forked from extern/easydiffusion
Merge pull request #312 from madrang/guided-upscale
Added Upscale Button
This commit is contained in:
commit
8cb408bc6e
526
ui/media/main.js
526
ui/media/main.js
@ -1,3 +1,4 @@
|
||||
"use strict" // Opt in to a restricted variant of JavaScript
|
||||
const SOUND_ENABLED_KEY = "soundEnabled"
|
||||
const SAVE_TO_DISK_KEY = "saveToDisk"
|
||||
const USE_CPU_KEY = "useCPU"
|
||||
@ -230,14 +231,16 @@ function setStatus(statusType, msg, msgType) {
|
||||
}
|
||||
|
||||
function logMsg(msg, level, outputMsg) {
|
||||
if (level === 'error') {
|
||||
outputMsg.innerHTML = '<span style="color: red">Error: ' + msg + '</span>'
|
||||
} else if (level === 'warn') {
|
||||
outputMsg.innerHTML = '<span style="color: orange">Warning: ' + msg + '</span>'
|
||||
} else {
|
||||
outputMsg.innerText = msg
|
||||
if (outputMsg.hasChildNodes()) {
|
||||
outputMsg.appendChild(document.createElement('br'))
|
||||
}
|
||||
if (level === 'error') {
|
||||
outputMsg.innerHTML += '<span style="color: red">Error: ' + msg + '</span>'
|
||||
} else if (level === 'warn') {
|
||||
outputMsg.innerHTML += '<span style="color: orange">Warning: ' + msg + '</span>'
|
||||
} else {
|
||||
outputMsg.innerText += msg
|
||||
}
|
||||
|
||||
console.log(level, msg)
|
||||
}
|
||||
|
||||
@ -303,28 +306,21 @@ function resizeInpaintingEditor() {
|
||||
inpaintingEditor.setColor(inpaintingEditor.opts.color)
|
||||
}
|
||||
|
||||
function showImages(req, res, outputContainer, livePreview) {
|
||||
function showImages(reqBody, res, outputContainer, livePreview) {
|
||||
let imageItemElements = outputContainer.querySelectorAll('.imgItem')
|
||||
|
||||
if(typeof res != 'object') return
|
||||
res.output.reverse()
|
||||
|
||||
res.output.forEach((result, index) => {
|
||||
if(typeof res != 'object') return
|
||||
|
||||
const imageData = result?.data || result?.path + '?t=' + new Date().getTime(),
|
||||
imageSeed = result?.seed,
|
||||
imageWidth = req.width,
|
||||
imageHeight = req.height;
|
||||
|
||||
const imageData = result?.data || result?.path + '?t=' + new Date().getTime()
|
||||
const imageWidth = reqBody.width
|
||||
const imageHeight = reqBody.height
|
||||
if (!imageData.includes('/')) {
|
||||
// res contained no data for the image, stop execution
|
||||
|
||||
setStatus('request', 'invalid image', 'error')
|
||||
return
|
||||
}
|
||||
|
||||
let imageItemElem = (index < imageItemElements.length ? imageItemElements[index] : null)
|
||||
|
||||
if(!imageItemElem) {
|
||||
imageItemElem = document.createElement('div')
|
||||
imageItemElem.className = 'imgItem'
|
||||
@ -333,33 +329,46 @@ function showImages(req, res, outputContainer, livePreview) {
|
||||
<img/>
|
||||
<div class="imgItemInfo">
|
||||
<span class="imgSeedLabel"></span>
|
||||
<button class="imgUseBtn">Use as Input</button>
|
||||
<button class="imgSaveBtn">Download</button>
|
||||
</div>
|
||||
</div>
|
||||
`
|
||||
|
||||
const useAsInputBtn = imageItemElem.querySelector('.imgUseBtn'),
|
||||
saveImageBtn = imageItemElem.querySelector('.imgSaveBtn');
|
||||
|
||||
useAsInputBtn.addEventListener('click', getUseAsInputHandler(imageItemElem))
|
||||
saveImageBtn.addEventListener('click', getSaveImageHandler(imageItemElem, req['output_format']))
|
||||
|
||||
outputContainer.appendChild(imageItemElem)
|
||||
}
|
||||
|
||||
const imageElem = imageItemElem.querySelector('img'),
|
||||
imageSeedLabel = imageItemElem.querySelector('.imgSeedLabel');
|
||||
|
||||
const imageElem = imageItemElem.querySelector('img')
|
||||
imageElem.src = imageData
|
||||
imageElem.width = parseInt(imageWidth)
|
||||
imageElem.height = parseInt(imageHeight)
|
||||
imageElem.setAttribute('data-seed', imageSeed)
|
||||
|
||||
const imageInfo = imageItemElem.querySelector('.imgItemInfo')
|
||||
imageInfo.style.visibility = (livePreview ? 'hidden' : 'visible')
|
||||
|
||||
imageSeedLabel.innerText = 'Seed: ' + imageSeed
|
||||
if ('seed' in result && !imageElem.hasAttribute('data-seed')) {
|
||||
const req = Object.assign({}, reqBody, {
|
||||
seed: result?.seed || reqBody.seed
|
||||
})
|
||||
imageElem.setAttribute('data-seed', req.seed)
|
||||
const imageSeedLabel = imageItemElem.querySelector('.imgSeedLabel')
|
||||
imageSeedLabel.innerText = 'Seed: ' + req.seed
|
||||
|
||||
const buttons = {
|
||||
'imgUseBtn': { html: 'Use as Input', click: getUseAsInputHandler(imageItemElem) },
|
||||
'imgSaveBtn': { html: 'Download', click: getSaveImageHandler(imageItemElem, req['output_format']) },
|
||||
'imgX2Btn': { html: 'Double Size', click: getStartNewTaskHandler(req, imageItemElem, 'img2img_X2') },
|
||||
'imgRedoBtn': { html: 'Redo', click: getStartNewTaskHandler(req, imageItemElem, 'img2img') },
|
||||
}
|
||||
if (!req.use_upscale) {
|
||||
buttons.upscaleBtn = { html: 'Upscale', click: getStartNewTaskHandler(req, imageItemElem, 'upscale') }
|
||||
}
|
||||
const imgItemInfo = imageItemElem.querySelector('.imgItemInfo')
|
||||
const createButton = function(name, btnInfo) {
|
||||
const newButton = document.createElement('button')
|
||||
newButton.classList.add(name)
|
||||
newButton.classList.add('tasksBtns')
|
||||
newButton.innerHTML = btnInfo.html
|
||||
newButton.addEventListener('click', btnInfo.click)
|
||||
imgItemInfo.appendChild(newButton)
|
||||
}
|
||||
Object.keys(buttons).forEach((name) => createButton(name, buttons[name]))
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
@ -398,6 +407,53 @@ function getSaveImageHandler(imageItemElem, outputFormat) {
|
||||
imgDownload.click()
|
||||
}
|
||||
}
|
||||
function getStartNewTaskHandler(reqBody, imageItemElem, mode) {
|
||||
return function() {
|
||||
if (serverStatus !== 'online') {
|
||||
alert('The server is still starting up..')
|
||||
return
|
||||
}
|
||||
const imageElem = imageItemElem.querySelector('img')
|
||||
const newTaskRequest = getCurrentUserRequest()
|
||||
switch (mode) {
|
||||
case 'img2img':
|
||||
case 'img2img_X2':
|
||||
newTaskRequest.reqBody = Object.assign({}, reqBody, { num_outputs: 1 })
|
||||
if (!newTaskRequest.reqBody.init_image || mode === 'img2img_X2') {
|
||||
newTaskRequest.reqBody.sampler = 'ddim'
|
||||
newTaskRequest.reqBody.prompt_strength = '0.5'
|
||||
newTaskRequest.reqBody.init_image = imageElem.src
|
||||
delete newTaskRequest.reqBody.mask
|
||||
} else {
|
||||
newTaskRequest.reqBody.seed = 1 + newTaskRequest.reqBody.seed
|
||||
}
|
||||
if (mode === 'img2img_X2') {
|
||||
newTaskRequest.reqBody.width = reqBody.width * 2
|
||||
newTaskRequest.reqBody.height = reqBody.height * 2
|
||||
newTaskRequest.reqBody.num_inference_steps = Math.min(100, reqBody.num_inference_steps * 2)
|
||||
if (useUpscalingField.checked) {
|
||||
newTaskRequest.reqBody.use_upscale = upscaleModelField.value
|
||||
} else {
|
||||
delete newTaskRequest.reqBody.use_upscale
|
||||
}
|
||||
}
|
||||
break
|
||||
case 'upscale':
|
||||
newTaskRequest.reqBody = Object.assign({}, reqBody, {
|
||||
num_outputs: 1,
|
||||
//use_face_correction: 'GFPGANv1.3',
|
||||
use_upscale: upscaleModelField.value,
|
||||
})
|
||||
break
|
||||
default:
|
||||
throw new Error("Unknown upscale mode: " + mode)
|
||||
}
|
||||
newTaskRequest.seed = newTaskRequest.reqBody.seed
|
||||
newTaskRequest.numOutputsTotal = 1
|
||||
newTaskRequest.batchCount = 1
|
||||
createTask(newTaskRequest)
|
||||
}
|
||||
}
|
||||
|
||||
// makes a single image. don't call this directly, use makeImage() instead
|
||||
async function doMakeImage(task) {
|
||||
@ -416,10 +472,8 @@ async function doMakeImage(task) {
|
||||
const previewPrompt = task['previewPrompt']
|
||||
const progressBar = task['progressBar']
|
||||
|
||||
let res = ''
|
||||
let seed = reqBody['seed']
|
||||
let numOutputs = parseInt(reqBody['num_outputs'])
|
||||
|
||||
let res = undefined
|
||||
let stepUpdate = undefined
|
||||
try {
|
||||
res = await fetch('/image', {
|
||||
method: 'POST',
|
||||
@ -433,119 +487,134 @@ async function doMakeImage(task) {
|
||||
let textDecoder = new TextDecoder()
|
||||
let finalJSON = ''
|
||||
let prevTime = -1
|
||||
let readComplete = false
|
||||
while (true) {
|
||||
try {
|
||||
let t = new Date().getTime()
|
||||
let t = new Date().getTime()
|
||||
|
||||
let jsonStr = ''
|
||||
if (!readComplete) {
|
||||
const {value, done} = await reader.read()
|
||||
if (done) {
|
||||
readComplete = true
|
||||
}
|
||||
if (done && finalJSON.length <= 0 && !value) {
|
||||
break
|
||||
}
|
||||
|
||||
if (value) {
|
||||
jsonStr = textDecoder.decode(value)
|
||||
}
|
||||
}
|
||||
try {
|
||||
// hack for a middleman buffering all the streaming updates, and unleashing them on the poor browser in one shot.
|
||||
// this results in having to parse JSON like {"step": 1}{"step": 2}{"step": 3}{"ste...
|
||||
// which is obviously invalid and can happen at any point while rendering.
|
||||
// So we need to extract only the next {} section
|
||||
if (finalJSON.length > 0) {
|
||||
// Append new data when required
|
||||
if (jsonStr.length > 0) {
|
||||
jsonStr = finalJSON + jsonStr
|
||||
} else {
|
||||
jsonStr = finalJSON
|
||||
}
|
||||
finalJSON = ''
|
||||
}
|
||||
// Find next delimiter
|
||||
let lastChunkIdx = jsonStr.indexOf('}{')
|
||||
if (lastChunkIdx !== -1) {
|
||||
finalJSON = jsonStr.substring(0, lastChunkIdx + 1)
|
||||
jsonStr = jsonStr.substring(lastChunkIdx + 1)
|
||||
} else {
|
||||
finalJSON = jsonStr
|
||||
jsonStr = ''
|
||||
}
|
||||
// Try to parse
|
||||
stepUpdate = (finalJSON.length > 0 ? JSON.parse(finalJSON) : undefined)
|
||||
finalJSON = jsonStr
|
||||
} catch (e) {
|
||||
if (e instanceof SyntaxError && !readComplete) {
|
||||
finalJSON += jsonStr
|
||||
} else {
|
||||
throw e
|
||||
}
|
||||
}
|
||||
if (readComplete && finalJSON.length <= 0) {
|
||||
break
|
||||
}
|
||||
if (typeof stepUpdate === 'object' && 'step' in stepUpdate) {
|
||||
let batchSize = stepUpdate.total_steps
|
||||
let overallStepCount = stepUpdate.step + task.batchesDone * batchSize
|
||||
let totalSteps = batchCount * batchSize
|
||||
let percent = 100 * (overallStepCount / totalSteps)
|
||||
percent = (percent > 100 ? 100 : percent)
|
||||
percent = percent.toFixed(0)
|
||||
let timeTaken = (prevTime === -1 ? -1 : t - prevTime)
|
||||
|
||||
let jsonStr = textDecoder.decode(value)
|
||||
let stepsRemaining = totalSteps - overallStepCount
|
||||
stepsRemaining = (stepsRemaining < 0 ? 0 : stepsRemaining)
|
||||
let timeRemaining = (timeTaken === -1 ? '' : stepsRemaining * timeTaken) // ms
|
||||
|
||||
try {
|
||||
let stepUpdate = JSON.parse(jsonStr)
|
||||
outputMsg.innerHTML = `Batch ${task.batchesDone+1} of ${batchCount}`
|
||||
outputMsg.innerHTML += `. Generating image(s): ${percent}%`
|
||||
|
||||
if (stepUpdate.step === undefined) {
|
||||
finalJSON += jsonStr
|
||||
} else {
|
||||
let batchSize = stepUpdate.total_steps
|
||||
let overallStepCount = stepUpdate.step + task.batchesDone * batchSize
|
||||
let totalSteps = batchCount * batchSize
|
||||
let percent = 100 * (overallStepCount / totalSteps)
|
||||
percent = (percent > 100 ? 100 : percent)
|
||||
percent = percent.toFixed(0)
|
||||
timeRemaining = (timeTaken !== -1 ? millisecondsToStr(timeRemaining) : '')
|
||||
outputMsg.innerHTML += `. Time remaining (approx): ${timeRemaining}`
|
||||
outputMsg.style.display = 'block'
|
||||
|
||||
stepsRemaining = totalSteps - overallStepCount
|
||||
stepsRemaining = (stepsRemaining < 0 ? 0 : stepsRemaining)
|
||||
timeRemaining = (timeTaken === -1 ? '' : stepsRemaining * timeTaken) // ms
|
||||
|
||||
outputMsg.innerHTML = `Batch ${task.batchesDone+1} of ${batchCount}`
|
||||
outputMsg.innerHTML += `. Generating image(s): ${percent}%`
|
||||
|
||||
timeRemaining = (timeTaken !== -1 ? millisecondsToStr(timeRemaining) : '')
|
||||
|
||||
outputMsg.innerHTML += `. Time remaining (approx): ${timeRemaining}`
|
||||
outputMsg.style.display = 'block'
|
||||
|
||||
if (stepUpdate.output !== undefined) {
|
||||
showImages(reqBody, stepUpdate, outputContainer, true)
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
finalJSON += jsonStr
|
||||
if (stepUpdate.output !== undefined) {
|
||||
showImages(reqBody, stepUpdate, outputContainer, true)
|
||||
}
|
||||
|
||||
prevTime = t
|
||||
} catch (e) {
|
||||
logError('Stable Diffusion had an error. Please check the logs in the command-line window.', res, outputMsg)
|
||||
res = undefined
|
||||
throw e
|
||||
}
|
||||
prevTime = t
|
||||
}
|
||||
|
||||
if (res.status != 200) {
|
||||
if (serverStatus === 'online') {
|
||||
logError('Stable Diffusion had an error: ' + await res.text(), res, outputMsg)
|
||||
} else {
|
||||
logError("Stable Diffusion is still starting up, please wait. If this goes on beyond a few minutes, Stable Diffusion has probably crashed. Please check the error message in the command-line window.", res, outputMsg)
|
||||
}
|
||||
res = undefined
|
||||
progressBar.style.display = 'none'
|
||||
} else {
|
||||
if (finalJSON !== undefined && finalJSON.indexOf('}{') !== -1) {
|
||||
// hack for a middleman buffering all the streaming updates, and unleashing them
|
||||
// on the poor browser in one shot.
|
||||
// this results in having to parse JSON like {"step": 1}{"step": 2}...{"status": "succeeded"..}
|
||||
// which is obviously invalid.
|
||||
// So we need to just extract the last {} section, starting from "status" to the end of the response
|
||||
|
||||
let lastChunkIdx = finalJSON.lastIndexOf('}{')
|
||||
if (lastChunkIdx !== -1) {
|
||||
let remaining = finalJSON.substring(lastChunkIdx)
|
||||
finalJSON = remaining.substring(1)
|
||||
if (typeof stepUpdate === 'object' && stepUpdate.status !== 'succeeded') {
|
||||
let msg = ''
|
||||
if ('detail' in stepUpdate && typeof stepUpdate.detail === 'string' && stepUpdate.detail.length > 0) {
|
||||
msg = stepUpdate.detail
|
||||
if (msg.toLowerCase().includes('out of memory')) {
|
||||
msg += `<br/><br/>
|
||||
<b>Suggestions</b>:
|
||||
<br/>
|
||||
1. If you have set an initial image, please try reducing its dimension to ${MAX_INIT_IMAGE_DIMENSION}x${MAX_INIT_IMAGE_DIMENSION} or smaller.<br/>
|
||||
2. Try disabling the '<em>Turbo mode</em>' under '<em>Advanced Settings</em>'.<br/>
|
||||
3. Try generating a smaller image.<br/>`
|
||||
}
|
||||
} else {
|
||||
msg = `Unexpected Read Error:<br/><pre>StepUpdate:${JSON.stringify(stepUpdate, undefined, 4)}</pre>`
|
||||
}
|
||||
|
||||
res = JSON.parse(finalJSON)
|
||||
|
||||
if (res.status !== 'succeeded') {
|
||||
let msg = ''
|
||||
if (res.detail !== undefined) {
|
||||
msg = res.detail
|
||||
|
||||
if (msg.toLowerCase().includes('out of memory')) {
|
||||
msg += `<br/><br/>
|
||||
<b>Suggestions</b>:
|
||||
<br/>
|
||||
1. If you have set an initial image, please try reducing its dimension to ${MAX_INIT_IMAGE_DIMENSION}x${MAX_INIT_IMAGE_DIMENSION} or smaller.<br/>
|
||||
2. Try disabling the '<em>Turbo mode</em>' under '<em>Advanced Settings</em>'.<br/>
|
||||
3. Try generating a smaller image.<br/>`
|
||||
}
|
||||
} else {
|
||||
msg = res
|
||||
logError(msg, res, outputMsg)
|
||||
return false
|
||||
}
|
||||
if (typeof stepUpdate !== 'object' || !res || res.status != 200) {
|
||||
if (serverStatus !== 'online') {
|
||||
logError("Stable Diffusion is still starting up, please wait. If this goes on beyond a few minutes, Stable Diffusion has probably crashed. Please check the error message in the command-line window.", res, outputMsg)
|
||||
} else if (typeof res === 'object') {
|
||||
let msg = 'Stable Diffusion had an error reading the response: '
|
||||
try { // 'Response': body stream already read
|
||||
msg += 'Read: ' + await res.text()
|
||||
} catch(e) {
|
||||
msg += 'No error response. '
|
||||
}
|
||||
if (finalJSON) {
|
||||
msg += 'Buffered data: ' + finalJSON
|
||||
}
|
||||
logError(msg, res, outputMsg)
|
||||
res = undefined
|
||||
} else {
|
||||
msg = `Unexpected Read Error:<br/><pre>Response:${res}<br/>StepUpdate:${typeof stepUpdate === 'object' ? JSON.stringify(stepUpdate, undefined, 4) : stepUpdate}</pre>`
|
||||
}
|
||||
progressBar.style.display = 'none'
|
||||
return false
|
||||
}
|
||||
|
||||
lastPromptUsed = reqBody['prompt']
|
||||
showImages(reqBody, stepUpdate, outputContainer, false)
|
||||
} catch (e) {
|
||||
console.log('request error', e)
|
||||
logError('Stable Diffusion had an error. Please check the logs in the command-line window. <br/><br/>' + e + '<br/><pre>' + e.stack + '</pre>', res, outputMsg)
|
||||
setStatus('request', 'error', 'error')
|
||||
progressBar.style.display = 'none'
|
||||
res = undefined
|
||||
return false
|
||||
}
|
||||
|
||||
if (!res) return false
|
||||
|
||||
lastPromptUsed = reqBody['prompt']
|
||||
|
||||
showImages(reqBody, res, outputContainer, false)
|
||||
|
||||
return true
|
||||
}
|
||||
|
||||
@ -588,13 +657,27 @@ async function checkTasks() {
|
||||
task['taskStatusLabel'].innerText = "Processing"
|
||||
task['taskStatusLabel'].className += " activeTaskLabel"
|
||||
|
||||
const genSeeds = Boolean(typeof task.reqBody.seed !== 'number' || (task.reqBody.seed === task.seed && task.numOutputsTotal > 1))
|
||||
const startSeed = task.reqBody.seed || task.seed
|
||||
for (let i = 0; i < task.batchCount; i++) {
|
||||
task.reqBody['seed'] = task.seed + (i * task.reqBody['num_outputs'])
|
||||
let newTask = task;
|
||||
if (task.batchCount > 1) {
|
||||
// Each output render batch needs it's own task instance to avoid altering the other runs after they are completed.
|
||||
newTask = Object.assign({}, task, {
|
||||
reqBody: Object.assign({}, task.reqBody)
|
||||
})
|
||||
}
|
||||
if (genSeeds) {
|
||||
newTask.reqBody.seed = startSeed + (i * newTask.reqBody.num_outputs)
|
||||
newTask.seed = newTask.reqBody.seed
|
||||
} else if (newTask.seed !== newTask.reqBody.seed) {
|
||||
newTask.seed = newTask.reqBody.seed
|
||||
}
|
||||
|
||||
let success = await doMakeImage(task)
|
||||
let success = await doMakeImage(newTask)
|
||||
task.batchesDone++
|
||||
|
||||
if (!task.isProcessing) {
|
||||
if (!task.isProcessing || !success) {
|
||||
break
|
||||
}
|
||||
|
||||
@ -612,7 +695,6 @@ async function checkTasks() {
|
||||
|
||||
if (successCount === task.batchCount) {
|
||||
task.outputMsg.innerText = 'Processed ' + task.numOutputsTotal + ' images in ' + time + ' seconds'
|
||||
|
||||
// setStatus('request', 'done', 'success')
|
||||
} else {
|
||||
if (task.outputMsg.innerText.toLowerCase().indexOf('error') === -1) {
|
||||
@ -626,112 +708,107 @@ async function checkTasks() {
|
||||
|
||||
currentTask = null
|
||||
|
||||
if (typeof requestIdleCallback === 'function') {
|
||||
requestIdleCallback(checkTasks, { timeout: 30 * 1000 })
|
||||
} else {
|
||||
setTimeout(checkTasks, 500)
|
||||
}
|
||||
}
|
||||
if (typeof requestIdleCallback === 'function') {
|
||||
requestIdleCallback(checkTasks, { timeout: 30 * 1000 })
|
||||
} else {
|
||||
setTimeout(checkTasks, 10)
|
||||
}
|
||||
setTimeout(checkTasks, 0)
|
||||
|
||||
function getCurrentUserRequest() {
|
||||
const numOutputsTotal = parseInt(numOutputsTotalField.value)
|
||||
const numOutputsParallel = parseInt(numOutputsParallelField.value)
|
||||
const seed = (randomSeedField.checked ? Math.floor(Math.random() * 10000000) : parseInt(seedField.value))
|
||||
|
||||
const newTask = {
|
||||
isProcessing: false,
|
||||
stopped: false,
|
||||
batchesDone: 0,
|
||||
numOutputsTotal: numOutputsTotal,
|
||||
batchCount: Math.ceil(numOutputsTotal / numOutputsParallel),
|
||||
seed,
|
||||
|
||||
reqBody: {
|
||||
session_id: sessionId,
|
||||
seed,
|
||||
negative_prompt: negativePromptField.value.trim(),
|
||||
num_outputs: numOutputsParallel,
|
||||
num_inference_steps: numInferenceStepsField.value,
|
||||
guidance_scale: guidanceScaleField.value,
|
||||
width: widthField.value,
|
||||
height: heightField.value,
|
||||
// allow_nsfw: allowNSFWField.checked,
|
||||
turbo: turboField.checked,
|
||||
use_cpu: useCPUField.checked,
|
||||
use_full_precision: useFullPrecisionField.checked,
|
||||
use_stable_diffusion_model: stableDiffusionModelField.value,
|
||||
stream_progress_updates: true,
|
||||
stream_image_progress: (numOutputsTotal > 50 ? false : streamImageProgressField.checked),
|
||||
show_only_filtered_image: showOnlyFilteredImageField.checked,
|
||||
output_format: outputFormatField.value
|
||||
}
|
||||
}
|
||||
if (IMAGE_REGEX.test(initImagePreview.src)) {
|
||||
newTask.reqBody.init_image = initImagePreview.src
|
||||
newTask.reqBody.prompt_strength = promptStrengthField.value
|
||||
|
||||
// if (IMAGE_REGEX.test(maskImagePreview.src)) {
|
||||
// newTask.reqBody.mask = maskImagePreview.src
|
||||
// }
|
||||
if (maskSetting.checked) {
|
||||
newTask.reqBody.mask = inpaintingEditor.getImg()
|
||||
}
|
||||
newTask.reqBody.sampler = 'ddim'
|
||||
} else {
|
||||
newTask.reqBody.sampler = samplerField.value
|
||||
}
|
||||
if (saveToDiskField.checked && diskPathField.value.trim() !== '') {
|
||||
newTask.reqBody.save_to_disk_path = diskPathField.value.trim()
|
||||
}
|
||||
if (useFaceCorrectionField.checked) {
|
||||
newTask.reqBody.use_face_correction = 'GFPGANv1.3'
|
||||
}
|
||||
if (useUpscalingField.checked) {
|
||||
newTask.reqBody.use_upscale = upscaleModelField.value
|
||||
}
|
||||
return newTask
|
||||
}
|
||||
|
||||
function makeImage() {
|
||||
if (serverStatus !== 'online') {
|
||||
alert('The server is still starting up..')
|
||||
return
|
||||
}
|
||||
|
||||
let prompts = getPrompts()
|
||||
prompts.forEach(createTask)
|
||||
const taskTemplate = getCurrentUserRequest()
|
||||
const newTaskRequests = []
|
||||
getPrompts().forEach((prompt) => newTaskRequests.push(Object.assign({}, taskTemplate, {
|
||||
reqBody: Object.assign({ prompt: prompt }, taskTemplate.reqBody)
|
||||
})))
|
||||
newTaskRequests.forEach(createTask)
|
||||
|
||||
initialText.style.display = 'none'
|
||||
}
|
||||
|
||||
function createTask(prompt) {
|
||||
let task = {
|
||||
stopped: false,
|
||||
batchesDone: 0
|
||||
}
|
||||
|
||||
let seed = (randomSeedField.checked ? Math.floor(Math.random() * 10000000) : parseInt(seedField.value))
|
||||
let numOutputsTotal = parseInt(numOutputsTotalField.value)
|
||||
let numOutputsParallel = parseInt(numOutputsParallelField.value)
|
||||
let batchCount = Math.ceil(numOutputsTotal / numOutputsParallel)
|
||||
let batchSize = numOutputsParallel
|
||||
|
||||
let streamImageProgress = (numOutputsTotal > 50 ? false : streamImageProgressField.checked)
|
||||
|
||||
if (activeTags.length > 0) {
|
||||
let promptTags = activeTags.map(x => x.name).join(", ")
|
||||
prompt += ", " + promptTags
|
||||
}
|
||||
|
||||
let reqBody = {
|
||||
session_id: sessionId,
|
||||
prompt: prompt,
|
||||
negative_prompt: negativePromptField.value.trim(),
|
||||
num_outputs: batchSize,
|
||||
num_inference_steps: numInferenceStepsField.value,
|
||||
guidance_scale: guidanceScaleField.value,
|
||||
width: widthField.value,
|
||||
height: heightField.value,
|
||||
// allow_nsfw: allowNSFWField.checked,
|
||||
turbo: turboField.checked,
|
||||
use_cpu: useCPUField.checked,
|
||||
use_full_precision: useFullPrecisionField.checked,
|
||||
use_stable_diffusion_model: stableDiffusionModelField.value,
|
||||
stream_progress_updates: true,
|
||||
stream_image_progress: streamImageProgress,
|
||||
show_only_filtered_image: showOnlyFilteredImageField.checked,
|
||||
output_format: outputFormatField.value
|
||||
}
|
||||
|
||||
if (IMAGE_REGEX.test(initImagePreview.src)) {
|
||||
reqBody['init_image'] = initImagePreview.src
|
||||
reqBody['prompt_strength'] = promptStrengthField.value
|
||||
|
||||
// if (IMAGE_REGEX.test(maskImagePreview.src)) {
|
||||
// reqBody['mask'] = maskImagePreview.src
|
||||
// }
|
||||
if (maskSetting.checked) {
|
||||
reqBody['mask'] = inpaintingEditor.getImg()
|
||||
}
|
||||
|
||||
reqBody['sampler'] = 'ddim'
|
||||
} else {
|
||||
reqBody['sampler'] = samplerField.value
|
||||
}
|
||||
|
||||
if (saveToDiskField.checked && diskPathField.value.trim() !== '') {
|
||||
reqBody['save_to_disk_path'] = diskPathField.value.trim()
|
||||
}
|
||||
|
||||
if (useFaceCorrectionField.checked) {
|
||||
reqBody['use_face_correction'] = 'GFPGANv1.3'
|
||||
}
|
||||
|
||||
if (useUpscalingField.checked) {
|
||||
reqBody['use_upscale'] = upscaleModelField.value
|
||||
}
|
||||
|
||||
let taskConfig = `Seed: ${seed}, Sampler: ${reqBody['sampler']}, Inference Steps: ${numInferenceStepsField.value}, Guidance Scale: ${guidanceScaleField.value}, Model: ${stableDiffusionModelField.value}`
|
||||
|
||||
function createTask(task) {
|
||||
let taskConfig = `Seed: ${task.seed}, Sampler: ${task.reqBody.sampler}, Inference Steps: ${task.reqBody.num_inference_steps}, Guidance Scale: ${task.reqBody.guidance_scale}, Model: ${task.reqBody.use_stable_diffusion_model}`
|
||||
if (negativePromptField.value.trim() !== '') {
|
||||
taskConfig += `, Negative Prompt: ${negativePromptField.value.trim()}`
|
||||
taskConfig += `, Negative Prompt: ${task.reqBody.negative_prompt}`
|
||||
}
|
||||
|
||||
if (reqBody['init_image'] !== undefined) {
|
||||
taskConfig += `, Prompt Strength: ${promptStrengthField.value}`
|
||||
if (task.reqBody.init_image !== undefined) {
|
||||
taskConfig += `, Prompt Strength: ${task.reqBody.prompt_strength}`
|
||||
}
|
||||
|
||||
if (useFaceCorrectionField.checked) {
|
||||
taskConfig += `, Fix Faces: ${reqBody['use_face_correction']}`
|
||||
if (task.reqBody.use_face_correction) {
|
||||
taskConfig += `, Fix Faces: ${task.reqBody.use_face_correction}`
|
||||
}
|
||||
|
||||
if (useUpscalingField.checked) {
|
||||
taskConfig += `, Upscale: ${reqBody['use_upscale']}`
|
||||
if (task.reqBody.use_upscale) {
|
||||
taskConfig += `, Upscale: ${task.reqBody.use_upscale}`
|
||||
}
|
||||
|
||||
task['reqBody'] = reqBody
|
||||
task['seed'] = seed
|
||||
task['batchCount'] = batchCount
|
||||
task['isProcessing'] = false
|
||||
|
||||
let taskEntry = document.createElement('div')
|
||||
taskEntry.className = 'imageTaskContainer'
|
||||
taskEntry.innerHTML = ` <div class="taskStatusLabel">Enqueued</div>
|
||||
@ -746,7 +823,6 @@ function createTask(prompt) {
|
||||
|
||||
createCollapsibles(taskEntry)
|
||||
|
||||
task['numOutputsTotal'] = numOutputsTotal
|
||||
task['taskStatusLabel'] = taskEntry.querySelector('.taskStatusLabel')
|
||||
task['outputContainer'] = taskEntry.querySelector('.img-preview')
|
||||
task['outputMsg'] = taskEntry.querySelector('.outputMsg')
|
||||
@ -774,7 +850,7 @@ function createTask(prompt) {
|
||||
|
||||
imagePreview.insertBefore(taskEntry, previewTools.nextSibling)
|
||||
|
||||
task['previewPrompt'].innerText = prompt
|
||||
task.previewPrompt.innerText = task.reqBody.prompt
|
||||
|
||||
taskQueue.unshift(task)
|
||||
}
|
||||
@ -784,7 +860,6 @@ function getPrompts() {
|
||||
prompts = prompts.split('\n')
|
||||
|
||||
let promptsToMake = []
|
||||
|
||||
prompts.forEach(prompt => {
|
||||
prompt = prompt.trim()
|
||||
if (prompt === '') {
|
||||
@ -793,7 +868,6 @@ function getPrompts() {
|
||||
|
||||
let promptMatrix = prompt.split('|')
|
||||
prompt = promptMatrix.shift().trim()
|
||||
|
||||
promptsToMake.push(prompt)
|
||||
|
||||
promptMatrix = promptMatrix.map(p => p.trim())
|
||||
@ -804,8 +878,8 @@ function getPrompts() {
|
||||
promptsToMake = promptsToMake.concat(promptPermutations)
|
||||
}
|
||||
})
|
||||
|
||||
return promptsToMake
|
||||
const promptTags = (activeTags.length > 0 ? activeTags.map(x => x.name).join(", ") : "")
|
||||
return promptsToMake.map((prompt) => `${prompt}, ${promptTags}`)
|
||||
}
|
||||
|
||||
function permutePrompts(promptBase, promptMatrix) {
|
||||
@ -1047,7 +1121,7 @@ useBetaChannelField.addEventListener('click', async function(e) {
|
||||
async function getAppConfig() {
|
||||
try {
|
||||
let res = await fetch('/app_config')
|
||||
config = await res.json()
|
||||
const config = await res.json()
|
||||
|
||||
if (config.update_branch === 'beta') {
|
||||
useBetaChannelField.checked = true
|
||||
@ -1063,7 +1137,7 @@ async function getAppConfig() {
|
||||
async function getModels() {
|
||||
try {
|
||||
let res = await fetch('/models')
|
||||
models = await res.json()
|
||||
const models = await res.json()
|
||||
|
||||
let activeModel = models['active']
|
||||
let modelOptions = models['options']
|
||||
@ -1081,7 +1155,7 @@ async function getModels() {
|
||||
stableDiffusionModelField.appendChild(modelOption)
|
||||
})
|
||||
|
||||
console.log('get models response', config)
|
||||
console.log('get models response', models)
|
||||
} catch (e) {
|
||||
console.log('get models error', e)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user