer;
padding: 10px;
transform: translate(50%, -50%) scaleX(130%);
}
#modifier-settings-config textarea {
width: 90%;
height: 150px;

View File

@ -23,12 +23,12 @@
--input-border-size: 1px;
--accent-color: hsl(var(--accent-hue), 100%, var(--accent-lightness));
--accent-color-hover: hsl(var(--accent-hue), 100%, var(--accent-lightness-hover));
--make-image-border: 2px solid hsl(var(--accent-hue), 100%, calc(var(--accent-lightness) - 21%));
--primary-button-border: none;
}
.theme-light {
--background-color1: white;
--background-color2: #dddddd;
--background-color2: #ececec;
--background-color3: #e7e9eb;
--background-color4: #cccccc;
@ -47,7 +47,7 @@
--accent-hue: 235;
--accent-lightness: 65%;
--make-image-border: none;
--primary-button-border: none;
--button-color: var(--accent-color);
--button-border: none;
@ -61,7 +61,7 @@
.theme-cool-blue {
--main-hue: 222;
--main-saturation: 18%;
--value-base: 19%;
--value-base: 18%;
--value-step: 3%;
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (1 * var(--value-step))));
@ -69,7 +69,7 @@
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--accent-hue: 212;
--make-image-border: none;
--primary-button-border: none;
--button-color: var(--accent-color);
--button-border: none;
@ -91,7 +91,7 @@
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--make-image-border: none;
--primary-button-border: none;
--button-color: var(--accent-color);
--button-border: none;
@ -110,9 +110,9 @@
--background-color1: hsl(var(--main-hue), var(--main-saturation), var(--value-base));
--background-color2: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (1 * var(--value-step))));
--background-color3: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (2 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (3 * var(--value-step))));
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (1.4 * var(--value-step))));
--make-image-border: none;
--primary-button-border: none;
--button-color: var(--accent-color);
--button-border: none;
@ -134,7 +134,7 @@
--background-color4: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (3 * var(--value-step))));
--accent-hue: 212;
--make-image-border: none;
--primary-button-border: none;
--button-color: var(--accent-color);
--button-border: none;

View File

@ -13,6 +13,7 @@ const SETTINGS_IDS_LIST = [
"num_outputs_total",
"num_outputs_parallel",
"stable_diffusion_model",
"vae_model",
"sampler",
"width",
"height",
@ -33,7 +34,6 @@ const SETTINGS_IDS_LIST = [
"diskPath",
"sound_toggle",
"turbo",
"use_cpu",
"use_full_precision",
"auto_save_settings"
]
@ -52,7 +52,9 @@ const SETTINGS_SECTIONS = [ // gets the "keys" property filled in with an ordere
async function initSettings() {
SETTINGS_IDS_LIST.forEach(id => {
var element = document.getElementById(id)
var label = document.querySelector(`label[for='${element.id}']`)
if (!element) {
console.error(`Missing settings element ${id}`)
}
SETTINGS[id] = {
key: id,
element: element,
@ -68,7 +70,8 @@ async function initSettings() {
SETTINGS_SECTIONS.forEach(section => {
var name = section.name
var element = document.getElementById(section.id)
var children = Array.from(element.querySelectorAll(unsorted_settings_ids.map(id => `#${id}`).join(",")))
var unsorted_ids = unsorted_settings_ids.map(id => `#${id}`).join(",")
var children = unsorted_ids == "" ? [] : Array.from(element.querySelectorAll(unsorted_ids));
section.keys = []
children.forEach(e => {
section.keys.push(e.id)
@ -126,10 +129,11 @@ function loadSettings() {
return
}
CURRENTLY_LOADING_SETTINGS = true
saved_settings.map(saved_setting => {
saved_settings.forEach(saved_setting => {
var setting = SETTINGS[saved_setting.key]
if (setting === undefined) {
return
if (!setting) {
console.warn(`Attempted to load setting ${saved_setting.key}, but no setting found`);
return null;
}
setting.ignore = saved_setting.ignore
if (!setting.ignore) {
@ -211,20 +215,22 @@ function fillSaveSettingsConfigTable() {
})
}
document.getElementById("save-settings-config-close-btn").addEventListener('click', () => {
saveSettingsConfigOverlay.style.display = 'none'
// configureSettingsSaveBtn
var autoSaveSettings = document.getElementById("auto_save_settings")
var configSettingsButton = document.createElement("button")
configSettingsButton.textContent = "Configure"
configSettingsButton.style.margin = "0px 5px"
autoSaveSettings.insertAdjacentElement("afterend", configSettingsButton)
autoSaveSettings.addEventListener("change", () => {
configSettingsButton.style.display = autoSaveSettings.checked ? "block" : "none"
})
document.getElementById("configureSettingsSaveBtn").addEventListener('click', () => {
configSettingsButton.addEventListener('click', () => {
fillSaveSettingsConfigTable()
saveSettingsConfigOverlay.style.display = 'block'
})
saveSettingsConfigOverlay.addEventListener('click', (event) => {
if (event.target.id == saveSettingsConfigOverlay.id) {
saveSettingsConfigOverlay.style.display = 'none'
}
})
document.getElementById("save-settings-config-close-btn").addEventListener('click', () => {
saveSettingsConfigOverlay.style.display = 'none'
saveSettingsConfigOverlay.classList.add("active")
})
resetImageSettingsButton.addEventListener('click', event => {
loadDefaultSettingsSection("editor-settings");
@ -276,9 +282,11 @@ function tryLoadOldSettings() {
Object.keys(individual_settings_map).forEach(localStorageKey => {
var localStorageValue = localStorage.getItem(localStorageKey);
if (localStorageValue !== null) {
var setting = SETTINGS[individual_settings_map[localStorageKey]]
if (setting == null || setting == undefined) {
return
let key = individual_settings_map[localStorageKey]
var setting = SETTINGS[key]
if (!setting) {
console.warn(`Attempted to map old setting ${key}, but no setting found`);
return null;
}
if (setting.element.type == "checkbox" && (typeof localStorageValue === "string" || localStorageValue instanceof String)) {
localStorageValue = localStorageValue == "true"

469
ui/media/js/dnd.js Normal file
View File

@ -0,0 +1,469 @@
"use strict" // Opt in to a restricted variant of JavaScript
const EXT_REGEX = /(?:\.([^.]+))?$/
const TEXT_EXTENSIONS = ['txt', 'json']
const IMAGE_EXTENSIONS = ['jpg', 'jpeg', 'png', 'bmp', 'tiff', 'tif', 'tga']
function parseBoolean(stringValue) {
if (typeof stringValue === 'boolean') {
return stringValue
}
if (typeof stringValue === 'number') {
return stringValue !== 0
}
if (typeof stringValue !== 'string') {
return false
}
switch(stringValue?.toLowerCase()?.trim()) {
case "true":
case "yes":
case "on":
case "1":
return true;
case "false":
case "no":
case "off":
case "0":
case null:
case undefined:
return false;
}
try {
return Boolean(JSON.parse(stringValue));
} catch {
return Boolean(stringValue)
}
}
const TASK_MAPPING = {
prompt: { name: 'Prompt',
setUI: (prompt) => {
promptField.value = prompt
},
readUI: () => promptField.value,
parse: (val) => val
},
negative_prompt: { name: 'Negative Prompt',
setUI: (negative_prompt) => {
negativePromptField.value = negative_prompt
},
readUI: () => negativePromptField.value,
parse: (val) => val
},
width: { name: 'Width',
setUI: (width) => {
const oldVal = widthField.value
widthField.value = width
if (!widthField.value) {
widthField.value = oldVal
}
},
readUI: () => parseInt(widthField.value),
parse: (val) => parseInt(val)
},
height: { name: 'Height',
setUI: (height) => {
const oldVal = heightField.value
heightField.value = height
if (!heightField.value) {
heightField.value = oldVal
}
},
readUI: () => parseInt(heightField.value),
parse: (val) => parseInt(val)
},
seed: { name: 'Seed',
setUI: (seed) => {
if (!seed) {
randomSeedField.checked = true
seedField.disabled = true
return
}
randomSeedField.checked = false
seedField.disabled = false
seedField.value = seed
},
readUI: () => (randomSeedField.checked ? Math.floor(Math.random() * 10000000) : parseInt(seedField.value)),
parse: (val) => parseInt(val)
},
num_inference_steps: { name: 'Steps',
setUI: (num_inference_steps) => {
numInferenceStepsField.value = num_inference_steps
},
readUI: () => parseInt(numInferenceStepsField.value),
parse: (val) => parseInt(val)
},
guidance_scale: { name: 'Guidance Scale',
setUI: (guidance_scale) => {
guidanceScaleField.value = guidance_scale
updateGuidanceScaleSlider()
},
readUI: () => parseFloat(guidanceScaleField.value),
parse: (val) => parseFloat(val)
},
prompt_strength: { name: 'Prompt Strength',
setUI: (prompt_strength) => {
promptStrengthField.value = prompt_strength
updatePromptStrengthSlider()
},
readUI: () => parseFloat(promptStrengthField.value),
parse: (val) => parseFloat(val)
},
init_image: { name: 'Initial Image',
setUI: (init_image) => {
initImagePreview.src = init_image
},
readUI: () => initImagePreview.src,
parse: (val) => val
},
mask: { name: 'Mask',
setUI: (mask) => {
inpaintingEditor.setImg(mask)
maskSetting.checked = Boolean(mask)
},
readUI: () => (maskSetting.checked ? inpaintingEditor.getImg() : undefined),
parse: (val) => val
},
use_face_correction: { name: 'Use Face Correction',
setUI: (use_face_correction) => {
useFaceCorrectionField.checked = parseBoolean(use_face_correction)
},
readUI: () => useFaceCorrectionField.checked,
parse: (val) => parseBoolean(val)
},
use_upscale: { name: 'Use Upscaling',
setUI: (use_upscale) => {
const oldVal = upscaleModelField.value
upscaleModelField.value = use_upscale
if (upscaleModelField.value) { // Is a valid value for the field.
useUpscalingField.checked = true
upscaleModelField.disabled = false
} else { // Not a valid value, restore the old value and disable the filter.
upscaleModelField.disabled = true
upscaleModelField.value = oldVal
useUpscalingField.checked = false
}
},
readUI: () => (useUpscalingField.checked ? upscaleModelField.value : undefined),
parse: (val) => val
},
sampler: { name: 'Sampler',
setUI: (sampler) => {
samplerField.value = sampler
},
readUI: () => samplerField.value,
parse: (val) => val
},
use_stable_diffusion_model: { name: 'Stable Diffusion model',
setUI: (use_stable_diffusion_model) => {
const oldVal = stableDiffusionModelField.value
let pathIdx = use_stable_diffusion_model.lastIndexOf('/') // Linux, Mac paths
if (pathIdx < 0) {
pathIdx = use_stable_diffusion_model.lastIndexOf('\\') // Windows paths.
}
if (pathIdx >= 0) {
use_stable_diffusion_model = use_stable_diffusion_model.slice(pathIdx + 1)
}
const modelExt = '.ckpt'
if (use_stable_diffusion_model.endsWith(modelExt)) {
use_stable_diffusion_model = use_stable_diffusion_model.slice(0, use_stable_diffusion_model.length - modelExt.length)
}
stableDiffusionModelField.value = use_stable_diffusion_model
if (!stableDiffusionModelField.value) {
stableDiffusionModelField.value = oldVal
}
},
readUI: () => stableDiffusionModelField.value,
parse: (val) => val
},
numOutputsParallel: { name: 'Parallel Images',
setUI: (numOutputsParallel) => {
numOutputsParallelField.value = numOutputsParallel
},
readUI: () => parseInt(numOutputsParallelField.value),
parse: (val) => val
},
use_cpu: { name: 'Use CPU',
setUI: (use_cpu) => {
useCPUField.checked = use_cpu
},
readUI: () => useCPUField.checked,
parse: (val) => val
},
turbo: { name: 'Turbo',
setUI: (turbo) => {
turboField.checked = turbo
},
readUI: () => turboField.checked,
parse: (val) => Boolean(val)
},
use_full_precision: { name: 'Use Full Precision',
setUI: (use_full_precision) => {
useFullPrecisionField.checked = use_full_precision
},
readUI: () => useFullPrecisionField.checked,
parse: (val) => Boolean(val)
},
stream_image_progress: { name: 'Stream Image Progress',
setUI: (stream_image_progress) => {
streamImageProgressField.checked = (parseInt(numOutputsTotalField.value) > 50 ? false : stream_image_progress)
},
readUI: () => streamImageProgressField.checked,
parse: (val) => Boolean(val)
},
show_only_filtered_image: { name: 'Show only the corrected/upscaled image',
setUI: (show_only_filtered_image) => {
showOnlyFilteredImageField.checked = show_only_filtered_image
},
readUI: () => showOnlyFilteredImageField.checked,
parse: (val) => Boolean(val)
},
output_format: { name: 'Output Format',
setUI: (output_format) => {
outputFormatField.value = output_format
},
readUI: () => outputFormatField.value,
parse: (val) => val
},
save_to_disk_path: { name: 'Save to disk path',
setUI: (save_to_disk_path) => {
saveToDiskField.checked = Boolean(save_to_disk_path)
diskPathField.value = save_to_disk_path
},
readUI: () => diskPathField.value,
parse: (val) => val
}
}
function restoreTaskToUI(task) {
if ('numOutputsTotal' in task) {
numOutputsTotalField.value = task.numOutputsTotal
}
if ('seed' in task) {
randomSeedField.checked = false
seedField.value = task.seed
}
if (!('reqBody' in task)) {
return
}
for (const key in TASK_MAPPING) {
if (key in task.reqBody) {
TASK_MAPPING[key].setUI(task.reqBody[key])
}
}
}
function readUI() {
const reqBody = {}
for (const key in TASK_MAPPING) {
reqBody[key] = TASK_MAPPING[key].readUI()
}
return {
'numOutputsTotal': parseInt(numOutputsTotalField.value),
'seed': TASK_MAPPING['seed'].readUI(),
'reqBody': reqBody
}
}
const TASK_TEXT_MAPPING = {
width: 'Width',
height: 'Height',
seed: 'Seed',
num_inference_steps: 'Steps',
guidance_scale: 'Guidance Scale',
prompt_strength: 'Prompt Strength',
use_face_correction: 'Use Face Correction',
use_upscale: 'Use Upscaling',
sampler: 'Sampler',
negative_prompt: 'Negative Prompt',
use_stable_diffusion_model: 'Stable Diffusion model'
}
const afterPromptRe = /^\s*Width\s*:\s*\d+\s*(?:\r\n|\r|\n)+\s*Height\s*:\s*\d+\s*(\r\n|\r|\n)+Seed\s*:\s*\d+\s*$/igm
function parseTaskFromText(str) {
const taskReqBody = {}
// Prompt
afterPromptRe.lastIndex = 0
const match = afterPromptRe.exec(str)
if (match) {
let prompt = str.slice(0, match.index)
str = str.slice(prompt.length)
taskReqBody.prompt = prompt.trim()
console.log('Prompt:', taskReqBody.prompt)
}
for (const key in TASK_TEXT_MAPPING) {
const name = TASK_TEXT_MAPPING[key];
let val = undefined
const reName = new RegExp(`${name}\\ *:\\ *(.*)(?:\\r\\n|\\r|\\n)*`, 'igm')
const match = reName.exec(str);
if (match) {
str = str.slice(0, match.index) + str.slice(match.index + match[0].length)
val = match[1]
}
if (val !== undefined) {
taskReqBody[key] = TASK_MAPPING[key].parse(val.trim())
console.log(TASK_MAPPING[key].name + ':', taskReqBody[key])
if (!str) {
break
}
}
}
if (Object.keys(taskReqBody).length <= 0) {
return undefined
}
const task = { reqBody: taskReqBody }
if ('seed' in taskReqBody) {
task.seed = taskReqBody.seed
}
return task
}
async function readFile(file, i) {
const fileContent = (await file.text()).trim()
// JSON File.
if (fileContent.startsWith('{') && fileContent.endsWith('}')) {
try {
const task = JSON.parse(fileContent)
restoreTaskToUI(task)
} catch (e) {
console.warn(`file[${i}]:${file.name} - File couldn't be parsed.`, e)
}
return
}
// Normal txt file.
const task = parseTaskFromText(fileContent)
if (task) {
restoreTaskToUI(task)
} else {
console.warn(`file[${i}]:${file.name} - File couldn't be parsed.`)
}
}
function dropHandler(ev) {
console.log('Content dropped...')
let items = []
if (ev?.dataTransfer?.items) { // Use DataTransferItemList interface
items = Array.from(ev.dataTransfer.items)
items = items.filter(item => item.kind === 'file')
items = items.map(item => item.getAsFile())
} else if (ev?.dataTransfer?.files) { // Use DataTransfer interface
items = Array.from(ev.dataTransfer.files)
}
items.forEach(item => {item.file_ext = EXT_REGEX.exec(item.name.toLowerCase())[1]})
let text_items = items.filter(item => TEXT_EXTENSIONS.includes(item.file_ext))
let image_items = items.filter(item => IMAGE_EXTENSIONS.includes(item.file_ext))
if (image_items.length > 0 && ev.target == initImageSelector) {
return // let the event bubble up, so that the Init Image filepicker can receive this
}
ev.preventDefault() // Prevent default behavior (Prevent file/content from being opened)
text_items.forEach(readFile)
}
function dragOverHandler(ev) {
console.log('Content in drop zone')
// Prevent default behavior (Prevent file/content from being opened)
ev.preventDefault()
ev.dataTransfer.dropEffect = "copy"
let img = new Image()
img.src = location.host + '/media/images/favicon-32x32.png'
ev.dataTransfer.setDragImage(img, 16, 16)
}
document.addEventListener("drop", dropHandler)
document.addEventListener("dragover", dragOverHandler)
const TASK_REQ_NO_EXPORT = [
"use_cpu",
"turbo",
"use_full_precision",
"save_to_disk_path"
]
// Retrieve clipboard content and try to parse it
async function pasteFromClipboard() {
//const text = await navigator.clipboard.readText()
let text = await navigator.clipboard.readText();
text=text.trim();
if (text.startsWith('{') && text.endsWith('}')) {
try {
const task = JSON.parse(text)
restoreTaskToUI(task)
} catch (e) {
console.warn(`Clipboard JSON couldn't be parsed.`, e)
}
return
}
// Normal txt file.
const task = parseTaskFromText(text)
if (task) {
restoreTaskToUI(task)
} else {
console.warn(`Clipboard content - File couldn't be parsed.`)
}
}
// Adds a copy and a paste icon if the browser grants permission to write to clipboard.
function checkWriteToClipboardPermission (result) {
if (result.state == "granted" || result.state == "prompt") {
const resetSettings = document.getElementById('reset-image-settings')
// COPY ICON
const copyIcon = document.createElement('i')
copyIcon.className = 'fa-solid fa-clipboard section-button'
copyIcon.innerHTML = `<span class="simple-tooltip right">Copy Image Settings</span>`
copyIcon.addEventListener('click', (event) => {
event.stopPropagation()
// Add css class 'active'
copyIcon.classList.add('active')
// In 1000 ms remove the 'active' class
asyncDelay(1000).then(() => copyIcon.classList.remove('active'))
const uiState = readUI()
TASK_REQ_NO_EXPORT.forEach((key) => delete uiState.reqBody[key])
if (uiState.reqBody.init_image && !IMAGE_REGEX.test(uiState.reqBody.init_image)) {
delete uiState.reqBody.init_image
delete uiState.reqBody.prompt_strength
}
navigator.clipboard.writeText(JSON.stringify(uiState, undefined, 4))
})
resetSettings.parentNode.insertBefore(copyIcon, resetSettings)
// PASTE ICON
const pasteIcon = document.createElement('i')
pasteIcon.className = 'fa-solid fa-paste section-button'
pasteIcon.innerHTML = `<span class="simple-tooltip right">Paste Image Settings</span>`
pasteIcon.addEventListener('click', (event) => {
event.stopPropagation()
// Add css class 'active'
pasteIcon.classList.add('active')
// In 1000 ms remove the 'active' class
asyncDelay(1000).then(() => pasteIcon.classList.remove('active'))
pasteFromClipboard()
})
resetSettings.parentNode.insertBefore(pasteIcon, resetSettings)
}
}
// Determine which access we have to the clipboard. Clipboard access is only available on localhost or via TLS.
navigator.permissions.query({ name: "clipboard-write" }).then(checkWriteToClipboardPermission, (e) => {
if (e instanceof TypeError && typeof navigator?.clipboard?.writeText === 'function') {
// Fix for firefox https://bugzilla.mozilla.org/show_bug.cgi?id=1560373
checkWriteToClipboardPermission({state:"granted"})
}
})

View File

@ -75,7 +75,6 @@ function createModifierGroup(modifierGroup, initiallyExpanded) {
if (initiallyExpanded === true) {
titleEl.className += ' active'
modifiersEl.style.display = 'block'
}
modifiers.forEach(modObj => {
@ -245,16 +244,9 @@ function resizeModifierCards(val) {
modifierCardSizeSlider.onchange = () => resizeModifierCards(modifierCardSizeSlider.value)
previewImageField.onchange = () => changePreviewImages(previewImageField.value)
modifierSettingsBtn.addEventListener('click', function() {
modifierSettingsOverlay.style.display = 'block'
})
document.getElementById("modifier-settings-config-close-btn").addEventListener('click', () => {
modifierSettingsOverlay.style.display = 'none'
})
modifierSettingsOverlay.addEventListener('click', (event) => {
if (event.target.id == modifierSettingsOverlay.id) {
modifierSettingsOverlay.style.display = 'none'
}
modifierSettingsBtn.addEventListener('click', function(e) {
modifierSettingsOverlay.classList.add("active")
e.stopPropagation()
})
function saveCustomModifiers() {

View File

@ -1,6 +1,7 @@
"use strict" // Opt in to a restricted variant of JavaScript
const HEALTH_PING_INTERVAL = 5 // seconds
const MAX_INIT_IMAGE_DIMENSION = 768
const MIN_GPUS_TO_SHOW_SELECTION = 2
const IMAGE_REGEX = new RegExp('data:image/[A-Za-z]+;base64')
@ -24,13 +25,6 @@ let initImagePreview = document.querySelector("#init_image_preview")
let initImageSizeBox = document.querySelector("#init_image_size_box")
let maskImageSelector = document.querySelector("#mask")
let maskImagePreview = document.querySelector("#mask_preview")
let turboField = document.querySelector('#turbo')
let useCPUField = document.querySelector('#use_cpu')
let useFullPrecisionField = document.querySelector('#use_full_precision')
let saveToDiskField = document.querySelector('#save_to_disk')
let diskPathField = document.querySelector('#diskPath')
// let allowNSFWField = document.querySelector("#allow_nsfw")
let useBetaChannelField = document.querySelector("#use_beta_channel")
let promptStrengthSlider = document.querySelector('#prompt_strength_slider')
let promptStrengthField = document.querySelector('#prompt_strength')
let samplerField = document.querySelector('#sampler')
@ -39,6 +33,7 @@ let useFaceCorrectionField = document.querySelector("#use_face_correction")
let useUpscalingField = document.querySelector("#use_upscale")
let upscaleModelField = document.querySelector("#upscale_model")
let stableDiffusionModelField = document.querySelector('#stable_diffusion_model')
let vaeModelField = document.querySelector('#vae_model')
let outputFormatField = document.querySelector('#output_format')
let showOnlyFilteredImageField = document.querySelector("#show_only_filtered_image")
let updateBranchLabel = document.querySelector("#updateBranchLabel")
@ -56,22 +51,10 @@ let initialText = document.querySelector("#initial-text")
let previewTools = document.querySelector("#preview-tools")
let clearAllPreviewsBtn = document.querySelector("#clear-all-previews")
// let maskSetting = document.querySelector('#editor-inputs-mask_setting')
// let maskImagePreviewContainer = document.querySelector('#mask_preview_container')
// let maskImageClearBtn = document.querySelector('#mask_clear')
let maskSetting = document.querySelector('#enable_mask')
let imagePreview = document.querySelector("#preview")
// let previewPrompt = document.querySelector('#preview-prompt')
let showConfigToggle = document.querySelector('#configToggleBtn')
// let configBox = document.querySelector('#config')
// let outputMsg = document.querySelector('#outputMsg')
// let progressBar = document.querySelector("#progressBar")
let soundToggle = document.querySelector('#sound_toggle')
let serverStatusColor = document.querySelector('#server-status-color')
let serverStatusMsg = document.querySelector('#server-status-msg')
@ -85,7 +68,6 @@ maskResetButton.style.fontWeight = 'normal'
maskResetButton.style.fontSize = '10pt'
let serverState = {'status': 'Offline', 'time': Date.now()}
let lastPromptUsed = ''
let bellPending = false
let taskQueue = []
@ -187,6 +169,34 @@ function playSound() {
})
}
}
function setSystemInfo(devices) {
let cpu = devices.all.cpu.name
let allGPUs = Object.keys(devices.all).filter(d => d != 'cpu')
let activeGPUs = Object.keys(devices.active)
function ID_TO_TEXT(d) {
let info = devices.all[d]
if ("mem_free" in info && "mem_total" in info) {
return `${info.name} <small>(${d}) (${info.mem_free.toFixed(1)}Gb free / ${info.mem_total.toFixed(1)} Gb total)</small>`
} else {
return `${info.name} <small>(${d}) (no memory info)</small>`
}
}
allGPUs = allGPUs.map(ID_TO_TEXT)
activeGPUs = activeGPUs.map(ID_TO_TEXT)
let systemInfo = `
<table>
<tr><td><label>Processor:</label></td><td class="value">${cpu}</td></tr>
<tr><td><label>Compatible Graphics Cards (all):</label></td><td class="value">${allGPUs.join('</br>')}</td></tr>
<tr><td></td><td>&nbsp;</td></tr>
<tr><td><label>Used for rendering 🔥:</label></td><td class="value">${activeGPUs.join('</br>')}</td></tr>
</table>`
let systemInfoEl = document.querySelector('#system-info')
systemInfoEl.innerHTML = systemInfo
}
async function healthCheck() {
try {
@ -220,8 +230,12 @@ async function healthCheck() {
setServerStatus('error', serverState.status.toLowerCase())
break
}
if (serverState.devices) {
setSystemInfo(serverState.devices)
}
serverState.time = Date.now()
} catch (e) {
console.log(e)
serverState = {'status': 'Offline', 'time': Date.now()}
setServerStatus('error', 'offline')
}
@ -340,10 +354,10 @@ function onDownloadImageClick(req, img) {
imgDownload.click()
}
function modifyCurrentRequest(req, ...reqDiff) {
function modifyCurrentRequest(...reqDiff) {
const newTaskRequest = getCurrentUserRequest()
newTaskRequest.reqBody = Object.assign({}, req, ...reqDiff, {
newTaskRequest.reqBody = Object.assign(newTaskRequest.reqBody, ...reqDiff, {
use_cpu: useCPUField.checked
})
newTaskRequest.seed = newTaskRequest.reqBody.seed
@ -410,7 +424,7 @@ async function doMakeImage(task) {
const RETRY_DELAY_IF_BUFFER_IS_EMPTY = 1000 // ms
const RETRY_DELAY_IF_SERVER_IS_BUSY = 30 * 1000 // ms, status_code 503, already a task running
const TASK_START_DELAY_ON_SERVER = 1500 // ms
const SERVER_STATE_VALIDITY_DURATION = 10 * 1000 // ms
const SERVER_STATE_VALIDITY_DURATION = 90 * 1000 // ms
const reqBody = task.reqBody
const batchCount = task.batchCount
@ -422,10 +436,10 @@ async function doMakeImage(task) {
const outputMsg = task['outputMsg']
const previewPrompt = task['previewPrompt']
const progressBar = task['progressBar']
const progressBarInner = progressBar.querySelector("div")
let res = undefined
try {
const lastTask = serverState.task
let renderRequest = undefined
do {
res = await fetch('/render', {
@ -561,6 +575,13 @@ async function doMakeImage(task) {
outputMsg.innerHTML += `. Time remaining (approx): ${timeRemaining}`
outputMsg.style.display = 'block'
progressBarInner.style.width = `${percent}%`
if (percent == 100) {
task.progressBar.style.height = "0px"
task.progressBar.style.border = "0px solid var(--background-color3)"
task.progressBar.classList.remove("active")
}
if (stepUpdate.output !== undefined) {
showImages(reqBody, stepUpdate, outputContainer, true)
}
@ -620,17 +641,14 @@ async function doMakeImage(task) {
let msg = `Unexpected Read Error:<br/><pre>Response: ${res}<br/>StepUpdate: ${typeof stepUpdate === 'object' ? JSON.stringify(stepUpdate, undefined, 4) : stepUpdate}</pre>`
logError(msg, res, outputMsg)
}
progressBar.style.display = 'none'
return false
}
lastPromptUsed = reqBody['prompt']
showImages(reqBody, stepUpdate, outputContainer, false)
} catch (e) {
console.log('request error', e)
logError('Stable Diffusion had an error. Please check the logs in the command-line window. <br/><br/>' + e + '<br/><pre>' + e.stack + '</pre>', res, outputMsg)
setStatus('request', 'error', 'error')
progressBar.style.display = 'none'
return false
}
return true
@ -713,6 +731,9 @@ async function checkTasks() {
if (successCount === task.batchCount) {
task.outputMsg.innerText = 'Processed ' + task.numOutputsTotal + ' images in ' + time + ' seconds'
task.progressBar.style.height = "0px"
task.progressBar.style.border = "0px solid var(--background-color3)"
task.progressBar.classList.remove("active")
// setStatus('request', 'done', 'success')
} else {
if (task.outputMsg.innerText.toLowerCase().indexOf('error') === -1) {
@ -762,9 +783,9 @@ function getCurrentUserRequest() {
height: heightField.value,
// allow_nsfw: allowNSFWField.checked,
turbo: turboField.checked,
use_cpu: useCPUField.checked,
use_full_precision: useFullPrecisionField.checked,
use_stable_diffusion_model: stableDiffusionModelField.value,
use_vae_model: vaeModelField.value,
stream_progress_updates: true,
stream_image_progress: (numOutputsTotal > 50 ? false : streamImageProgressField.checked),
show_only_filtered_image: showOnlyFilteredImageField.checked,
@ -813,29 +834,34 @@ function makeImage() {
}
function createTask(task) {
let taskConfig = `Seed: ${task.seed}, Sampler: ${task.reqBody.sampler}, Inference Steps: ${task.reqBody.num_inference_steps}, Guidance Scale: ${task.reqBody.guidance_scale}, Model: ${task.reqBody.use_stable_diffusion_model}`
if (negativePromptField.value.trim() !== '') {
taskConfig += `, Negative Prompt: ${task.reqBody.negative_prompt}`
let taskConfig = `<b>Seed:</b> ${task.seed}, <b>Sampler:</b> ${task.reqBody.sampler}, <b>Inference Steps:</b> ${task.reqBody.num_inference_steps}, <b>Guidance Scale:</b> ${task.reqBody.guidance_scale}, <b>Model:</b> ${task.reqBody.use_stable_diffusion_model}`
if (task.reqBody.use_vae_model.trim() !== '') {
taskConfig += `, <b>VAE:</b> ${task.reqBody.use_vae_model}`
}
if (task.reqBody.negative_prompt.trim() !== '') {
taskConfig += `, <b>Negative Prompt:</b> ${task.reqBody.negative_prompt}`
}
if (task.reqBody.init_image !== undefined) {
taskConfig += `, Prompt Strength: ${task.reqBody.prompt_strength}`
taskConfig += `, <b>Prompt Strength:</b> ${task.reqBody.prompt_strength}`
}
if (task.reqBody.use_face_correction) {
taskConfig += `, Fix Faces: ${task.reqBody.use_face_correction}`
taskConfig += `, <b>Fix Faces:</b> ${task.reqBody.use_face_correction}`
}
if (task.reqBody.use_upscale) {
taskConfig += `, Upscale: ${task.reqBody.use_upscale}`
taskConfig += `, <b>Upscale:</b> ${task.reqBody.use_upscale}`
}
let taskEntry = document.createElement('div')
taskEntry.className = 'imageTaskContainer'
taskEntry.innerHTML = ` <div class="taskStatusLabel">Enqueued</div>
taskEntry.innerHTML = ` <div class="header-content panel collapsible active">
<div class="taskStatusLabel">Enqueued</div>
<button class="secondaryButton stopTask"><i class="fa-solid fa-trash-can"></i> Remove</button>
<div class="preview-prompt collapsible active"></div>
<div class="taskConfig">${taskConfig}</div>
<div class="collapsible-content" style="display: block">
<div class="outputMsg"></div>
<div class="progressBar"></div>
<div class="progress-bar active"><div></div></div>
</div>
<div class="collapsible-content">
<div class="img-preview">
</div>`
@ -845,12 +871,14 @@ function createTask(task) {
task['outputContainer'] = taskEntry.querySelector('.img-preview')
task['outputMsg'] = taskEntry.querySelector('.outputMsg')
task['previewPrompt'] = taskEntry.querySelector('.preview-prompt')
task['progressBar'] = taskEntry.querySelector('.progressBar')
task['progressBar'] = taskEntry.querySelector('.progress-bar')
task['stopTask'] = taskEntry.querySelector('.stopTask')
task['stopTask'].addEventListener('click', async function() {
task['stopTask'].addEventListener('click', async function(e) {
e.stopPropagation()
if (task['isProcessing']) {
task.isProcessing = false
task.progressBar.classList.remove("active")
try {
let res = await fetch('/image/stop?session_id=' + sessionId)
} catch (e) {
@ -1044,16 +1072,25 @@ function onDimensionChange() {
resizeInpaintingEditor(widthValue, heightValue)
}
saveToDiskField.addEventListener('click', function(e) {
diskPathField.disabled = !this.checked
})
diskPathField.disabled = !saveToDiskField.checked
useUpscalingField.addEventListener('click', function(e) {
upscaleModelField.disabled = !useUpscalingField.checked
useUpscalingField.addEventListener('change', function(e) {
upscaleModelField.disabled = !this.checked
})
if (useBetaChannelField.checked) {
updateBranchLabel.innerText = "(beta)"
}
makeImageBtn.addEventListener('click', makeImage)
document.onkeydown = function(e) {
if (e.ctrlKey && e.code === 'Enter') {
makeImage()
e.preventDefault()
}
}
function updateGuidanceScale() {
guidanceScaleField.value = guidanceScaleSlider.value / 10
@ -1095,80 +1132,44 @@ promptStrengthSlider.addEventListener('input', updatePromptStrength)
promptStrengthField.addEventListener('input', updatePromptStrengthSlider)
updatePromptStrength()
useBetaChannelField.addEventListener('click', async function(e) {
if (!isServerAvailable()) {
// logError('The server is still starting up..')
alert('The server is still starting up..')
e.preventDefault()
return false
}
let updateBranch = (this.checked ? 'beta' : 'main')
try {
let res = await fetch('/app_config', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
'update_branch': updateBranch
})
})
res = await res.json()
console.log('set config status response', res)
} catch (e) {
console.log('set config status error', e)
}
})
async function getAppConfig() {
try {
let res = await fetch('/get/app_config')
const config = await res.json()
if (config.update_branch === 'beta') {
useBetaChannelField.checked = true
updateBranchLabel.innerText = "(beta)"
}
console.log('get config status response', config)
} catch (e) {
console.log('get config status error', e)
}
}
async function getModels() {
try {
var model_setting_key = "stable_diffusion_model"
var selectedModel = SETTINGS[model_setting_key].value
var sd_model_setting_key = "stable_diffusion_model"
var vae_model_setting_key = "vae_model"
var selectedSDModel = SETTINGS[sd_model_setting_key].value
var selectedVaeModel = SETTINGS[vae_model_setting_key].value
let res = await fetch('/get/models')
const models = await res.json()
// let activeModel = models['active']
console.log('get models response', models)
let modelOptions = models['options']
let stableDiffusionOptions = modelOptions['stable-diffusion']
let vaeOptions = modelOptions['vae']
vaeOptions.unshift('') // add a None option
stableDiffusionOptions.forEach(modelName => {
function createModelOptions(modelField, selectedModel) {
return function(modelName) {
let modelOption = document.createElement('option')
modelOption.value = modelName
modelOption.innerText = modelName
modelOption.innerText = modelName !== '' ? modelName : 'None'
if (modelName === selectedModel) {
modelOption.selected = true
}
stableDiffusionModelField.appendChild(modelOption)
})
// TODO: set default for model here too
SETTINGS[model_setting_key].default = stableDiffusionOptions[0]
if (getSetting(model_setting_key) == '' || SETTINGS[model_setting_key].value == '') {
setSetting(model_setting_key, stableDiffusionOptions[0])
modelField.appendChild(modelOption)
}
}
console.log('get models response', models)
stableDiffusionOptions.forEach(createModelOptions(stableDiffusionModelField, selectedSDModel))
vaeOptions.forEach(createModelOptions(vaeModelField, selectedVaeModel))
// TODO: set default for model here too
SETTINGS[sd_model_setting_key].default = stableDiffusionOptions[0]
if (getSetting(sd_model_setting_key) == '' || SETTINGS[sd_model_setting_key].value == '') {
setSetting(sd_model_setting_key, stableDiffusionOptions[0])
}
} catch (e) {
console.log('get models error', e)
}
@ -1267,21 +1268,56 @@ promptsFromFileSelector.addEventListener('change', function() {
}
})
async function getDiskPath() {
try {
var diskPath = getSetting("diskPath")
if (diskPath == '' || diskPath == undefined || diskPath == "undefined") {
let res = await fetch('/get/output_dir')
if (res.status === 200) {
res = await res.json()
res = res.output_dir
/* setup popup handlers */
document.querySelectorAll('.popup').forEach(popup => {
popup.addEventListener('click', event => {
if (event.target == popup) {
popup.classList.remove("active")
}
})
var closeButton = popup.querySelector(".close-button")
if (closeButton) {
closeButton.addEventListener('click', () => {
popup.classList.remove("active")
})
}
})
setSetting("diskPath", res)
var tabElements = [];
document.querySelectorAll(".tab").forEach(tab => {
var name = tab.id.replace("tab-", "");
var content = document.getElementById(`tab-content-${name}`)
tabElements.push({
name: name,
tab: tab,
content: content
})
tab.addEventListener("click", event => {
if (!tab.classList.contains("active")) {
tabElements.forEach(tabInfo => {
if (tabInfo.tab.classList.contains("active")) {
tabInfo.tab.classList.toggle("active")
tabInfo.content.classList.toggle("active")
}
})
tab.classList.toggle("active")
content.classList.toggle("active")
}
} catch (e) {
console.log('error fetching output dir path', e)
}
})
})
window.addEventListener("beforeunload", function(e) {
const msg = "Unsaved pictures will be lost!";
let elementList = document.getElementsByClassName("imageTaskContainer");
if (elementList.length != 0) {
e.preventDefault();
(e || window.event).returnValue = msg;
return msg;
} else {
return true;
}
});
createCollapsibles()

318
ui/media/js/parameters.js Normal file
View File

@ -0,0 +1,318 @@
/**
* Enum of parameter types
* @readonly
* @enum {string}
*/
var ParameterType = {
checkbox: "checkbox",
select: "select",
select_multiple: "select_multiple",
custom: "custom",
};
/**
* JSDoc style
* @typedef {object} Parameter
* @property {string} id
* @property {ParameterType} type
* @property {string} label
* @property {?string} note
* @property {number|boolean|string} default
*/
/** @type {Array.<Parameter>} */
var PARAMETERS = [
{
id: "theme",
type: ParameterType.select,
label: "Theme",
default: "theme-default",
options: [ // Note: options expanded dynamically
{
value: "theme-default",
label: "Default"
}
]
},
{
id: "save_to_disk",
type: ParameterType.checkbox,
label: "Auto-Save Images",
note: "automatically saves images to the specified location",
default: false,
},
{
id: "diskPath",
type: ParameterType.custom,
label: "Save Location",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="30" disabled>`
}
},
{
id: "sound_toggle",
type: ParameterType.checkbox,
label: "Enable Sound",
note: "plays a sound on task completion",
default: true,
},
{
id: "turbo",
type: ParameterType.checkbox,
label: "Turbo Mode",
default: true,
note: "generates images faster, but uses an additional 1 GB of GPU memory",
},
{
id: "use_cpu",
type: ParameterType.checkbox,
label: "Use CPU (not GPU)",
note: "warning: this will be *very* slow",
default: false,
},
{
id: "auto_pick_gpus",
type: ParameterType.checkbox,
label: "Automatically pick the GPUs (experimental)",
default: false,
},
{
id: "use_gpus",
type: ParameterType.select_multiple,
label: "GPUs to use (experimental)",
note: "to process in parallel",
default: false,
},
{
id: "use_full_precision",
type: ParameterType.checkbox,
label: "Use Full Precision",
note: "for GPU-only. warning: this will consume more VRAM",
default: false,
},
{
id: "auto_save_settings",
type: ParameterType.checkbox,
label: "Auto-Save Settings",
note: "restores settings on browser load",
default: true,
},
{
id: "use_beta_channel",
type: ParameterType.checkbox,
label: "🔥Beta channel",
note: "Get the latest features immediately (but could be less stable). Please restart the program after changing this.",
default: false,
},
];
function getParameterSettingsEntry(id) {
let parameter = PARAMETERS.filter(p => p.id === id)
if (parameter.length === 0) {
return
}
return parameter[0].settingsEntry
}
function getParameterElement(parameter) {
switch (parameter.type) {
case ParameterType.checkbox:
var is_checked = parameter.default ? " checked" : "";
return `<input id="${parameter.id}" name="${parameter.id}"${is_checked} type="checkbox">`
case ParameterType.select:
case ParameterType.select_multiple:
var options = (parameter.options || []).map(option => `<option value="${option.value}">${option.label}</option>`).join("")
var multiple = (parameter.type == ParameterType.select_multiple ? 'multiple' : '')
return `<select id="${parameter.id}" name="${parameter.id}" ${multiple}>${options}</select>`
case ParameterType.custom:
return parameter.render(parameter)
default:
console.error(`Invalid type for parameter ${parameter.id}`);
return "ERROR: Invalid Type"
}
}
let parametersTable = document.querySelector("#system-settings table")
/* fill in the system settings popup table */
function initParameters() {
PARAMETERS.forEach(parameter => {
var element = getParameterElement(parameter)
var note = parameter.note ? `<small>${parameter.note}</small>` : "";
var newrow = document.createElement('tr')
newrow.innerHTML = `
<td><label for="${parameter.id}">${parameter.label}</label></td>
<td><div>${element}${note}<div></td>`
parametersTable.appendChild(newrow)
parameter.settingsEntry = newrow
})
}
initParameters()
let turboField = document.querySelector('#turbo')
let useCPUField = document.querySelector('#use_cpu')
let autoPickGPUsField = document.querySelector('#auto_pick_gpus')
let useGPUsField = document.querySelector('#use_gpus')
let useFullPrecisionField = document.querySelector('#use_full_precision')
let saveToDiskField = document.querySelector('#save_to_disk')
let diskPathField = document.querySelector('#diskPath')
let useBetaChannelField = document.querySelector("#use_beta_channel")
let saveSettingsBtn = document.querySelector('#save-system-settings-btn')
async function changeAppConfig(configDelta) {
try {
let res = await fetch('/app_config', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(configDelta)
})
res = await res.json()
console.log('set config status response', res)
} catch (e) {
console.log('set config status error', e)
}
}
async function getAppConfig() {
try {
let res = await fetch('/get/app_config')
const config = await res.json()
if (config.update_branch === 'beta') {
useBetaChannelField.checked = true
}
console.log('get config status response', config)
} catch (e) {
console.log('get config status error', e)
}
}
saveToDiskField.addEventListener('change', function(e) {
diskPathField.disabled = !this.checked
})
function getCurrentRenderDeviceSelection() {
let selectedGPUs = $('#use_gpus').val()
if (useCPUField.checked && !autoPickGPUsField.checked) {
return 'cpu'
}
if (autoPickGPUsField.checked || selectedGPUs.length == 0) {
return 'auto'
}
return selectedGPUs.join(',')
}
useCPUField.addEventListener('click', function() {
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
let autoPickGPUSettingEntry = getParameterSettingsEntry('auto_pick_gpus')
if (this.checked) {
gpuSettingEntry.style.display = 'none'
autoPickGPUSettingEntry.style.display = 'none'
autoPickGPUsField.setAttribute('data-old-value', autoPickGPUsField.checked)
autoPickGPUsField.checked = false
} else if (useGPUsField.options.length >= MIN_GPUS_TO_SHOW_SELECTION) {
gpuSettingEntry.style.display = ''
autoPickGPUSettingEntry.style.display = ''
let oldVal = autoPickGPUsField.getAttribute('data-old-value')
if (oldVal === null || oldVal === undefined) { // the UI started with CPU selected by default
autoPickGPUsField.checked = true
} else {
autoPickGPUsField.checked = (oldVal === 'true')
}
gpuSettingEntry.style.display = (autoPickGPUsField.checked ? 'none' : '')
}
})
useGPUsField.addEventListener('click', function() {
let selectedGPUs = $('#use_gpus').val()
autoPickGPUsField.checked = (selectedGPUs.length === 0)
})
autoPickGPUsField.addEventListener('click', function() {
if (this.checked) {
$('#use_gpus').val([])
}
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
gpuSettingEntry.style.display = (this.checked ? 'none' : '')
})
async function getDiskPath() {
try {
var diskPath = getSetting("diskPath")
if (diskPath == '' || diskPath == undefined || diskPath == "undefined") {
let res = await fetch('/get/output_dir')
if (res.status === 200) {
res = await res.json()
res = res.output_dir
setSetting("diskPath", res)
}
}
} catch (e) {
console.log('error fetching output dir path', e)
}
}
async function getDevices() {
try {
let res = await fetch('/get/devices')
if (res.status === 200) {
res = await res.json()
let allDeviceIds = Object.keys(res['all']).filter(d => d !== 'cpu')
let activeDeviceIds = Object.keys(res['active']).filter(d => d !== 'cpu')
if (activeDeviceIds.length === 0) {
useCPUField.checked = true
}
if (allDeviceIds.length < MIN_GPUS_TO_SHOW_SELECTION || useCPUField.checked) {
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
gpuSettingEntry.style.display = 'none'
let autoPickGPUSettingEntry = getParameterSettingsEntry('auto_pick_gpus')
autoPickGPUSettingEntry.style.display = 'none'
}
if (allDeviceIds.length === 0) {
useCPUField.checked = true
useCPUField.disabled = true // no compatible GPUs, so make the CPU mandatory
}
autoPickGPUsField.checked = (res['config'] === 'auto')
useGPUsField.innerHTML = ''
allDeviceIds.forEach(device => {
let deviceName = res['all'][device]['name']
let deviceOption = `<option value="${device}">${deviceName} (${device})</option>`
useGPUsField.insertAdjacentHTML('beforeend', deviceOption)
})
if (autoPickGPUsField.checked) {
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
gpuSettingEntry.style.display = 'none'
} else {
$('#use_gpus').val(activeDeviceIds)
}
}
} catch (e) {
console.log('error fetching devices', e)
}
}
saveSettingsBtn.addEventListener('click', function() {
let updateBranch = (useBetaChannelField.checked ? 'beta' : 'main')
changeAppConfig({
'render_devices': getCurrentRenderDeviceSelection(),
'update_branch': updateBranch
})
})

View File

@ -29,13 +29,17 @@ function toggleCollapsible(element) {
var handle = element.querySelector(".collapsible-handle");
collapsibleHeader.classList.toggle("active")
let content = getNextSibling(collapsibleHeader, '.collapsible-content')
if (content.style.display === "block") {
if (!collapsibleHeader.classList.contains("active")) {
content.style.display = "none"
if (handle != null) { // render results don't have a handle
handle.innerHTML = '&#x2795;' // plus
}
} else {
content.style.display = "block"
if (handle != null) { // render results don't have a handle
handle.innerHTML = '&#x2796;' // minus
}
}
if (COLLAPSIBLES_INITIALIZED && COLLAPSIBLE_PANELS.includes(element)) {
saveCollapsibles()
@ -65,7 +69,7 @@ function createCollapsibles(node) {
let handle = document.createElement('span')
handle.className = 'collapsible-handle'
if (c.className.indexOf('active') !== -1) {
if (c.classList.contains("active")) {
handle.innerHTML = '&#x2796;' // minus
} else {
handle.innerHTML = '&#x2795;' // plus

View File

@ -18,11 +18,11 @@ class Request:
precision: str = "autocast" # or "full"
save_to_disk_path: str = None
turbo: bool = True
use_cpu: bool = False
use_full_precision: bool = False
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
use_stable_diffusion_model: str = "sd-v1-4"
use_vae_model: str = None
show_only_filtered_image: bool = False
output_format: str = "jpeg" # or "png"
@ -45,10 +45,11 @@ class Request:
"use_face_correction": self.use_face_correction,
"use_upscale": self.use_upscale,
"use_stable_diffusion_model": self.use_stable_diffusion_model,
"use_vae_model": self.use_vae_model,
"output_format": self.output_format,
}
def to_string(self):
def __str__(self):
return f'''
session_id: {self.session_id}
prompt: {self.prompt}
@ -62,11 +63,11 @@ class Request:
precision: {self.precision}
save_to_disk_path: {self.save_to_disk_path}
turbo: {self.turbo}
use_cpu: {self.use_cpu}
use_full_precision: {self.use_full_precision}
use_face_correction: {self.use_face_correction}
use_upscale: {self.use_upscale}
use_stable_diffusion_model: {self.use_stable_diffusion_model}
use_vae_model: {self.use_vae_model}
show_only_filtered_image: {self.show_only_filtered_image}
output_format: {self.output_format}

View File

@ -0,0 +1,168 @@
import os
import torch
import traceback
import re
COMPARABLE_GPU_PERCENTILE = 0.65 # if a GPU's free_mem is within this % of the GPU with the most free_mem, it will be picked
mem_free_threshold = 0
def get_device_delta(render_devices, active_devices):
'''
render_devices: 'cpu', or 'auto' or ['cuda:N'...]
active_devices: ['cpu', 'cuda:N'...]
'''
if render_devices in ('cpu', 'auto'):
render_devices = [render_devices]
elif render_devices is not None:
if isinstance(render_devices, str):
render_devices = [render_devices]
if isinstance(render_devices, list) and len(render_devices) > 0:
render_devices = list(filter(lambda x: x.startswith('cuda:'), render_devices))
if len(render_devices) == 0:
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
render_devices = list(filter(lambda x: is_device_compatible(x), render_devices))
if len(render_devices) == 0:
raise Exception('Sorry, none of the render_devices configured in config.json are compatible with Stable Diffusion')
else:
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
else:
render_devices = ['auto']
if 'auto' in render_devices:
render_devices = auto_pick_devices(active_devices)
if 'cpu' in render_devices:
print('WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!')
active_devices = set(active_devices)
render_devices = set(render_devices)
devices_to_start = render_devices - active_devices
devices_to_stop = active_devices - render_devices
return devices_to_start, devices_to_stop
def auto_pick_devices(currently_active_devices):
global mem_free_threshold
if not torch.cuda.is_available(): return ['cpu']
device_count = torch.cuda.device_count()
if device_count == 1:
return ['cuda:0'] if is_device_compatible('cuda:0') else ['cpu']
print('Autoselecting GPU. Using most free memory.')
devices = []
for device in range(device_count):
device = f'cuda:{device}'
if not is_device_compatible(device):
continue
mem_free, mem_total = torch.cuda.mem_get_info(device)
mem_free /= float(10**9)
mem_total /= float(10**9)
device_name = torch.cuda.get_device_name(device)
print(f'{device} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb')
devices.append({'device': device, 'device_name': device_name, 'mem_free': mem_free})
devices.sort(key=lambda x:x['mem_free'], reverse=True)
max_mem_free = devices[0]['mem_free']
curr_mem_free_threshold = COMPARABLE_GPU_PERCENTILE * max_mem_free
mem_free_threshold = max(curr_mem_free_threshold, mem_free_threshold)
# Auto-pick algorithm:
# 1. Pick the top 75 percentile of the GPUs, sorted by free_mem.
# 2. Also include already-running devices (GPU-only), otherwise their free_mem will
# always be very low (since their VRAM contains the model).
# These already-running devices probably aren't terrible, since they were picked in the past.
# Worst case, the user can restart the program and that'll get rid of them.
devices = list(filter((lambda x: x['mem_free'] > mem_free_threshold or x['device'] in currently_active_devices), devices))
devices = list(map(lambda x: x['device'], devices))
return devices
def device_init(thread_data, device):
'''
This function assumes the 'device' has already been verified to be compatible.
`get_device_delta()` has already filtered out incompatible devices.
'''
validate_device_id(device, log_prefix='device_init')
if device == 'cpu':
thread_data.device = 'cpu'
thread_data.device_name = get_processor_name()
print('Render device CPU available as', thread_data.device_name)
return
thread_data.device_name = torch.cuda.get_device_name(device)
thread_data.device = device
# Force full precision on 1660 and 1650 NVIDIA cards to avoid creating green images
device_name = thread_data.device_name.lower()
thread_data.force_full_precision = ('nvidia' in device_name or 'geforce' in device_name) and (' 1660' in device_name or ' 1650' in device_name)
if thread_data.force_full_precision:
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', thread_data.device_name)
# Apply force_full_precision now before models are loaded.
thread_data.precision = 'full'
print(f'Setting {device} as active')
torch.cuda.device(device)
return
def validate_device_id(device, log_prefix=''):
def is_valid():
if not isinstance(device, str):
return False
if device == 'cpu':
return True
if not device.startswith('cuda:') or not device[5:].isnumeric():
return False
return True
if not is_valid():
raise EnvironmentError(f"{log_prefix}: device id should be 'cpu', or 'cuda:N' (where N is an integer index for the GPU). Got: {device}")
def is_device_compatible(device):
'''
Returns True/False, and prints any compatibility errors
'''
try:
validate_device_id(device, log_prefix='is_device_compatible')
except:
print(str(e))
return False
if device == 'cpu': return True
# Memory check
try:
_, mem_total = torch.cuda.mem_get_info(device)
mem_total /= float(10**9)
if mem_total < 3.0:
print(f'GPU {device} with less than 3 GB of VRAM is not compatible with Stable Diffusion')
return False
except RuntimeError as e:
print(str(e))
return False
return True
def get_processor_name():
try:
import platform, subprocess
if platform.system() == "Windows":
return platform.processor()
elif platform.system() == "Darwin":
os.environ['PATH'] = os.environ['PATH'] + os.pathsep + '/usr/sbin'
command = "sysctl -n machdep.cpu.brand_string"
return subprocess.check_output(command).strip()
elif platform.system() == "Linux":
command = "cat /proc/cpuinfo"
all_info = subprocess.check_output(command, shell=True).decode().strip()
for line in all_info.split("\n"):
if "model name" in line:
return re.sub(".*model name.*:", "", line, 1).strip()
except:
print(traceback.format_exc())
return "cpu"

View File

@ -1,8 +1,15 @@
"""runtime.py: torch device owned by a thread.
Notes:
Avoid device switching, transfering all models will get too complex.
To use a diffrent device signal the current render device to exit
And then start a new clean thread for the new device.
"""
import json
import os, re
import traceback
import torch
import numpy as np
from gc import collect as gc_collect
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from tqdm import tqdm, trange
@ -28,70 +35,64 @@ logging.set_verbosity_error()
# consts
config_yaml = "optimizedSD/v1-inference.yaml"
filename_regex = re.compile('[^a-zA-Z0-9]')
force_gfpgan_to_cuda0 = True # workaround: gfpgan currently works only on cuda:0
# api stuff
from sd_internal import device_manager
from . import Request, Response, Image as ResponseImage
import base64
from io import BytesIO
#from colorama import Fore
# local
stop_processing = False
temp_images = {}
from threading import local as LocalThreadVars
thread_data = LocalThreadVars()
ckpt_file = None
gfpgan_file = None
real_esrgan_file = None
def thread_init(device):
# Thread bound properties
thread_data.stop_processing = False
thread_data.temp_images = {}
model = None
modelCS = None
modelFS = None
model_gfpgan = None
model_real_esrgan = None
thread_data.ckpt_file = None
thread_data.vae_file = None
thread_data.gfpgan_file = None
thread_data.real_esrgan_file = None
model_is_half = False
model_fs_is_half = False
device = None
unet_bs = 1
precision = 'autocast'
sampler_plms = None
sampler_ddim = None
thread_data.model = None
thread_data.modelCS = None
thread_data.modelFS = None
thread_data.model_gfpgan = None
thread_data.model_real_esrgan = None
has_valid_gpu = False
force_full_precision = False
try:
gpu = torch.cuda.current_device()
gpu_name = torch.cuda.get_device_name(gpu)
print('GPU detected: ', gpu_name)
thread_data.model_is_half = False
thread_data.model_fs_is_half = False
thread_data.device = None
thread_data.device_name = None
thread_data.unet_bs = 1
thread_data.precision = 'autocast'
thread_data.sampler_plms = None
thread_data.sampler_ddim = None
force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
if force_full_precision:
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name)
thread_data.turbo = False
thread_data.force_full_precision = False
thread_data.reduced_memory = True
mem_free, mem_total = torch.cuda.mem_get_info(gpu)
mem_total /= float(10**9)
if mem_total < 3.0:
print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion")
raise Exception()
device_manager.device_init(thread_data, device)
has_valid_gpu = True
except:
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!')
pass
def load_model_ckpt():
if not thread_data.ckpt_file: raise ValueError(f'Thread ckpt_file is undefined.')
if not os.path.exists(thread_data.ckpt_file + '.ckpt'): raise FileNotFoundError(f'Cannot find {thread_data.ckpt_file}.ckpt')
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast'):
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
if not thread_data.precision:
thread_data.precision = 'full' if thread_data.force_full_precision else 'autocast'
device = device_to_use if has_valid_gpu else 'cpu'
precision = precision_to_use if not force_full_precision else 'full'
unet_bs = unet_bs_to_use
if not thread_data.unet_bs:
thread_data.unet_bs = 1
unload_model()
if thread_data.device == 'cpu':
thread_data.precision = 'full'
if device == 'cpu':
precision = 'full'
sd = load_model_from_config(f"{ckpt_to_use}.ckpt")
print('loading', thread_data.ckpt_file + '.ckpt', 'to device', thread_data.device, 'using precision', thread_data.precision)
sd = load_model_from_config(thread_data.ckpt_file + '.ckpt')
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
@ -114,114 +115,205 @@ def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_u
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.cdevice = device
model.unet_bs = unet_bs
model.turbo = turbo
model.cdevice = torch.device(thread_data.device)
model.unet_bs = thread_data.unet_bs
model.turbo = thread_data.turbo
if thread_data.device != 'cpu':
model.to(thread_data.device)
#if thread_data.reduced_memory:
#model.model1.to("cpu")
#model.model2.to("cpu")
thread_data.model = model
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = device
modelCS.cond_stage_model.device = torch.device(thread_data.device)
if thread_data.device != 'cpu':
if thread_data.reduced_memory:
modelCS.to('cpu')
else:
modelCS.to(thread_data.device) # Preload on device if not already there.
thread_data.modelCS = modelCS
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
if thread_data.vae_file is not None:
for model_extension in ['.ckpt', '.vae.pt']:
if os.path.exists(thread_data.vae_file + model_extension):
print(f"Loading VAE weights from: {thread_data.vae_file}{model_extension}")
vae_ckpt = torch.load(thread_data.vae_file + model_extension, map_location="cpu")
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
modelFS.first_stage_model.load_state_dict(vae_dict, strict=False)
break
else:
print(f'Cannot find VAE file: {thread_data.vae_file}{model_extension}')
modelFS.eval()
if thread_data.device != 'cpu':
if thread_data.reduced_memory:
modelFS.to('cpu')
else:
modelFS.to(thread_data.device) # Preload on device if not already there.
thread_data.modelFS = modelFS
del sd
if device != "cpu" and precision == "autocast":
model.half()
modelCS.half()
modelFS.half()
model_is_half = True
model_fs_is_half = True
if thread_data.device != "cpu" and thread_data.precision == "autocast":
thread_data.model.half()
thread_data.modelCS.half()
thread_data.modelFS.half()
thread_data.model_is_half = True
thread_data.model_fs_is_half = True
else:
model_is_half = False
model_fs_is_half = False
thread_data.model_is_half = False
thread_data.model_fs_is_half = False
ckpt_file = ckpt_to_use
print(f'''loaded model
model file: {thread_data.ckpt_file}.ckpt
model.device: {model.device}
modelCS.device: {modelCS.cond_stage_model.device}
modelFS.device: {thread_data.modelFS.device}
using precision: {thread_data.precision}''')
print('loaded ', ckpt_file, 'to', device, 'precision', precision)
def unload_filters():
if thread_data.model_gfpgan is not None:
if thread_data.device != 'cpu': thread_data.model_gfpgan.gfpgan.to('cpu')
def unload_model():
global model, modelCS, modelFS
del thread_data.model_gfpgan
thread_data.model_gfpgan = None
if model is not None:
del model
del modelCS
del modelFS
if thread_data.model_real_esrgan is not None:
if thread_data.device != 'cpu': thread_data.model_real_esrgan.model.to('cpu')
model = None
modelCS = None
modelFS = None
del thread_data.model_real_esrgan
thread_data.model_real_esrgan = None
def load_model_gfpgan(gfpgan_to_use):
global gfpgan_file, model_gfpgan
gc()
if gfpgan_to_use is None:
return
def unload_models():
if thread_data.model is not None:
print('Unloading models...')
if thread_data.device != 'cpu':
thread_data.modelFS.to('cpu')
thread_data.modelCS.to('cpu')
thread_data.model.model1.to("cpu")
thread_data.model.model2.to("cpu")
gfpgan_file = gfpgan_to_use
model_path = gfpgan_to_use + ".pth"
del thread_data.model
del thread_data.modelCS
del thread_data.modelFS
if device == 'cpu':
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
else:
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda'))
thread_data.model = None
thread_data.modelCS = None
thread_data.modelFS = None
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision)
gc()
def load_model_real_esrgan(real_esrgan_to_use):
global real_esrgan_file, model_real_esrgan
def wait_model_move_to(model, target_device): # Send to target_device and wait until complete.
if thread_data.device == target_device: return
start_mem = torch.cuda.memory_allocated(thread_data.device) / 1e6
if start_mem <= 0: return
model_name = model.__class__.__name__
print(f'Device {thread_data.device} - Sending model {model_name} to {target_device} | Memory transfer starting. Memory Used: {round(start_mem)}Mb')
start_time = time.time()
model.to(target_device)
time_step = start_time
WARNING_TIMEOUT = 1.5 # seconds - Show activity in console after timeout.
last_mem = start_mem
is_transfering = True
while is_transfering:
time.sleep(0.5) # 500ms
mem = torch.cuda.memory_allocated(thread_data.device) / 1e6
is_transfering = bool(mem > 0 and mem < last_mem) # still stuff loaded, but less than last time.
last_mem = mem
if not is_transfering:
break;
if time.time() - time_step > WARNING_TIMEOUT: # Long delay, print to console to show activity.
print(f'Device {thread_data.device} - Waiting for Memory transfer. Memory Used: {round(mem)}Mb, Transfered: {round(start_mem - mem)}Mb')
time_step = time.time()
print(f'Device {thread_data.device} - {model_name} Moved: {round(start_mem - last_mem)}Mb in {round(time.time() - start_time, 3)} seconds to {target_device}')
if real_esrgan_to_use is None:
return
def load_model_gfpgan():
if thread_data.gfpgan_file is None: raise ValueError(f'Thread gfpgan_file is undefined.')
model_path = thread_data.gfpgan_file + ".pth"
device = 'cuda:0' if force_gfpgan_to_cuda0 else thread_data.device
thread_data.model_gfpgan = GFPGANer(device=torch.device(device), model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
print('loaded', thread_data.gfpgan_file, 'to', thread_data.model_gfpgan.device, 'precision', thread_data.precision)
real_esrgan_file = real_esrgan_to_use
model_path = real_esrgan_to_use + ".pth"
def load_model_real_esrgan():
if thread_data.real_esrgan_file is None: raise ValueError(f'Thread real_esrgan_file is undefined.')
model_path = thread_data.real_esrgan_file + ".pth"
RealESRGAN_models = {
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
}
model_to_use = RealESRGAN_models[real_esrgan_to_use]
model_to_use = RealESRGAN_models[thread_data.real_esrgan_file]
if device == 'cpu':
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
model_real_esrgan.device = torch.device('cpu')
model_real_esrgan.model.to('cpu')
if thread_data.device == 'cpu':
thread_data.model_real_esrgan = RealESRGANer(device=torch.device(thread_data.device), scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
#thread_data.model_real_esrgan.device = torch.device(thread_data.device)
thread_data.model_real_esrgan.model.to('cpu')
else:
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half)
thread_data.model_real_esrgan = RealESRGANer(device=torch.device(thread_data.device), scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=thread_data.model_is_half)
model_real_esrgan.model.name = real_esrgan_to_use
thread_data.model_real_esrgan.model.name = thread_data.real_esrgan_file
print('loaded ', thread_data.real_esrgan_file, 'to', thread_data.model_real_esrgan.device, 'precision', thread_data.precision)
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision)
def get_session_out_path(disk_path, session_id):
if disk_path is None: return None
if session_id is None: return None
session_out_path = os.path.join(disk_path, filename_regex.sub('_',session_id))
os.makedirs(session_out_path, exist_ok=True)
return session_out_path
def get_base_path(disk_path, session_id, prompt, img_id, ext, suffix=None):
if disk_path is None: return None
if session_id is None: return None
if ext is None: raise Exception('Missing ext')
session_out_path = os.path.join(disk_path, session_id)
os.makedirs(session_out_path, exist_ok=True)
session_out_path = get_session_out_path(disk_path, session_id)
prompt_flattened = filename_regex.sub('_', prompt)[:50]
if suffix is not None:
return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}_{suffix}.{ext}")
return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}.{ext}")
def apply_filters(filter_name, image_data):
def apply_filters(filter_name, image_data, model_path=None):
print(f'Applying filter {filter_name}...')
gc()
gc() # Free space before loading new data.
if filter_name == 'gfpgan':
_, _, output = model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
if isinstance(image_data, torch.Tensor):
image_data.to('cuda:0' if force_gfpgan_to_cuda0 else thread_data.device)
if model_path is not None and model_path != thread_data.gfpgan_file:
thread_data.gfpgan_file = model_path
load_model_gfpgan()
elif not thread_data.model_gfpgan:
load_model_gfpgan()
if thread_data.model_gfpgan is None: raise Exception('Model "gfpgan" not loaded.')
print('enhance with', thread_data.gfpgan_file, 'on', thread_data.model_gfpgan.device, 'precision', thread_data.precision)
_, _, output = thread_data.model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
image_data = output[:,:,::-1]
if filter_name == 'real_esrgan':
output, _ = model_real_esrgan.enhance(image_data[:,:,::-1])
if isinstance(image_data, torch.Tensor):
image_data.to(thread_data.device)
if model_path is not None and model_path != thread_data.real_esrgan_file:
thread_data.real_esrgan_file = model_path
load_model_real_esrgan()
elif not thread_data.model_real_esrgan:
load_model_real_esrgan()
if thread_data.model_real_esrgan is None: raise Exception('Model "gfpgan" not loaded.')
print('enhance with', thread_data.real_esrgan_file, 'on', thread_data.model_real_esrgan.device, 'precision', thread_data.precision)
output, _ = thread_data.model_real_esrgan.enhance(image_data[:,:,::-1])
image_data = output[:,:,::-1]
return image_data
@ -232,83 +324,102 @@ def mk_img(req: Request):
except Exception as e:
print(traceback.format_exc())
gc()
if device != "cpu":
modelFS.to("cpu")
modelCS.to("cpu")
model.model1.to("cpu")
model.model2.to("cpu")
gc()
if thread_data.device != 'cpu':
thread_data.modelFS.to('cpu')
thread_data.modelCS.to('cpu')
thread_data.model.model1.to("cpu")
thread_data.model.model2.to("cpu")
gc() # Release from memory.
yield json.dumps({
"status": 'failed',
"detail": str(e)
})
def do_mk_img(req: Request):
global ckpt_file
global model, modelCS, modelFS, device
global model_gfpgan, model_real_esrgan
global stop_processing
def update_temp_img(req, x_samples):
partial_images = []
for i in range(req.num_outputs):
x_sample_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_sample_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
buf = BytesIO()
img.save(buf, format='JPEG')
buf.seek(0)
stop_processing = False
del img, x_sample, x_sample_ddim
# don't delete x_samples, it is used in the code that called this callback
thread_data.temp_images[str(req.session_id) + '/' + str(i)] = buf
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
return partial_images
# Build and return the apropriate generator for do_mk_img
def get_image_progress_generator(req, extra_props=None):
if not req.stream_progress_updates:
def empty_callback(x_samples, i): return x_samples
return empty_callback
thread_data.partial_x_samples = None
last_callback_time = -1
def img_callback(x_samples, i):
nonlocal last_callback_time
thread_data.partial_x_samples = x_samples
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
last_callback_time = time.time()
progress = {"step": i, "step_time": step_time}
if extra_props is not None:
progress.update(extra_props)
if req.stream_image_progress and i % 5 == 0:
progress['output'] = update_temp_img(req, x_samples)
yield json.dumps(progress)
if thread_data.stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
return img_callback
def do_mk_img(req: Request):
thread_data.stop_processing = False
res = Response()
res.request = req
res.images = []
temp_images.clear()
thread_data.temp_images.clear()
# custom model support:
# the req.use_stable_diffusion_model needs to be a valid path
# to the ckpt file (without the extension).
if not os.path.exists(req.use_stable_diffusion_model + '.ckpt'): raise FileNotFoundError(f'Cannot find {req.use_stable_diffusion_model}.ckpt')
needs_model_reload = False
ckpt_to_use = ckpt_file
if ckpt_to_use != req.use_stable_diffusion_model:
ckpt_to_use = req.use_stable_diffusion_model
if not thread_data.model or thread_data.ckpt_file != req.use_stable_diffusion_model or thread_data.vae_file != req.use_vae_model:
thread_data.ckpt_file = req.use_stable_diffusion_model
thread_data.vae_file = req.use_vae_model
needs_model_reload = True
model.turbo = req.turbo
if req.use_cpu:
if device != 'cpu':
device = 'cpu'
if model_is_half:
load_model_ckpt(ckpt_to_use, device)
needs_model_reload = False
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
else:
if has_valid_gpu:
prev_device = device
device = 'cuda'
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
(precision == 'full' and not req.use_full_precision and not force_full_precision):
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'))
needs_model_reload = False
if prev_device != device:
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
if thread_data.device != 'cpu':
if (thread_data.precision == 'autocast' and (req.use_full_precision or not thread_data.model_is_half)) or \
(thread_data.precision == 'full' and not req.use_full_precision and not thread_data.force_full_precision):
thread_data.precision = 'full' if req.use_full_precision else 'autocast'
needs_model_reload = True
if needs_model_reload:
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, precision)
unload_models()
unload_filters()
load_model_ckpt()
if req.use_face_correction != gfpgan_file:
load_model_gfpgan(req.use_face_correction)
if thread_data.turbo != req.turbo:
thread_data.turbo = req.turbo
thread_data.model.turbo = req.turbo
if req.use_upscale != real_esrgan_file:
load_model_real_esrgan(req.use_upscale)
model.cdevice = device
modelCS.cond_stage_model.device = device
# Start by cleaning memory, loading and unloading things can leave memory allocated.
gc()
opt_prompt = req.prompt
opt_seed = req.seed
@ -316,11 +427,9 @@ def do_mk_img(req: Request):
opt_C = 4
opt_f = 8
opt_ddim_eta = 0.0
opt_init_img = req.init_image
print(req.to_string(), '\n device', device)
print('\n\n Using precision:', precision)
print(req, '\n device', torch.device(thread_data.device), "as", thread_data.device_name)
print('\n\n Using precision:', thread_data.precision)
seed_everything(opt_seed)
@ -329,7 +438,7 @@ def do_mk_img(req: Request):
assert prompt is not None
data = [batch_size * [prompt]]
if precision == "autocast" and device != "cpu":
if thread_data.precision == "autocast" and thread_data.device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
@ -345,46 +454,46 @@ def do_mk_img(req: Request):
handler = _img2img
init_image = load_img(req.init_image, req.width, req.height)
init_image = init_image.to(device)
init_image = init_image.to(thread_data.device)
if device != "cpu" and precision == "autocast":
if thread_data.device != "cpu" and thread_data.precision == "autocast":
init_image = init_image.half()
modelFS.to(device)
thread_data.modelFS.to(thread_data.device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
init_latent = thread_data.modelFS.get_first_stage_encoding(thread_data.modelFS.encode_first_stage(init_image)) # move to latent space
if req.mask is not None:
mask = load_mask(req.mask, req.width, req.height, init_latent.shape[2], init_latent.shape[3], True).to(device)
mask = load_mask(req.mask, req.width, req.height, init_latent.shape[2], init_latent.shape[3], True).to(thread_data.device)
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0)
mask = repeat(mask, '1 ... -> b ...', b=batch_size)
if device != "cpu" and precision == "autocast":
if thread_data.device != "cpu" and thread_data.precision == "autocast":
mask = mask.half()
move_fs_to_cpu()
# Send to CPU and wait until complete.
wait_model_move_to(thread_data.modelFS, 'cpu')
assert 0. <= req.prompt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(req.prompt_strength * req.num_inference_steps)
print(f"target t_enc is {t_enc} steps")
if req.save_to_disk_path is not None:
session_out_path = os.path.join(req.save_to_disk_path, req.session_id)
os.makedirs(session_out_path, exist_ok=True)
session_out_path = get_session_out_path(req.save_to_disk_path, req.session_id)
else:
session_out_path = None
seeds = ""
with torch.no_grad():
for n in trange(opt_n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
if thread_data.reduced_memory:
thread_data.modelCS.to(thread_data.device)
uc = None
if req.guidance_scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
uc = thread_data.modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
if isinstance(prompts, tuple):
prompts = list(prompts)
@ -397,85 +506,65 @@ def do_mk_img(req: Request):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
c = torch.add(c, thread_data.modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
c = thread_data.modelCS.get_learned_conditioning(prompts)
modelFS.to(device)
if thread_data.reduced_memory:
thread_data.modelFS.to(thread_data.device)
partial_x_samples = None
last_callback_time = -1
def img_callback(x_samples, i):
nonlocal partial_x_samples, last_callback_time
partial_x_samples = x_samples
if req.stream_progress_updates:
n_steps = req.num_inference_steps if req.init_image is None else t_enc
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
last_callback_time = time.time()
progress = {"step": i, "total_steps": n_steps, "step_time": step_time}
if req.stream_image_progress and i % 5 == 0:
partial_images = []
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
buf = BytesIO()
img.save(buf, format='JPEG')
buf.seek(0)
del img, x_sample, x_samples_ddim
# don't delete x_samples, it is used in the code that called this callback
temp_images[str(req.session_id) + '/' + str(i)] = buf
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
progress['output'] = partial_images
yield json.dumps(progress)
if stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
img_callback = get_image_progress_generator(req, {"total_steps": n_steps})
# run the handler
try:
print('Running handler...')
if handler == _txt2img:
x_samples = _txt2img(req.width, req.height, req.num_outputs, req.num_inference_steps, req.guidance_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, req.sampler)
else:
x_samples = _img2img(init_latent, t_enc, batch_size, req.guidance_scale, c, uc, req.num_inference_steps, opt_ddim_eta, opt_seed, img_callback, mask)
if req.stream_progress_updates:
yield from x_samples
x_samples = partial_x_samples
if hasattr(thread_data, 'partial_x_samples'):
if thread_data.partial_x_samples is not None:
x_samples = thread_data.partial_x_samples
del thread_data.partial_x_samples
except UserInitiatedStop:
if partial_x_samples is None:
if not hasattr(thread_data, 'partial_x_samples'):
continue
if thread_data.partial_x_samples is None:
del thread_data.partial_x_samples
continue
x_samples = thread_data.partial_x_samples
del thread_data.partial_x_samples
x_samples = partial_x_samples
print("saving images")
print("decoding images")
img_data = [None] * batch_size
for i in range(batch_size):
img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_samples_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
img_data[i] = x_sample
del x_samples, x_samples_ddim, x_sample
if thread_data.reduced_memory:
# Send to CPU and wait until complete.
wait_model_move_to(thread_data.modelFS, 'cpu')
print("saving images")
for i in range(batch_size):
img = Image.fromarray(img_data[i])
img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
has_filters = (req.use_face_correction is not None and req.use_face_correction.startswith('GFPGAN')) or \
(req.use_upscale is not None and req.use_upscale.startswith('RealESRGAN'))
return_orig_img = not has_filters or not req.show_only_filtered_image
if stop_processing:
if thread_data.stop_processing:
return_orig_img = True
if req.save_to_disk_path is not None:
@ -486,25 +575,24 @@ def do_mk_img(req: Request):
save_metadata(meta_out_path, req, prompts[0], opt_seed)
if return_orig_img:
img_data = img_to_base64_str(img, req.output_format)
res_image_orig = ResponseImage(data=img_data, seed=opt_seed)
img_str = img_to_base64_str(img, req.output_format)
res_image_orig = ResponseImage(data=img_str, seed=opt_seed)
res.images.append(res_image_orig)
if req.save_to_disk_path is not None:
res_image_orig.path_abs = img_out_path
del img
if has_filters and not stop_processing:
if has_filters and not thread_data.stop_processing:
filters_applied = []
if req.use_face_correction:
x_sample = apply_filters('gfpgan', x_sample)
img_data[i] = apply_filters('gfpgan', img_data[i], req.use_face_correction)
filters_applied.append(req.use_face_correction)
if req.use_upscale:
x_sample = apply_filters('real_esrgan', x_sample)
img_data[i] = apply_filters('real_esrgan', img_data[i], req.use_upscale)
filters_applied.append(req.use_upscale)
if (len(filters_applied) > 0):
filtered_image = Image.fromarray(x_sample)
filtered_image = Image.fromarray(img_data[i])
filtered_img_data = img_to_base64_str(filtered_image, req.output_format)
response_image = ResponseImage(data=filtered_img_data, seed=opt_seed)
res.images.append(response_image)
@ -513,17 +601,17 @@ def do_mk_img(req: Request):
save_image(filtered_image, filtered_img_out_path)
response_image.path_abs = filtered_img_out_path
del filtered_image
seeds += str(opt_seed) + ","
# Filter Applied, move to next seed
opt_seed += 1
move_fs_to_cpu()
# if thread_data.reduced_memory:
# unload_filters()
del img_data
gc()
del x_samples, x_samples_ddim, x_sample
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
if thread_data.device != 'cpu':
print(f'memory_final = {round(torch.cuda.memory_allocated(thread_data.device) / 1e6, 2)}Mb')
print('Task completed')
yield json.dumps(res.json())
def save_image(img, img_out_path):
@ -533,7 +621,7 @@ def save_image(img, img_out_path):
print('could not save the file', traceback.format_exc())
def save_metadata(meta_out_path, req, prompt, opt_seed):
metadata = f"""{prompt}
metadata = f'''{prompt}
Width: {req.width}
Height: {req.height}
Seed: {opt_seed}
@ -544,8 +632,9 @@ Use Face Correction: {req.use_face_correction}
Use Upscaling: {req.use_upscale}
Sampler: {req.sampler}
Negative Prompt: {req.negative_prompt}
Stable Diffusion Model: {req.use_stable_diffusion_model + '.ckpt'}
"""
Stable Diffusion model: {req.use_stable_diffusion_model + '.ckpt'}
VAE model: {req.use_vae_model}
'''
try:
with open(meta_out_path, 'w', encoding='utf-8') as f:
f.write(metadata)
@ -555,16 +644,13 @@ Stable Diffusion Model: {req.use_stable_diffusion_model + '.ckpt'}
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name):
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f]
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
# Send to CPU and wait until complete.
wait_model_move_to(thread_data.modelCS, 'cpu')
if sampler_name == 'ddim':
model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
thread_data.model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
samples_ddim = model.sample(
samples_ddim = thread_data.model.sample(
S=opt_ddim_steps,
conditioning=c,
seed=opt_seed,
@ -578,14 +664,13 @@ def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code,
mask=mask,
sampler = sampler_name,
)
yield from samples_ddim
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask):
# encode (scaled latent)
z_enc = model.stochastic_encode(
z_enc = thread_data.model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(device),
torch.tensor([t_enc] * batch_size).to(thread_data.device),
opt_seed,
opt_ddim_eta,
opt_ddim_steps,
@ -593,7 +678,7 @@ def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, o
x_T = None if mask is None else init_latent
# decode it
samples_ddim = model.sample(
samples_ddim = thread_data.model.sample(
t_enc,
c,
z_enc,
@ -604,20 +689,12 @@ def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, o
x_T=x_T,
sampler = 'ddim'
)
yield from samples_ddim
def move_fs_to_cpu():
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
def gc():
if device == 'cpu':
gc_collect()
if thread_data.device == 'cpu':
return
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
@ -627,7 +704,6 @@ def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
@ -689,10 +765,14 @@ def img_to_base64_str(img, output_format="PNG"):
img_str = f"data:{mime_type};base64," + base64.b64encode(img_byte).decode()
return img_str
def base64_str_to_img(img_str):
def base64_str_to_buffer(img_str):
mime_type = "image/png" if img_str.startswith("data:image/png;") else "image/jpeg"
img_str = img_str[len(f"data:{mime_type};base64,"):]
data = base64.b64decode(img_str)
buffered = BytesIO(data)
return buffered
def base64_str_to_img(img_str):
buffered = base64_str_to_buffer(img_str)
img = Image.open(buffered)
return img

View File

@ -1,13 +1,27 @@
"""task_manager.py: manage tasks dispatching and render threads.
Notes:
render_threads should be the only hard reference held by the manager to the threads.
Use weak_thread_data to store all other data using weak keys.
This will allow for garbage collection after the thread dies.
"""
import json
import traceback
TASK_TTL = 15 * 60 # seconds, Discard last session's task timeout
import queue, threading, time
import torch
import queue, threading, time, weakref
from typing import Any, Generator, Hashable, Optional, Union
from pydantic import BaseModel
from sd_internal import Request, Response
from sd_internal import Request, Response, runtime, device_manager
THREAD_NAME_PREFIX = 'Runtime-Render/'
ERR_LOCK_FAILED = ' failed to acquire lock within timeout.'
LOCK_TIMEOUT = 15 # Maximum locking time in seconds before failing a task.
# It's better to get an exception than a deadlock... ALWAYS use timeout in critical paths.
DEVICE_START_TIMEOUT = 60 # seconds - Maximum time to wait for a render device to init.
class SymbolClass(type): # Print nicely formatted Symbol names.
def __repr__(self): return self.__qualname__
@ -25,7 +39,8 @@ class RenderTask(): # Task with output queue and completion lock.
def __init__(self, req: Request):
self.request: Request = req # Initial Request
self.response: Any = None # Copy of the last reponse
self.temp_images:[] = [None] * req.num_outputs * (1 if req.show_only_filtered_image else 2)
self.render_device = None # Select the task affinity. (Not used to change active devices).
self.temp_images:list = [None] * req.num_outputs * (1 if req.show_only_filtered_image else 2)
self.error: Exception = None
self.lock: threading.Lock = threading.Lock() # Locks at task start and unlocks when task is completed
self.buffer_queue: queue.Queue = queue.Queue() # Queue of JSON string segments
@ -55,28 +70,43 @@ class ImageRequest(BaseModel):
# allow_nsfw: bool = False
save_to_disk_path: str = None
turbo: bool = True
use_cpu: bool = False
use_cpu: bool = False ##TODO Remove after UI and plugins transition.
render_device: str = None # Select the task affinity. (Not used to change active devices).
use_full_precision: bool = False
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
use_stable_diffusion_model: str = "sd-v1-4"
use_vae_model: str = None
show_only_filtered_image: bool = False
output_format: str = "jpeg" # or "png"
stream_progress_updates: bool = False
stream_image_progress: bool = False
class FilterRequest(BaseModel):
session_id: str = "session"
model: str = None
name: str = ""
init_image: str = None # base64
width: int = 512
height: int = 512
save_to_disk_path: str = None
turbo: bool = True
render_device: str = None
use_full_precision: bool = False
output_format: str = "jpeg" # or "png"
# Temporary cache to allow to query tasks results for a short time after they are completed.
class TaskCache():
def __init__(self):
self._base = dict()
self._lock: threading.Lock = threading.RLock()
self._lock: threading.Lock = threading.Lock()
def _get_ttl_time(self, ttl: int) -> int:
return int(time.time()) + ttl
def _is_expired(self, timestamp: int) -> bool:
return int(time.time()) >= timestamp
def clean(self) -> None:
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.clean failed to acquire lock within timeout.')
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.clean' + ERR_LOCK_FAILED)
try:
# Create a list of expired keys to delete
to_delete = []
@ -91,11 +121,11 @@ class TaskCache():
finally:
self._lock.release()
def clear(self) -> None:
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.clear failed to acquire lock within timeout.')
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.clear' + ERR_LOCK_FAILED)
try: self._base.clear()
finally: self._lock.release()
def delete(self, key: Hashable) -> bool:
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.delete failed to acquire lock within timeout.')
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.delete' + ERR_LOCK_FAILED)
try:
if key not in self._base:
return False
@ -104,7 +134,7 @@ class TaskCache():
finally:
self._lock.release()
def keep(self, key: Hashable, ttl: int) -> bool:
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.keep failed to acquire lock within timeout.')
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.keep' + ERR_LOCK_FAILED)
try:
if key in self._base:
_, value = self._base.get(key)
@ -114,7 +144,7 @@ class TaskCache():
finally:
self._lock.release()
def put(self, key: Hashable, value: Any, ttl: int) -> bool:
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.put failed to acquire lock within timeout.')
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.put' + ERR_LOCK_FAILED)
try:
self._base[key] = (
self._get_ttl_time(ttl), value
@ -128,80 +158,145 @@ class TaskCache():
finally:
self._lock.release()
def tryGet(self, key: Hashable) -> Any:
if not self._lock.acquire(blocking=True, timeout=10): raise Exception('TaskCache.tryGet failed to acquire lock within timeout.')
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('TaskCache.tryGet' + ERR_LOCK_FAILED)
try:
ttl, value = self._base.get(key, (None, None))
if ttl is not None and self._is_expired(ttl):
print(f'Session {key} expired. Discarding data.')
self.delete(key)
del self._base[key]
return None
return value
finally:
self._lock.release()
manager_lock = threading.RLock()
render_threads = []
current_state = ServerStates.Init
current_state_error:Exception = None
current_model_path = None
tasks_queue = queue.Queue()
current_vae_path = None
tasks_queue = []
task_cache = TaskCache()
default_model_to_load = None
default_vae_to_load = None
weak_thread_data = weakref.WeakKeyDictionary()
def preload_model(file_path=None):
global current_state, current_state_error, current_model_path
if file_path == None:
file_path = default_model_to_load
if file_path == current_model_path:
def preload_model(ckpt_file_path=None, vae_file_path=None):
global current_state, current_state_error, current_model_path, current_vae_path
if ckpt_file_path == None:
ckpt_file_path = default_model_to_load
if vae_file_path == None:
vae_file_path = default_vae_to_load
if ckpt_file_path == current_model_path and vae_file_path == current_vae_path:
return
current_state = ServerStates.LoadingModel
try:
from . import runtime
runtime.load_model_ckpt(ckpt_to_use=file_path)
current_model_path = file_path
runtime.thread_data.ckpt_file = ckpt_file_path
runtime.thread_data.vae_file = vae_file_path
runtime.load_model_ckpt()
current_model_path = ckpt_file_path
current_vae_path = vae_file_path
current_state_error = None
current_state = ServerStates.Online
except Exception as e:
current_model_path = None
current_vae_path = None
current_state_error = e
current_state = ServerStates.Unavailable
print(traceback.format_exc())
def thread_render():
global current_state, current_state_error, current_model_path
def thread_get_next_task():
from . import runtime
current_state = ServerStates.Online
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
print('Render thread on device', runtime.thread_data.device, 'failed to acquire manager lock.')
return None
if len(tasks_queue) <= 0:
manager_lock.release()
return None
task = None
try: # Select a render task.
for queued_task in tasks_queue:
if queued_task.request.use_face_correction and runtime.thread_data.device == 'cpu' and is_alive() == 1:
queued_task.error = Exception('The CPU cannot be used to run this task currently. Please remove "Fix incorrect faces" from Image Settings and try again.')
task = queued_task
break
if queued_task.render_device and runtime.thread_data.device != queued_task.render_device:
# Is asking for a specific render device.
if is_alive(queued_task.render_device) > 0:
continue # requested device alive, skip current one.
else:
# Requested device is not active, return error to UI.
queued_task.error = Exception(queued_task.render_device + ' is not currently active.')
task = queued_task
break
if not queued_task.render_device and runtime.thread_data.device == 'cpu' and is_alive() > 1:
# not asking for any specific devices, cpu want to grab task but other render devices are alive.
continue # Skip Tasks, don't run on CPU unless there is nothing else or user asked for it.
task = queued_task
break
if task is not None:
del tasks_queue[tasks_queue.index(task)]
return task
finally:
manager_lock.release()
def thread_render(device):
global current_state, current_state_error, current_model_path, current_vae_path
from . import runtime
try:
runtime.thread_init(device)
except Exception as e:
print(traceback.format_exc())
weak_thread_data[threading.current_thread()] = {
'error': e
}
return
weak_thread_data[threading.current_thread()] = {
'device': runtime.thread_data.device,
'device_name': runtime.thread_data.device_name,
'alive': True
}
if runtime.thread_data.device != 'cpu' or is_alive() == 1:
preload_model()
current_state = ServerStates.Online
while True:
task_cache.clean()
if not weak_thread_data[threading.current_thread()]['alive']:
print(f'Shutting down thread for device {runtime.thread_data.device}')
runtime.unload_models()
runtime.unload_filters()
return
if isinstance(current_state_error, SystemExit):
current_state = ServerStates.Unavailable
return
task = None
try:
task = tasks_queue.get(timeout=1)
except queue.Empty as e:
if isinstance(current_state_error, SystemExit):
current_state = ServerStates.Unavailable
return
else: continue
#if current_model_path != task.request.use_stable_diffusion_model:
# preload_model(task.request.use_stable_diffusion_model)
task = thread_get_next_task()
if task is None:
time.sleep(1)
continue
if task.error is not None:
print(task.error)
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
continue
if current_state_error:
task.error = current_state_error
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
continue
print(f'Session {task.request.session_id} starting task {id(task)}')
print(f'Session {task.request.session_id} starting task {id(task)} on {runtime.thread_data.device_name}')
if not task.lock.acquire(blocking=False): raise Exception('Got locked task from queue.')
try:
task.lock.acquire(blocking=False)
if runtime.thread_data.device == 'cpu' and is_alive() > 1:
# CPU is not the only device. Keep track of active time to unload resources later.
runtime.thread_data.lastActive = time.time()
# Open data generator.
res = runtime.mk_img(task.request)
if current_model_path == task.request.use_stable_diffusion_model:
current_state = ServerStates.Rendering
else:
current_state = ServerStates.LoadingModel
except Exception as e:
task.error = e
task.lock.release()
tasks_queue.task_done()
print(traceback.format_exc())
continue
# Start reading from generator.
dataQueue = None
if task.request.stream_progress_updates:
dataQueue = task.buffer_queue
@ -209,8 +304,9 @@ def thread_render():
if current_state == ServerStates.LoadingModel:
current_state = ServerStates.Rendering
current_model_path = task.request.use_stable_diffusion_model
current_vae_path = task.request.use_vae_model
if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration):
runtime.stop_processing = True
runtime.thread_data.stop_processing = True
if isinstance(current_state_error, StopAsyncIteration):
task.error = current_state_error
current_state_error = None
@ -224,35 +320,181 @@ def thread_render():
for out_obj in result['output']:
if 'path' in out_obj:
img_id = out_obj['path'][out_obj['path'].rindex('/') + 1:]
task.temp_images[int(img_id)] = runtime.temp_images[out_obj['path'][11:]]
task.temp_images[int(img_id)] = runtime.thread_data.temp_images[out_obj['path'][11:]]
elif 'data' in out_obj:
task.temp_images[result['output'].index(out_obj)] = out_obj['data']
buf = runtime.base64_str_to_buffer(out_obj['data'])
task.temp_images[result['output'].index(out_obj)] = buf
# Before looping back to the generator, mark cache as still alive.
task_cache.keep(task.request.session_id, TASK_TTL)
except Exception as e:
task.error = e
print(traceback.format_exc())
continue
finally:
# Task completed
task.lock.release()
tasks_queue.task_done()
task_cache.keep(task.request.session_id, TASK_TTL)
if isinstance(task.error, StopAsyncIteration):
print(f'Session {task.request.session_id} task {id(task)} cancelled!')
elif task.error is not None:
print(f'Session {task.request.session_id} task {id(task)} failed!')
else:
print(f'Session {task.request.session_id} task {id(task)} completed.')
print(f'Session {task.request.session_id} task {id(task)} completed by {runtime.thread_data.device_name}.')
current_state = ServerStates.Online
render_thread = threading.Thread(target=thread_render)
def get_cached_task(session_id:str, update_ttl:bool=False):
# By calling keep before tryGet, wont discard if was expired.
if update_ttl and not task_cache.keep(session_id, TASK_TTL):
# Failed to keep task, already gone.
return None
return task_cache.tryGet(session_id)
def start_render_thread():
# Start Rendering Thread
render_thread.daemon = True
render_thread.start()
def get_devices():
devices = {
'all': {},
'active': {},
}
def get_device_info(device):
if device == 'cpu':
return {'name': device_manager.get_processor_name()}
mem_free, mem_total = torch.cuda.mem_get_info(device)
mem_free /= float(10**9)
mem_total /= float(10**9)
return {
'name': torch.cuda.get_device_name(device),
'mem_free': mem_free,
'mem_total': mem_total,
}
# list the compatible devices
gpu_count = torch.cuda.device_count()
for device in range(gpu_count):
device = f'cuda:{device}'
if not device_manager.is_device_compatible(device):
continue
devices['all'].update({device: get_device_info(device)})
devices['all'].update({'cpu': get_device_info('cpu')})
# list the activated devices
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('get_devices' + ERR_LOCK_FAILED)
try:
for rthread in render_threads:
if not rthread.is_alive():
continue
weak_data = weak_thread_data.get(rthread)
if not weak_data or not 'device' in weak_data or not 'device_name' in weak_data:
continue
device = weak_data['device']
devices['active'].update({device: get_device_info(device)})
finally:
manager_lock.release()
return devices
def is_alive(device=None):
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('is_alive' + ERR_LOCK_FAILED)
nbr_alive = 0
try:
for rthread in render_threads:
if device is not None:
weak_data = weak_thread_data.get(rthread)
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
continue
thread_device = weak_data['device']
if thread_device != device:
continue
if rthread.is_alive():
nbr_alive += 1
return nbr_alive
finally:
manager_lock.release()
def start_render_thread(device):
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('start_render_thread' + ERR_LOCK_FAILED)
print('Start new Rendering Thread on device', device)
try:
rthread = threading.Thread(target=thread_render, kwargs={'device': device})
rthread.daemon = True
rthread.name = THREAD_NAME_PREFIX + device
rthread.start()
render_threads.append(rthread)
finally:
manager_lock.release()
timeout = DEVICE_START_TIMEOUT
while not rthread.is_alive() or not rthread in weak_thread_data or not 'device' in weak_thread_data[rthread]:
if rthread in weak_thread_data and 'error' in weak_thread_data[rthread]:
print(rthread, device, 'error:', weak_thread_data[rthread]['error'])
return False
if timeout <= 0:
return False
timeout -= 1
time.sleep(1)
return True
def stop_render_thread(device):
try:
device_manager.validate_device_id(device, log_prefix='stop_render_thread')
except:
print(traceback.format_exec())
return False
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('stop_render_thread' + ERR_LOCK_FAILED)
print('Stopping Rendering Thread on device', device)
try:
thread_to_remove = None
for rthread in render_threads:
weak_data = weak_thread_data.get(rthread)
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
continue
thread_device = weak_data['device']
if thread_device == device:
weak_data['alive'] = False
thread_to_remove = rthread
break
if thread_to_remove is not None:
render_threads.remove(rthread)
return True
finally:
manager_lock.release()
return False
def update_render_threads(render_devices, active_devices):
devices_to_start, devices_to_stop = device_manager.get_device_delta(render_devices, active_devices)
print('devices_to_start', devices_to_start)
print('devices_to_stop', devices_to_stop)
for device in devices_to_stop:
if is_alive(device) <= 0:
print(device, 'is not alive')
continue
if not stop_render_thread(device):
print(device, 'could not stop render thread')
for device in devices_to_start:
if is_alive(device) >= 1:
print(device, 'already registered.')
continue
if not start_render_thread(device):
print(device, 'failed to start.')
if is_alive() <= 0: # No running devices, probably invalid user config.
raise EnvironmentError('ERROR: No active render devices! Please verify the "render_devices" value in config.json')
print('active devices', get_devices()['active'])
def shutdown_event(): # Signal render thread to close on shutdown
global current_state_error
current_state_error = SystemExit('Application shutting down.')
def render(req : ImageRequest):
if not render_thread.is_alive(): # Render thread is dead
if is_alive() <= 0: # Render thread is dead
raise ChildProcessError('Rendering thread has died.')
# Alive, check if task in cache
task = task_cache.tryGet(req.session_id)
@ -277,12 +519,12 @@ def render(req : ImageRequest):
r.sampler = req.sampler
# r.allow_nsfw = req.allow_nsfw
r.turbo = req.turbo
r.use_cpu = req.use_cpu
r.use_full_precision = req.use_full_precision
r.save_to_disk_path = req.save_to_disk_path
r.use_upscale: str = req.use_upscale
r.use_face_correction = req.use_face_correction
r.use_stable_diffusion_model = req.use_stable_diffusion_model
r.use_vae_model = req.use_vae_model
r.show_only_filtered_image = req.show_only_filtered_image
r.output_format = req.output_format
@ -293,7 +535,14 @@ def render(req : ImageRequest):
r.stream_image_progress = False
new_task = RenderTask(r)
if task_cache.put(r.session_id, new_task, TASK_TTL):
tasks_queue.put(new_task, block=True, timeout=30)
# Use twice the normal timeout for adding user requests.
# Tries to force task_cache.put to fail before tasks_queue.put would.
if manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT * 2):
try:
tasks_queue.append(new_task)
return new_task
finally:
manager_lock.release()
raise RuntimeError('Failed to add task to cache.')

View File

@ -1,3 +1,7 @@
"""server.py: FastAPI SD-UI Web Host.
Notes:
async endpoints always run on the main thread. Without they run on the thread pool.
"""
import json
import traceback
@ -16,14 +20,24 @@ UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'plugins', 'ui'))
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
TASK_TTL = 15 * 60 # Discard last session's task timeout
APP_CONFIG_DEFAULTS = {
# auto: selects the cuda device with the most free memory, cuda: use the currently active cuda device.
'render_devices': ['auto'], # valid entries: 'auto', 'cpu' or 'cuda:N' (where N is a GPU index)
'update_branch': 'main',
}
APP_CONFIG_DEFAULT_MODELS = [
# needed to support the legacy installations
'custom-model', # Check if user has a custom model, use it first.
'sd-v1-4', # Default fallback.
]
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
from pydantic import BaseModel
import logging
import queue, threading, time
from typing import Any, Generator, Hashable, Optional, Union
#import queue, threading, time
from typing import Any, Generator, Hashable, List, Optional, Union
from sd_internal import Request, Response, task_manager
@ -42,171 +56,7 @@ NOCACHE_HEADERS={"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma
app.mount('/media', StaticFiles(directory=os.path.join(SD_UI_DIR, 'media')), name="media")
app.mount('/plugins', StaticFiles(directory=UI_PLUGINS_DIR), name="plugins")
class SetAppConfigRequest(BaseModel):
update_branch: str = "main"
# needs to support the legacy installations
def get_initial_model_to_load():
custom_weight_path = os.path.join(SD_DIR, 'custom-model.ckpt')
ckpt_to_use = "sd-v1-4" if not os.path.exists(custom_weight_path) else "custom-model"
ckpt_to_use = os.path.join(SD_DIR, ckpt_to_use)
config = getConfig()
if 'model' in config and 'stable-diffusion' in config['model']:
model_name = config['model']['stable-diffusion']
model_path = resolve_model_to_use(model_name)
if os.path.exists(model_path + '.ckpt'):
ckpt_to_use = model_path
else:
print('Could not find the configured custom model at:', model_path + '.ckpt', '. Using the default one:', ckpt_to_use + '.ckpt')
return ckpt_to_use
def resolve_model_to_use(model_name):
if model_name in ('sd-v1-4', 'custom-model'):
model_path = os.path.join(MODELS_DIR, 'stable-diffusion', model_name)
legacy_model_path = os.path.join(SD_DIR, model_name)
if not os.path.exists(model_path + '.ckpt') and os.path.exists(legacy_model_path + '.ckpt'):
model_path = legacy_model_path
else:
model_path = os.path.join(MODELS_DIR, 'stable-diffusion', model_name)
return model_path
@app.on_event("shutdown")
def shutdown_event(): # Signal render thread to close on shutdown
task_manager.current_state_error = SystemExit('Application shutting down.')
@app.get('/')
def read_root():
return FileResponse(os.path.join(SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
@app.get('/ping') # Get server and optionally session status.
def ping(session_id:str=None):
if not task_manager.render_thread.is_alive(): # Render thread is dead.
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
raise HTTPException(status_code=500, detail='Render thread is dead.')
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
# Alive
response = {'status': str(task_manager.current_state)}
if session_id:
task = task_manager.task_cache.tryGet(session_id)
if task:
response['task'] = id(task)
if task.lock.locked():
response['session'] = 'running'
elif isinstance(task.error, StopAsyncIteration):
response['session'] = 'stopped'
elif task.error:
response['session'] = 'error'
elif not task.buffer_queue.empty():
response['session'] = 'buffer'
elif task.response:
response['session'] = 'completed'
else:
response['session'] = 'pending'
return JSONResponse(response, headers=NOCACHE_HEADERS)
def save_model_to_config(model_name):
config = getConfig()
if 'model' not in config:
config['model'] = {}
config['model']['stable-diffusion'] = model_name
setConfig(config)
@app.post('/render')
def render(req : task_manager.ImageRequest):
try:
save_model_to_config(req.use_stable_diffusion_model)
req.use_stable_diffusion_model = resolve_model_to_use(req.use_stable_diffusion_model)
new_task = task_manager.render(req)
response = {
'status': str(task_manager.current_state),
'queue': task_manager.tasks_queue.qsize(),
'stream': f'/image/stream/{req.session_id}/{id(new_task)}',
'task': id(new_task)
}
return JSONResponse(response, headers=NOCACHE_HEADERS)
except ChildProcessError as e: # Render thread is dead
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
except ConnectionRefusedError as e: # Unstarted task pending, deny queueing more than one.
raise HTTPException(status_code=503, detail=f'Session {req.session_id} has an already pending task.') # HTTP503 Service Unavailable
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get('/image/stream/{session_id:str}/{task_id:int}')
def stream(session_id:str, task_id:int):
#TODO Move to WebSockets ??
task = task_manager.task_cache.tryGet(session_id)
if not task: raise HTTPException(status_code=410, detail='No request received.') # HTTP410 Gone
if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
if task.buffer_queue.empty() and not task.lock.locked():
if task.response:
#print(f'Session {session_id} sending cached response')
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
#print(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
@app.get('/image/stop')
def stop(session_id:str=None):
if not session_id:
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
task_manager.current_state_error = StopAsyncIteration('')
return {'OK'}
task = task_manager.task_cache.tryGet(session_id)
if not task: raise HTTPException(status_code=404, detail=f'Session {session_id} has no active task.') # HTTP404 Not Found
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Session {session_id} task is already stopped.') # HTTP409 Conflict
task.error = StopAsyncIteration('')
return {'OK'}
@app.get('/image/tmp/{session_id}/{img_id:int}')
def get_image(session_id, img_id):
task = task_manager.task_cache.tryGet(session_id)
if not task: raise HTTPException(status_code=410, detail=f'Session {session_id} has not submitted a task.') # HTTP410 Gone
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
try:
img_data = task.temp_images[img_id]
if isinstance(img_data, str):
return img_data
img_data.seek(0)
return StreamingResponse(img_data, media_type='image/jpeg')
except KeyError as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post('/app_config')
async def setAppConfig(req : SetAppConfigRequest):
try:
config = {
'update_branch': req.update_branch
}
config_json_str = json.dumps(config)
config_bat_str = f'@set update_branch={req.update_branch}'
config_sh_str = f'export update_branch={req.update_branch}'
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
with open(config_json_path, 'w', encoding='utf-8') as f:
f.write(config_json_str)
with open(config_bat_path, 'w', encoding='utf-8') as f:
f.write(config_bat_str)
with open(config_sh_path, 'w', encoding='utf-8') as f:
f.write(config_sh_str)
return {'OK'}
except Exception as e:
print(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def getConfig(default_val={}):
def getConfig(default_val=APP_CONFIG_DEFAULTS):
try:
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
if not os.path.exists(config_json_path):
@ -219,41 +69,147 @@ def getConfig(default_val={}):
return default_val
def setConfig(config):
try:
try: # config.json
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
with open(config_json_path, 'w', encoding='utf-8') as f:
return json.dump(config, f)
except Exception as e:
print(str(e))
json.dump(config, f)
except:
print(traceback.format_exc())
try: # config.bat
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
config_bat = []
if 'update_branch' in config:
config_bat.append(f"@set update_branch={config['update_branch']}")
if os.getenv('SD_UI_BIND_PORT') is not None:
config_bat.append(f"@set SD_UI_BIND_PORT={os.getenv('SD_UI_BIND_PORT')}")
if os.getenv('SD_UI_BIND_IP') is not None:
config_bat.append(f"@set SD_UI_BIND_IP={os.getenv('SD_UI_BIND_IP')}")
if len(config_bat) > 0:
with open(config_bat_path, 'w', encoding='utf-8') as f:
f.write('\r\n'.join(config_bat))
except:
print(traceback.format_exc())
try: # config.sh
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
config_sh = ['#!/bin/bash']
if 'update_branch' in config:
config_sh.append(f"export update_branch={config['update_branch']}")
if os.getenv('SD_UI_BIND_PORT') is not None:
config_sh.append(f"export SD_UI_BIND_PORT={os.getenv('SD_UI_BIND_PORT')}")
if os.getenv('SD_UI_BIND_IP') is not None:
config_sh.append(f"export SD_UI_BIND_IP={os.getenv('SD_UI_BIND_IP')}")
if len(config_sh) > 1:
with open(config_sh_path, 'w', encoding='utf-8') as f:
f.write('\n'.join(config_sh))
except:
print(traceback.format_exc())
def resolve_model_to_use(model_name:str, model_type:str, model_dir:str, model_extensions:list, default_models=[]):
model_dirs = [os.path.join(MODELS_DIR, model_dir), SD_DIR]
if not model_name: # When None try user configured model.
config = getConfig()
if 'model' in config and model_type in config['model']:
model_name = config['model'][model_type]
if model_name:
# Check models directory
models_dir_path = os.path.join(MODELS_DIR, model_dir, model_name)
for model_extension in model_extensions:
if os.path.exists(models_dir_path + model_extension):
return models_dir_path
if os.path.exists(model_name + model_extension):
# Direct Path to file
model_name = os.path.abspath(model_name)
return model_name
# Default locations
if model_name in default_models:
default_model_path = os.path.join(SD_DIR, model_name)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
return default_model_path
# Can't find requested model, check the default paths.
for default_model in default_models:
for model_dir in model_dirs:
default_model_path = os.path.join(model_dir, default_model)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
if model_name is not None:
print(f'Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}')
return default_model_path
raise Exception('No valid models found.')
def resolve_ckpt_to_use(model_name:str=None):
return resolve_model_to_use(model_name, model_type='stable-diffusion', model_dir='stable-diffusion', model_extensions=['.ckpt'], default_models=APP_CONFIG_DEFAULT_MODELS)
def resolve_vae_to_use(model_name:str=None):
try:
return resolve_model_to_use(model_name, model_type='vae', model_dir='vae', model_extensions=['.vae.pt', '.ckpt'], default_models=[])
except:
return None
class SetAppConfigRequest(BaseModel):
update_branch: str = None
render_devices: Union[List[str], List[int], str, int] = None
model_vae: str = None
@app.post('/app_config')
async def setAppConfig(req : SetAppConfigRequest):
config = getConfig()
if req.update_branch:
config['update_branch'] = req.update_branch
if req.render_devices:
update_render_devices_in_config(config, req.render_devices)
try:
setConfig(config)
if req.render_devices:
update_render_threads()
return JSONResponse({'status': 'OK'}, headers=NOCACHE_HEADERS)
except Exception as e:
print(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def getModels():
models = {
'active': {
'stable-diffusion': 'sd-v1-4',
'vae': '',
},
'options': {
'stable-diffusion': ['sd-v1-4'],
'vae': [],
},
}
def listModels(models_dirname, model_type, model_extensions):
models_dir = os.path.join(MODELS_DIR, models_dirname)
if not os.path.exists(models_dir):
os.makedirs(models_dir)
for file in os.listdir(models_dir):
for model_extension in model_extensions:
if file.endswith(model_extension):
model_name = file[:-len(model_extension)]
models['options'][model_type].append(model_name)
models['options'][model_type] = [*set(models['options'][model_type])] # remove duplicates
models['options'][model_type].sort()
# custom models
sd_models_dir = os.path.join(MODELS_DIR, 'stable-diffusion')
for file in os.listdir(sd_models_dir):
if file.endswith('.ckpt'):
model_name = os.path.splitext(file)[0]
models['options']['stable-diffusion'].append(model_name)
listModels(models_dirname='stable-diffusion', model_type='stable-diffusion', model_extensions=['.ckpt'])
listModels(models_dirname='vae', model_type='vae', model_extensions=['.vae.pt', '.ckpt'])
# legacy
custom_weight_path = os.path.join(SD_DIR, 'custom-model.ckpt')
if os.path.exists(custom_weight_path):
models['active']['stable-diffusion'] = 'custom-model'
models['options']['stable-diffusion'].append('custom-model')
config = getConfig()
if 'model' in config and 'stable-diffusion' in config['model']:
models['active']['stable-diffusion'] = config['model']['stable-diffusion']
return models
def getUIPlugins():
@ -274,6 +230,11 @@ def read_web_data(key:str=None):
if config is None:
raise HTTPException(status_code=500, detail="Config file is missing or unreadable")
return JSONResponse(config, headers=NOCACHE_HEADERS)
elif key == 'devices':
config = getConfig()
devices = task_manager.get_devices()
devices['config'] = config.get('render_devices', "auto")
return JSONResponse(devices, headers=NOCACHE_HEADERS)
elif key == 'models':
return JSONResponse(getModels(), headers=NOCACHE_HEADERS)
elif key == 'modifiers': return FileResponse(os.path.join(SD_UI_DIR, 'modifiers.json'), headers=NOCACHE_HEADERS)
@ -282,6 +243,123 @@ def read_web_data(key:str=None):
else:
raise HTTPException(status_code=404, detail=f'Request for unknown {key}') # HTTP404 Not Found
@app.get('/ping') # Get server and optionally session status.
def ping(session_id:str=None):
if task_manager.is_alive() <= 0: # Check that render threads are alive.
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
raise HTTPException(status_code=500, detail='Render thread is dead.')
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
# Alive
response = {'status': str(task_manager.current_state)}
if session_id:
task = task_manager.get_cached_task(session_id, update_ttl=True)
if task:
response['task'] = id(task)
if task.lock.locked():
response['session'] = 'running'
elif isinstance(task.error, StopAsyncIteration):
response['session'] = 'stopped'
elif task.error:
response['session'] = 'error'
elif not task.buffer_queue.empty():
response['session'] = 'buffer'
elif task.response:
response['session'] = 'completed'
else:
response['session'] = 'pending'
response['devices'] = task_manager.get_devices()
return JSONResponse(response, headers=NOCACHE_HEADERS)
def save_model_to_config(ckpt_model_name, vae_model_name):
config = getConfig()
if 'model' not in config:
config['model'] = {}
config['model']['stable-diffusion'] = ckpt_model_name
config['model']['vae'] = vae_model_name
if vae_model_name is None or vae_model_name == "":
del config['model']['vae']
setConfig(config)
def update_render_devices_in_config(config, render_devices):
if render_devices not in ('cpu', 'auto') and not render_devices.startswith('cuda:'):
raise HTTPException(status_code=400, detail=f'Invalid render device requested: {render_devices}')
if render_devices.startswith('cuda:'):
render_devices = render_devices.split(',')
config['render_devices'] = render_devices
@app.post('/render')
def render(req : task_manager.ImageRequest):
try:
save_model_to_config(req.use_stable_diffusion_model, req.use_vae_model)
req.use_stable_diffusion_model = resolve_ckpt_to_use(req.use_stable_diffusion_model)
req.use_vae_model = resolve_vae_to_use(req.use_vae_model)
new_task = task_manager.render(req)
response = {
'status': str(task_manager.current_state),
'queue': len(task_manager.tasks_queue),
'stream': f'/image/stream/{req.session_id}/{id(new_task)}',
'task': id(new_task)
}
return JSONResponse(response, headers=NOCACHE_HEADERS)
except ChildProcessError as e: # Render thread is dead
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
except ConnectionRefusedError as e: # Unstarted task pending, deny queueing more than one.
raise HTTPException(status_code=503, detail=f'Session {req.session_id} has an already pending task.') # HTTP503 Service Unavailable
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get('/image/stream/{session_id:str}/{task_id:int}')
def stream(session_id:str, task_id:int):
#TODO Move to WebSockets ??
task = task_manager.get_cached_task(session_id, update_ttl=True)
if not task: raise HTTPException(status_code=410, detail='No request received.') # HTTP410 Gone
if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
if task.buffer_queue.empty() and not task.lock.locked():
if task.response:
#print(f'Session {session_id} sending cached response')
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
#print(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
@app.get('/image/stop')
def stop(session_id:str=None):
if not session_id:
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
task_manager.current_state_error = StopAsyncIteration('')
return {'OK'}
task = task_manager.get_cached_task(session_id, update_ttl=False)
if not task: raise HTTPException(status_code=404, detail=f'Session {session_id} has no active task.') # HTTP404 Not Found
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Session {session_id} task is already stopped.') # HTTP409 Conflict
task.error = StopAsyncIteration('')
return {'OK'}
@app.get('/image/tmp/{session_id}/{img_id:int}')
def get_image(session_id, img_id):
task = task_manager.get_cached_task(session_id, update_ttl=True)
if not task: raise HTTPException(status_code=410, detail=f'Session {session_id} has not submitted a task.') # HTTP410 Gone
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
try:
img_data = task.temp_images[img_id]
img_data.seek(0)
return StreamingResponse(img_data, media_type='image/jpeg')
except KeyError as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get('/')
def read_root():
return FileResponse(os.path.join(SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
@app.on_event("shutdown")
def shutdown_event(): # Signal render thread to close on shutdown
task_manager.current_state_error = SystemExit('Application shutting down.')
# don't log certain requests
class LogSuppressFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
@ -292,8 +370,25 @@ class LogSuppressFilter(logging.Filter):
return True
logging.getLogger('uvicorn.access').addFilter(LogSuppressFilter())
task_manager.default_model_to_load = get_initial_model_to_load()
task_manager.start_render_thread()
# Start the task_manager
task_manager.default_model_to_load = resolve_ckpt_to_use()
task_manager.default_vae_to_load = resolve_vae_to_use()
def update_render_threads():
config = getConfig()
render_devices = config.get('render_devices', "auto")
active_devices = task_manager.get_devices()['active'].keys()
print('requesting for render_devices', render_devices)
task_manager.update_render_threads(render_devices, active_devices)
update_render_threads()
# start the browser ui
def open_browser():
config = getConfig()
ui = config.get('ui', {})
if ui.get('open_browser_on_start', True):
import webbrowser; webbrowser.open('http://localhost:9000')
open_browser()