Merge pull request #1344 from easydiffusion/beta

Beta
This commit is contained in:
cmdr2 2023-06-13 17:08:46 +05:30 committed by GitHub
commit 8ced5b7199
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 824 additions and 233 deletions

View File

@ -22,6 +22,15 @@
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
### Detailed changelog
* 2.5.41 - 13 Jun 2023 - Fix multi-gpu bug with "low" VRAM usage mode while generating images.
* 2.5.41 - 12 Jun 2023 - Fix multi-gpu bug with CodeFormer.
* 2.5.41 - 6 Jun 2023 - Allow changing the strength of CodeFormer, and slightly improved styling of the CodeFormer options.
* 2.5.41 - 5 Jun 2023 - Allow sharing an Easy Diffusion instance via https://try.cloudflare.com/ . You can find this option at the bottom of the Settings tab. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - Show an option to download for tiled images. Shows a button on the generated image. Creates larger images by tiling them with the image generated by Easy Diffusion. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - (beta-only) Allow LoRA strengths between -2 and 2. Thanks @ogmaresca.
* 2.5.40 - 5 Jun 2023 - Reduce the VRAM usage of Latent Upscaling when using "balanced" VRAM usage mode.
* 2.5.40 - 5 Jun 2023 - Fix the "realesrgan" key error when using CodeFormer with more than 1 image in a batch.
* 2.5.40 - 3 Jun 2023 - Added CodeFormer as another option for fixing faces and eyes. CodeFormer tends to perform better than GFPGAN for many images. Thanks @patriceac for the implementation, and for contacting the CodeFormer team (who were supportive of it being integrated into Easy Diffusion).
* 2.5.39 - 25 May 2023 - (beta-only) Seamless Tiling - make seamlessly tiled images, e.g. rock and grass textures. Thanks @JeLuf.
* 2.5.38 - 24 May 2023 - Better reporting of errors, and show an explanation if the user cannot disable the "Use CPU" setting.
* 2.5.38 - 23 May 2023 - Add Latent Upscaler as another option for upscaling images. Thanks @JeLuf for the implementation of the Latent Upscaler model.

View File

@ -1,101 +0,0 @@
# this script runs inside the legacy "stable-diffusion" folder
from sdkit.models import download_model, get_model_info_from_db
from sdkit.utils import hash_file_quick
import os
import shutil
from glob import glob
import traceback
models_base_dir = os.path.abspath(os.path.join("..", "models"))
models_to_check = {
"stable-diffusion": [
{"file_name": "sd-v1-4.ckpt", "model_id": "1.4"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
],
}
MODEL_EXTENSIONS = { # copied from easydiffusion/model_manager.py
"stable-diffusion": [".ckpt", ".safetensors"],
"vae": [".vae.pt", ".ckpt", ".safetensors"],
"hypernetwork": [".pt", ".safetensors"],
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors"],
}
def download_if_necessary(model_type: str, file_name: str, model_id: str):
model_path = os.path.join(models_base_dir, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type)
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=models_base_dir)
def init():
migrate_legacy_model_location()
for model_type, models in models_to_check.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
fail(model_type)
print(model_type, "model(s) found.")
### utilities
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{models_base_dir}/{model_type}/**/*{ext}", recursive=True)):
return True
return False
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in models_to_check.items():
for model in models:
file_name = model["file_name"]
if os.path.exists(file_name):
dest_dir = os.path.join(models_base_dir, model_type)
os.makedirs(dest_dir, exist_ok=True)
shutil.move(file_name, os.path.join(dest_dir, file_name))
def fail(model_name):
print(
f"""Error downloading the {model_name} model. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks!"""
)
exit(1)
### start
init()

View File

@ -18,13 +18,15 @@ os_name = platform.system()
modules_to_check = {
"torch": ("1.11.0", "1.13.1", "2.0.0"),
"torchvision": ("0.12.0", "0.14.1", "0.15.1"),
"sdkit": "1.0.98",
"sdkit": "1.0.106",
"stable-diffusion-sdkit": "2.1.4",
"rich": "12.6.0",
"uvicorn": "0.19.0",
"fastapi": "0.85.1",
"pycloudflared": "0.2.0",
# "xformers": "0.0.16",
}
modules_to_log = ["torch", "torchvision", "sdkit", "stable-diffusion-sdkit"]
def version(module_name: str) -> str:
@ -89,7 +91,8 @@ def init():
traceback.print_exc()
fail(module_name)
print(f"{module_name}: {version(module_name)}")
if module_name in modules_to_log:
print(f"{module_name}: {version(module_name)}")
### utilities

View File

@ -39,6 +39,8 @@ if [ "$0" == "bash" ]; then
export PYTHONPATH="$(pwd)/stable-diffusion/env/lib/python3.8/site-packages"
fi
export PYTHONNOUSERSITE=y
which python
python --version

View File

@ -67,7 +67,6 @@ if "%update_branch%"=="" (
@xcopy sd-ui-files\ui ui /s /i /Y /q
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\check_models.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
@copy "sd-ui-files\scripts\Developer Console.cmd" . /Y

View File

@ -50,7 +50,6 @@ cp -Rf sd-ui-files/ui .
cp sd-ui-files/scripts/on_sd_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/check_models.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
cp sd-ui-files/scripts/start.sh .
cp sd-ui-files/scripts/developer_console.sh .

View File

@ -5,7 +5,6 @@
@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\check_models.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
if exist "%cd%\profile" (
@ -79,13 +78,6 @@ call WHERE uvicorn > .tmp
@echo conda_sd_ui_deps_installed >> ..\scripts\install_status.txt
)
@rem Download the required models
call python ..\scripts\check_models.py
if "%ERRORLEVEL%" NEQ "0" (
pause
exit /b
)
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
@echo sd_weights_downloaded >> ..\scripts\install_status.txt

View File

@ -4,7 +4,6 @@ cp sd-ui-files/scripts/functions.sh scripts/
cp sd-ui-files/scripts/on_env_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/check_models.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
source ./scripts/functions.sh
@ -51,12 +50,6 @@ if ! command -v uvicorn &> /dev/null; then
fail "UI packages not found!"
fi
# Download the required models
if ! python ../scripts/check_models.py; then
read -p "Press any key to continue"
exit 1
fi
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
echo sd_weights_downloaded >> ../scripts/install_status.txt
echo sd_install_complete >> ../scripts/install_status.txt

View File

@ -90,7 +90,7 @@ def init():
os.makedirs(USER_SERVER_PLUGINS_DIR, exist_ok=True)
# https://pytorch.org/docs/stable/storage.html
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
load_server_plugins()
@ -221,12 +221,41 @@ def open_browser():
webbrowser.open(f"http://localhost:{port}")
Console().print(Panel(
"\n" +
"[white]Easy Diffusion is ready to serve requests.\n\n" +
"A new browser tab should have been opened by now.\n" +
f"If not, please open your web browser and navigate to [bold yellow underline]http://localhost:{port}/\n",
title="Easy Diffusion is ready", style="bold yellow on blue"))
Console().print(
Panel(
"\n"
+ "[white]Easy Diffusion is ready to serve requests.\n\n"
+ "A new browser tab should have been opened by now.\n"
+ f"If not, please open your web browser and navigate to [bold yellow underline]http://localhost:{port}/\n",
title="Easy Diffusion is ready",
style="bold yellow on blue",
)
)
def fail_and_die(fail_type: str, data: str):
suggestions = [
"Run this installer again.",
"If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB",
"If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues",
]
if fail_type == "model_download":
fail_label = f"Error downloading the {data} model"
suggestions.insert(
1,
"If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.",
)
else:
fail_label = "Error while installing Easy Diffusion"
msg = [f"{fail_label}. Sorry about that, please try to:"]
for i, suggestion in enumerate(suggestions):
msg.append(f"{i+1}. {suggestion}")
msg.append("Thanks!")
print("\n".join(msg))
exit(1)
def get_image_modifiers():

View File

@ -1,10 +1,14 @@
import os
import shutil
from glob import glob
import traceback
from easydiffusion import app
from easydiffusion.types import TaskData
from easydiffusion.utils import log
from sdkit import Context
from sdkit.models import load_model, scan_model, unload_model
from sdkit.models import load_model, scan_model, unload_model, download_model, get_model_info_from_db
from sdkit.utils import hash_file_quick
KNOWN_MODEL_TYPES = [
"stable-diffusion",
@ -13,6 +17,7 @@ KNOWN_MODEL_TYPES = [
"gfpgan",
"realesrgan",
"lora",
"codeformer",
]
MODEL_EXTENSIONS = {
"stable-diffusion": [".ckpt", ".safetensors"],
@ -21,14 +26,22 @@ MODEL_EXTENSIONS = {
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors"],
"codeformer": [".pth"],
}
DEFAULT_MODELS = {
"stable-diffusion": [ # needed to support the legacy installations
"custom-model", # only one custom model file was supported initially, creatively named 'custom-model'
"sd-v1-4", # Default fallback.
"stable-diffusion": [
{"file_name": "sd-v1-4.ckpt", "model_id": "1.4"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
],
"gfpgan": ["GFPGANv1.3"],
"realesrgan": ["RealESRGAN_x4plus"],
}
MODELS_TO_LOAD_ON_START = ["stable-diffusion", "vae", "hypernetwork", "lora"]
@ -37,6 +50,8 @@ known_models = {}
def init():
make_model_folders()
migrate_legacy_model_location() # if necessary
download_default_models_if_necessary()
getModels() # run this once, to cache the picklescan results
@ -45,7 +60,7 @@ def load_default_models(context: Context):
# init default model paths
for model_type in MODELS_TO_LOAD_ON_START:
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type)
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type, fail_if_not_found=False)
try:
load_model(
context,
@ -57,7 +72,12 @@ def load_default_models(context: Context):
del context.model_load_errors[model_type]
except Exception as e:
log.error(f"[red]Error while loading {model_type} model: {context.model_paths[model_type]}[/red]")
log.exception(e)
if "DefaultCPUAllocator: not enough memory" in str(e):
log.error(
f"[red]Your PC is low on system RAM. Please add some virtual memory (or swap space) by following the instructions at this link: https://www.ibm.com/docs/en/opw/8.2.0?topic=tuning-optional-increasing-paging-file-size-windows-computers[/red]"
)
else:
log.exception(e)
del context.model_paths[model_type]
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
@ -70,12 +90,12 @@ def unload_all(context: Context):
del context.model_load_errors[model_type]
def resolve_model_to_use(model_name: str = None, model_type: str = None):
def resolve_model_to_use(model_name: str = None, model_type: str = None, fail_if_not_found: bool = True):
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
default_models = DEFAULT_MODELS.get(model_type, [])
config = app.getConfig()
model_dirs = [os.path.join(app.MODELS_DIR, model_type), app.SD_DIR]
model_dir = os.path.join(app.MODELS_DIR, model_type)
if not model_name: # When None try user configured model.
# config = getConfig()
if "model" in config and model_type in config["model"]:
@ -83,45 +103,42 @@ def resolve_model_to_use(model_name: str = None, model_type: str = None):
if model_name:
# Check models directory
models_dir_path = os.path.join(app.MODELS_DIR, model_type, model_name)
model_path = os.path.join(model_dir, model_name)
if os.path.exists(model_path):
return model_path
for model_extension in model_extensions:
if os.path.exists(models_dir_path + model_extension):
return models_dir_path + model_extension
if os.path.exists(model_path + model_extension):
return model_path + model_extension
if os.path.exists(model_name + model_extension):
return os.path.abspath(model_name + model_extension)
# Default locations
if model_name in default_models:
default_model_path = os.path.join(app.SD_DIR, model_name)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
return default_model_path + model_extension
# Can't find requested model, check the default paths.
for default_model in default_models:
for model_dir in model_dirs:
default_model_path = os.path.join(model_dir, default_model)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}"
)
return default_model_path + model_extension
if model_type == "stable-diffusion" and not fail_if_not_found:
for default_model in default_models:
default_model_path = os.path.join(model_dir, default_model["file_name"])
if os.path.exists(default_model_path):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}. Using the default one: {default_model_path}"
)
return default_model_path
return None
if model_name and fail_if_not_found:
raise Exception(f"Could not find the desired model {model_name}! Is it present in the {model_dir} folder?")
def reload_models_if_necessary(context: Context, task_data: TaskData):
use_upscale_lower = task_data.use_upscale.lower() if task_data.use_upscale else ""
face_fix_lower = task_data.use_face_correction.lower() if task_data.use_face_correction else ""
upscale_lower = task_data.use_upscale.lower() if task_data.use_upscale else ""
model_paths_in_req = {
"stable-diffusion": task_data.use_stable_diffusion_model,
"vae": task_data.use_vae_model,
"hypernetwork": task_data.use_hypernetwork_model,
"gfpgan": task_data.use_face_correction,
"realesrgan": task_data.use_upscale if "realesrgan" in use_upscale_lower else None,
"latent_upscaler": True if task_data.use_upscale == "latent_upscaler" else None,
"codeformer": task_data.use_face_correction if "codeformer" in face_fix_lower else None,
"gfpgan": task_data.use_face_correction if "gfpgan" in face_fix_lower else None,
"realesrgan": task_data.use_upscale if "realesrgan" in upscale_lower else None,
"latent_upscaler": True if "latent_upscaler" in upscale_lower else None,
"nsfw_checker": True if task_data.block_nsfw else None,
"lora": task_data.use_lora_model,
}
@ -131,6 +148,13 @@ def reload_models_if_necessary(context: Context, task_data: TaskData):
if context.model_paths.get(model_type) != path
}
if task_data.codeformer_upscale_faces:
if "realesrgan" not in models_to_reload and "realesrgan" not in context.models:
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
models_to_reload["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
elif "realesrgan" in models_to_reload and models_to_reload["realesrgan"] is None:
del models_to_reload["realesrgan"] # don't unload realesrgan
if set_vram_optimizations(context) or set_clip_skip(context, task_data): # reload SD
models_to_reload["stable-diffusion"] = model_paths_in_req["stable-diffusion"]
@ -157,7 +181,13 @@ def resolve_model_paths(task_data: TaskData):
task_data.use_lora_model = resolve_model_to_use(task_data.use_lora_model, model_type="lora")
if task_data.use_face_correction:
task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, "gfpgan")
if "gfpgan" in task_data.use_face_correction.lower():
model_type = "gfpgan"
elif "codeformer" in task_data.use_face_correction.lower():
model_type = "codeformer"
download_if_necessary("codeformer", "codeformer.pth", "codeformer-0.1.0")
task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, model_type)
if task_data.use_upscale and "realesrgan" in task_data.use_upscale.lower():
task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, "realesrgan")
@ -167,7 +197,31 @@ def fail_if_models_did_not_load(context: Context):
if model_type in context.model_load_errors:
e = context.model_load_errors[model_type]
raise Exception(f"Could not load the {model_type} model! Reason: " + e)
# concat 'e', don't use in format string (injection attack)
def download_default_models_if_necessary():
for model_type, models in DEFAULT_MODELS.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
app.fail_and_die(fail_type="model_download", data=model_type)
print(model_type, "model(s) found.")
def download_if_necessary(model_type: str, file_name: str, model_id: str):
model_path = os.path.join(app.MODELS_DIR, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type)
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=app.MODELS_DIR)
def set_vram_optimizations(context: Context):
@ -181,6 +235,26 @@ def set_vram_optimizations(context: Context):
return False
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in DEFAULT_MODELS.items():
for model in models:
file_name = model["file_name"]
legacy_path = os.path.join(app.SD_DIR, file_name)
if os.path.exists(legacy_path):
shutil.move(legacy_path, os.path.join(app.MODELS_DIR, model_type, file_name))
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{app.MODELS_DIR}/{model_type}/**/*{ext}", recursive=True)):
return True
return False
def set_clip_skip(context: Context, task_data: TaskData):
clip_skip = task_data.clip_skip
@ -238,17 +312,12 @@ def is_malicious_model(file_path):
def getModels():
models = {
"active": {
"stable-diffusion": "sd-v1-4",
"vae": "",
"hypernetwork": "",
"lora": "",
},
"options": {
"stable-diffusion": ["sd-v1-4"],
"vae": [],
"hypernetwork": [],
"lora": [],
"codeformer": ["codeformer"],
},
}
@ -309,9 +378,4 @@ def getModels():
if models_scanned > 0:
log.info(f"[green]Scanned {models_scanned} models. Nothing infected[/]")
# legacy
custom_weight_path = os.path.join(app.SD_DIR, "custom-model.ckpt")
if os.path.exists(custom_weight_path):
models["options"]["stable-diffusion"].append("custom-model")
return models

View File

@ -7,10 +7,12 @@ from easydiffusion import device_manager
from easydiffusion.types import GenerateImageRequest
from easydiffusion.types import Image as ResponseImage
from easydiffusion.types import Response, TaskData, UserInitiatedStop
from easydiffusion.model_manager import DEFAULT_MODELS, resolve_model_to_use
from easydiffusion.utils import get_printable_request, log, save_images_to_disk
from sdkit import Context
from sdkit.filter import apply_filters
from sdkit.generate import generate_images
from sdkit.models import load_model
from sdkit.utils import (
diffusers_latent_samples_to_images,
gc,
@ -34,6 +36,7 @@ def init(device):
context.temp_images = {}
context.partial_x_samples = None
context.model_load_errors = {}
context.enable_codeformer = True
from easydiffusion import app
@ -156,32 +159,51 @@ def filter_images(req: GenerateImageRequest, task_data: TaskData, images: list,
if user_stopped:
return images
filters_to_apply = []
filter_params = {}
if task_data.block_nsfw:
filters_to_apply.append("nsfw_checker")
if task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
filters_to_apply.append("gfpgan")
images = apply_filters(context, "nsfw_checker", images)
if task_data.use_face_correction and "codeformer" in task_data.use_face_correction.lower():
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
prev_realesrgan_path = None
if task_data.codeformer_upscale_faces and default_realesrgan not in context.model_paths["realesrgan"]:
prev_realesrgan_path = context.model_paths["realesrgan"]
context.model_paths["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
load_model(context, "realesrgan")
try:
images = apply_filters(
context,
"codeformer",
images,
upscale_faces=task_data.codeformer_upscale_faces,
codeformer_fidelity=task_data.codeformer_fidelity,
)
finally:
if prev_realesrgan_path:
context.model_paths["realesrgan"] = prev_realesrgan_path
load_model(context, "realesrgan")
elif task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
images = apply_filters(context, "gfpgan", images)
if task_data.use_upscale:
if "realesrgan" in task_data.use_upscale.lower():
filters_to_apply.append("realesrgan")
images = apply_filters(context, "realesrgan", images, scale=task_data.upscale_amount)
elif task_data.use_upscale == "latent_upscaler":
filters_to_apply.append("latent_upscaler")
images = apply_filters(
context,
"latent_upscaler",
images,
scale=task_data.upscale_amount,
latent_upscaler_options={
"prompt": req.prompt,
"negative_prompt": req.negative_prompt,
"seed": req.seed,
"num_inference_steps": task_data.latent_upscaler_steps,
"guidance_scale": 0,
},
)
filter_params["latent_upscaler_options"] = {
"prompt": req.prompt,
"negative_prompt": req.negative_prompt,
"seed": req.seed,
"num_inference_steps": task_data.latent_upscaler_steps,
"guidance_scale": 0,
}
filter_params["scale"] = task_data.upscale_amount
if len(filters_to_apply) == 0:
return images
return apply_filters(context, filters_to_apply, images, **filter_params)
return images
def construct_response(images: list, seeds: list, task_data: TaskData, base_seed: int):

View File

@ -15,6 +15,7 @@ from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Extra
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
from pycloudflared import try_cloudflare
log.info(f"started in {app.SD_DIR}")
log.info(f"started at {datetime.datetime.now():%x %X}")
@ -113,6 +114,14 @@ def init():
def get_image(task_id: int, img_id: int):
return get_image_internal(task_id, img_id)
@server_api.post("/tunnel/cloudflare/start")
def start_cloudflare_tunnel(req: dict):
return start_cloudflare_tunnel_internal(req)
@server_api.post("/tunnel/cloudflare/stop")
def stop_cloudflare_tunnel(req: dict):
return stop_cloudflare_tunnel_internal(req)
@server_api.get("/")
def read_root():
return FileResponse(os.path.join(app.SD_UI_DIR, "index.html"), headers=NOCACHE_HEADERS)
@ -211,6 +220,8 @@ def ping_internal(session_id: str = None):
session = task_manager.get_cached_session(session_id, update_ttl=True)
response["tasks"] = {id(t): t.status for t in session.tasks}
response["devices"] = task_manager.get_devices()
if cloudflare.address != None:
response["cloudflare"] = cloudflare.address
return JSONResponse(response, headers=NOCACHE_HEADERS)
@ -322,3 +333,47 @@ def get_image_internal(task_id: int, img_id: int):
return StreamingResponse(img_data, media_type="image/jpeg")
except KeyError as e:
raise HTTPException(status_code=500, detail=str(e))
#---- Cloudflare Tunnel ----
class CloudflareTunnel:
def __init__(self):
config = app.getConfig()
self.urls = None
self.port = config.get("net", {}).get("listen_port")
def start(self):
if self.port:
self.urls = try_cloudflare(self.port)
def stop(self):
if self.urls:
try_cloudflare.terminate(self.port)
self.urls = None
@property
def address(self):
if self.urls:
return self.urls.tunnel
else:
return None
cloudflare = CloudflareTunnel()
def start_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.start()
log.info(f"- Started cloudflare tunnel. Using address: {cloudflare.address}")
return JSONResponse({"address":cloudflare.address})
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def stop_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.stop()
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))

View File

@ -23,7 +23,7 @@ class GenerateImageRequest(BaseModel):
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
hypernetwork_strength: float = 0
lora_alpha: float = 0
tiling: str = "none" # "none", "x", "y", "xy"
tiling: str = "none" # "none", "x", "y", "xy"
class TaskData(BaseModel):
@ -51,6 +51,8 @@ class TaskData(BaseModel):
stream_image_progress: bool = False
stream_image_progress_interval: int = 5
clip_skip: bool = False
codeformer_upscale_faces: bool = False
codeformer_fidelity: float = 0.5
class MergeRequest(BaseModel):

View File

@ -30,7 +30,7 @@
<h1>
<img id="logo_img" src="/media/images/icon-512x512.png" >
Easy Diffusion
<small>v2.5.39 <span id="updateBranchLabel"></span></small>
<small>v2.5.41 <span id="updateBranchLabel"></span></small>
</h1>
</div>
<div id="server-status">
@ -227,7 +227,10 @@
</td></tr>
<tr id="lora_alpha_container" class="pl-5">
<td><label for="lora_alpha_slider">LoRA Strength:</label></td>
<td> <input id="lora_alpha_slider" name="lora_alpha_slider" class="editor-slider" value="50" type="range" min="0" max="100"> <input id="lora_alpha" name="lora_alpha" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td>
<td>
<small>-2</small> <input id="lora_alpha_slider" name="lora_alpha_slider" class="editor-slider" value="50" type="range" min="-200" max="200"> <small>2</small> &nbsp;
<input id="lora_alpha" name="lora_alpha" size="4" pattern="^-?[0-9]*\.?[0-9]*$" onkeypress="preventNonNumericalInput(event)"><br/>
</td>
</tr>
<tr class="pl-5"><td><label for="hypernetwork_model">Hypernetwork:</label></td><td>
<input id="hypernetwork_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
@ -263,7 +266,13 @@
<div><ul>
<li><b class="settings-subheader">Render Settings</b></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slower images)</small></label></li>
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div></li>
<li class="pl-5" id="use_face_correction_container">
<input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div>
<table id="codeformer_settings" class="displayNone sub-settings">
<tr class="pl-5"><td><label for="codeformer_fidelity_slider">Strength:</label></td><td><input id="codeformer_fidelity_slider" name="codeformer_fidelity_slider" class="editor-slider" value="5" type="range" min="0" max="10"> <input id="codeformer_fidelity" name="codeformer_fidelity" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr class="pl-5"><td><label for="codeformer_upscale_faces">Upscale Faces:</label></td><td><input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox" checked> <label><small>(improves the resolution of faces)</small></label></td></tr>
</table>
</li>
<li class="pl-5">
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Scale up by</label>
<select id="upscale_amount" name="upscale_amount">
@ -276,9 +285,9 @@
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
<option value="latent_upscaler">Latent Upscaler 2x</option>
</select>
<div id="latent_upscaler_settings" class="displayNone">
<label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td> <input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)">
</div>
<table id="latent_upscaler_settings" class="displayNone sub-settings">
<tr class="pl-5"><td><label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td><input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
</table>
</li>
<li class="pl-5"><input id="show_only_filtered_image" name="show_only_filtered_image" type="checkbox" checked> <label for="show_only_filtered_image">Show only the corrected/upscaled image</label></li>
</ul></div>
@ -356,10 +365,16 @@
<div id="tab-content-settings" class="tab-content">
<div id="system-settings" class="tab-content-inner">
<h1>System Settings</h1>
<div class="parameters-table"></div>
<div class="parameters-table" id="system-settings-table"></div>
<br/>
<button id="save-system-settings-btn" class="primaryButton">Save</button>
<br/><br/>
<div id="share-easy-diffusion">
<h3><i class="fa fa-user-group"></i> Share Easy Diffusion</h3>
<div class="parameters-table" id="system-settings-network-table">
</div>
</div>
<br/><br/>
<div>
<h3><i class="fa fa-microchip icon"></i> System Info</h3>
<div id="system-info">
@ -534,7 +549,8 @@ async function init() {
SD.init({
events: {
statusChange: setServerStatus,
idle: onIdle
idle: onIdle,
ping: tunnelUpdate
}
})

View File

@ -69,11 +69,13 @@
}
.parameters-table > div:first-child {
border-radius: 12px 12px 0px 0px;
border-top-left-radius: 12px;
border-top-right-radius: 12px;
}
.parameters-table > div:last-child {
border-radius: 0px 0px 12px 12px;
border-bottom-left-radius: 12px;
border-bottom-right-radius: 12px;
}
.parameters-table .fa-fire {

View File

@ -96,7 +96,7 @@
.editor-controls-center {
/* background: var(--background-color2); */
flex: 1;
flex: 0;
display: flex;
justify-content: center;
align-items: center;
@ -105,6 +105,8 @@
.editor-controls-center > div {
position: relative;
background: black;
margin: 20pt;
margin-top: 40pt;
}
.editor-controls-center canvas {
@ -164,8 +166,10 @@
margin: var(--popup-margin);
padding: var(--popup-padding);
min-height: calc(99h - (2 * var(--popup-margin)));
max-width: none;
max-width: fit-content;
min-width: fit-content;
margin-left: auto;
margin-right: auto;
}
.image-editor-popup h1 {

View File

@ -1303,12 +1303,35 @@ body.wait-pause {
display:none !important;
}
#latent_upscaler_settings {
.sub-settings {
padding-top: 3pt;
padding-bottom: 3pt;
padding-left: 5pt;
}
#cloudflare-address {
background-color: var(--background-color3);
padding: 6px;
border-radius: var(--input-border-radius);
border: var(--input-border-size) solid var(--input-border-color);
margin-top: 0.2em;
margin-bottom: 0.2em;
display: inline-block;
}
#copy-cloudflare-address {
padding: 4px 8px;
margin-left: 0.5em;
}
.expandedSettingRow {
background: var(--background-color1);
width: 95%;
border-radius: 4pt;
margin-top: 5pt;
margin-bottom: 3pt;
}
/* TOAST NOTIFICATIONS */
.toast-notification {
position: fixed;
@ -1322,7 +1345,7 @@ body.wait-pause {
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
z-index: 9999;
animation: slideInRight 0.5s ease forwards;
transition: bottom 0.5s ease; // Add a transition to smoothly reposition the toasts
transition: bottom 0.5s ease; /* Add a transition to smoothly reposition the toasts */
}
.toast-notification-error {

View File

@ -186,6 +186,7 @@
const EVENT_TASK_START = "taskStart"
const EVENT_TASK_END = "taskEnd"
const EVENT_TASK_ERROR = "task_error"
const EVENT_PING = "ping"
const EVENT_UNEXPECTED_RESPONSE = "unexpectedResponse"
const EVENTS_TYPES = [
EVENT_IDLE,
@ -196,6 +197,7 @@
EVENT_TASK_START,
EVENT_TASK_END,
EVENT_TASK_ERROR,
EVENT_PING,
EVENT_UNEXPECTED_RESPONSE,
]
@ -240,6 +242,7 @@
setServerStatus("error", "offline")
return false
}
// Set status
switch (serverState.status) {
case ServerStates.init:
@ -261,6 +264,7 @@
break
}
serverState.time = Date.now()
await eventSource.fireEvent(EVENT_PING, serverState)
return true
} catch (e) {
console.error(e)

View File

@ -87,13 +87,15 @@ let promptStrengthField = document.querySelector("#prompt_strength")
let samplerField = document.querySelector("#sampler_name")
let samplerSelectionContainer = document.querySelector("#samplerSelection")
let useFaceCorrectionField = document.querySelector("#use_face_correction")
let gfpganModelField = new ModelDropdown(document.querySelector("#gfpgan_model"), "gfpgan")
let gfpganModelField = new ModelDropdown(document.querySelector("#gfpgan_model"), ["gfpgan", "codeformer"], "", false)
let useUpscalingField = document.querySelector("#use_upscale")
let upscaleModelField = document.querySelector("#upscale_model")
let upscaleAmountField = document.querySelector("#upscale_amount")
let latentUpscalerSettings = document.querySelector("#latent_upscaler_settings")
let latentUpscalerStepsSlider = document.querySelector("#latent_upscaler_steps_slider")
let latentUpscalerStepsField = document.querySelector("#latent_upscaler_steps")
let codeformerFidelitySlider = document.querySelector("#codeformer_fidelity_slider")
let codeformerFidelityField = document.querySelector("#codeformer_fidelity")
let stableDiffusionModelField = new ModelDropdown(document.querySelector("#stable_diffusion_model"), "stable-diffusion")
let clipSkipField = document.querySelector("#clip_skip")
let tilingField = document.querySelector("#tiling")
@ -270,7 +272,9 @@ function shiftOrConfirm(e, prompt, fn) {
confirm(
'<small>Tip: To skip this dialog, use shift-click or disable the "Confirm dangerous actions" setting in the Settings tab.</small>',
prompt,
() => { fn(e) }
() => {
fn(e)
}
)
}
}
@ -1261,6 +1265,11 @@ function getCurrentUserRequest() {
}
if (useFaceCorrectionField.checked) {
newTask.reqBody.use_face_correction = gfpganModelField.value
if (gfpganModelField.value.includes("codeformer")) {
newTask.reqBody.codeformer_upscale_faces = document.querySelector("#codeformer_upscale_faces").checked
newTask.reqBody.codeformer_fidelity = 1 - parseFloat(codeformerFidelityField.value)
}
}
if (useUpscalingField.checked) {
newTask.reqBody.use_upscale = upscaleModelField.value
@ -1574,24 +1583,43 @@ metadataOutputFormatField.disabled = !saveToDiskField.checked
gfpganModelField.disabled = !useFaceCorrectionField.checked
useFaceCorrectionField.addEventListener("change", function(e) {
gfpganModelField.disabled = !this.checked
onFixFaceModelChange()
})
function onFixFaceModelChange() {
let codeformerSettings = document.querySelector("#codeformer_settings")
if (gfpganModelField.value === "codeformer" && !gfpganModelField.disabled) {
codeformerSettings.classList.remove("displayNone")
codeformerSettings.classList.add("expandedSettingRow")
} else {
codeformerSettings.classList.add("displayNone")
codeformerSettings.classList.remove("expandedSettingRow")
}
}
gfpganModelField.addEventListener("change", onFixFaceModelChange)
onFixFaceModelChange()
upscaleModelField.disabled = !useUpscalingField.checked
upscaleAmountField.disabled = !useUpscalingField.checked
useUpscalingField.addEventListener("change", function(e) {
upscaleModelField.disabled = !this.checked
upscaleAmountField.disabled = !this.checked
onUpscaleModelChange()
})
function onUpscaleModelChange() {
let upscale4x = document.querySelector("#upscale_amount_4x")
if (upscaleModelField.value === "latent_upscaler") {
if (upscaleModelField.value === "latent_upscaler" && !upscaleModelField.disabled) {
upscale4x.disabled = true
upscaleAmountField.value = "2"
latentUpscalerSettings.classList.remove("displayNone")
latentUpscalerSettings.classList.add("expandedSettingRow")
} else {
upscale4x.disabled = false
latentUpscalerSettings.classList.add("displayNone")
latentUpscalerSettings.classList.remove("expandedSettingRow")
}
}
upscaleModelField.addEventListener("change", onUpscaleModelChange)
@ -1606,6 +1634,27 @@ document.onkeydown = function(e) {
}
}
/********************* CodeFormer Fidelity **************************/
function updateCodeformerFidelity() {
codeformerFidelityField.value = codeformerFidelitySlider.value / 10
codeformerFidelityField.dispatchEvent(new Event("change"))
}
function updateCodeformerFidelitySlider() {
if (codeformerFidelityField.value < 0) {
codeformerFidelityField.value = 0
} else if (codeformerFidelityField.value > 1) {
codeformerFidelityField.value = 1
}
codeformerFidelitySlider.value = codeformerFidelityField.value * 10
codeformerFidelitySlider.dispatchEvent(new Event("change"))
}
codeformerFidelitySlider.addEventListener("input", updateCodeformerFidelity)
codeformerFidelityField.addEventListener("input", updateCodeformerFidelitySlider)
updateCodeformerFidelity()
/********************* Latent Upscaler Steps **************************/
function updateLatentUpscalerSteps() {
latentUpscalerStepsField.value = latentUpscalerStepsSlider.value
@ -1704,10 +1753,10 @@ function updateLoraAlpha() {
}
function updateLoraAlphaSlider() {
if (loraAlphaField.value < 0) {
loraAlphaField.value = 0
} else if (loraAlphaField.value > 1) {
loraAlphaField.value = 1
if (loraAlphaField.value < -2) {
loraAlphaField.value = -2
} else if (loraAlphaField.value > 2) {
loraAlphaField.value = 2
}
loraAlphaSlider.value = loraAlphaField.value * 100
@ -1958,6 +2007,38 @@ resumeBtn.addEventListener("click", function() {
document.body.classList.remove("wait-pause")
})
function tunnelUpdate(event) {
if ("cloudflare" in event) {
document.getElementById("cloudflare-off").classList.add("displayNone")
document.getElementById("cloudflare-on").classList.remove("displayNone")
cloudflareAddressField.innerHTML = event.cloudflare
document.getElementById("toggle-cloudflare-tunnel").innerHTML = "Stop"
} else {
document.getElementById("cloudflare-on").classList.add("displayNone")
document.getElementById("cloudflare-off").classList.remove("displayNone")
document.getElementById("toggle-cloudflare-tunnel").innerHTML = "Start"
}
}
document.getElementById("toggle-cloudflare-tunnel").addEventListener("click", async function() {
let command = "stop"
if (document.getElementById("toggle-cloudflare-tunnel").innerHTML == "Start") {
command = "start"
}
showToast(`Cloudflare tunnel ${command} initiated. Please wait.`)
let res = await fetch("/tunnel/cloudflare/" + command, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({}),
})
res = await res.json()
console.log(`Cloudflare tunnel ${command} result:`, res)
})
/* Pause function */
document.querySelectorAll(".tab").forEach(linkTabContents)

View File

@ -11,6 +11,12 @@ var ParameterType = {
custom: "custom",
}
/**
* Element shortcuts
*/
let parametersTable = document.querySelector("#system-settings-table")
let networkParametersTable = document.querySelector("#system-settings-network-table")
/**
* JSDoc style
* @typedef {object} Parameter
@ -186,6 +192,7 @@ var PARAMETERS = [
icon: "fa-network-wired",
default: true,
saveInAppConfig: true,
table: networkParametersTable,
},
{
id: "listen_port",
@ -198,6 +205,7 @@ var PARAMETERS = [
return `<input id="${parameter.id}" name="${parameter.id}" size="6" value="9000" onkeypress="preventNonNumericalInput(event)">`
},
saveInAppConfig: true,
table: networkParametersTable,
},
{
id: "use_beta_channel",
@ -218,6 +226,21 @@ var PARAMETERS = [
default: false,
saveInAppConfig: true,
},
{
id: "cloudflare",
type: ParameterType.custom,
label: "Cloudflare tunnel",
note: `<span id="cloudflare-off">Create a VPN tunnel to share your Easy Diffusion instance with your friends. This will
generate a web server address on the public Internet for your Easy Diffusion instance. </span>
<div id="cloudflare-on" class="displayNone"><div>This Easy Diffusion server is available on the Internet using the
address:</div><div><div id="cloudflare-address"></div><button id="copy-cloudflare-address">Copy</button></div></div>
<b>Anyone knowing this address can access your server.</b> The address of your server will change each time
you share a session.<br>
Uses <a href="https://try.cloudflare.com/" target="_blank">Cloudflare services</a>.`,
icon: ["fa-brands", "fa-cloudflare"],
render: () => '<button id="toggle-cloudflare-tunnel" class="primaryButton">Start</button>',
table: networkParametersTable,
}
]
function getParameterSettingsEntry(id) {
@ -266,7 +289,6 @@ function getParameterElement(parameter) {
}
}
let parametersTable = document.querySelector("#system-settings .parameters-table")
/**
* fill in the system settings popup table
* @param {Array<Parameter> | undefined} parameters
@ -293,7 +315,10 @@ function initParameters(parameters) {
noteElements.push(noteElement)
}
const icon = parameter.icon ? [createElement("i", undefined, ["fa", parameter.icon])] : []
if (typeof(parameter.icon) == "string") {
parameter.icon = [parameter.icon]
}
const icon = parameter.icon ? [createElement("i", undefined, ["fa", ...parameter.icon])] : []
const label = typeof parameter.label === "function" ? parameter.label(parameter) : parameter.label
const labelElement = createElement("label", { for: parameter.id })
@ -313,7 +338,13 @@ function initParameters(parameters) {
elementWrapper,
]
)
parametersTable.appendChild(newrow)
let p = parametersTable
if (parameter.table) {
p = parameter.table
}
p.appendChild(newrow)
parameter.settingsEntry = newrow
})
}
@ -667,8 +698,25 @@ saveSettingsBtn.addEventListener("click", function() {
})
const savePromise = changeAppConfig(updateAppConfigRequest)
showToast("Settings saved")
saveSettingsBtn.classList.add("active")
Promise.all([savePromise, asyncDelay(300)]).then(() => saveSettingsBtn.classList.remove("active"))
})
listenToNetworkField.addEventListener("change", debounce( ()=>{
saveSettingsBtn.click()
}, 1000))
listenPortField.addEventListener("change", debounce( ()=>{
saveSettingsBtn.click()
}, 1000))
let copyCloudflareAddressBtn = document.querySelector("#copy-cloudflare-address")
let cloudflareAddressField = document.getElementById("cloudflare-address")
copyCloudflareAddressBtn.addEventListener("click", (e) => {
navigator.clipboard.writeText(cloudflareAddressField.innerHTML)
showToast("Copied server address to clipboard")
})
document.addEventListener("system_info_update", (e) => setDeviceInfo(e.detail))

View File

@ -38,6 +38,8 @@ class ModelDropdown {
noneEntry //= ''
modelFilterInitialized //= undefined
sorted //= true
/* MIMIC A REGULAR INPUT FIELD */
get parentElement() {
return this.modelFilter.parentElement
@ -83,21 +85,34 @@ class ModelDropdown {
/* SEARCHABLE INPUT */
constructor(input, modelKey, noneEntry = "") {
constructor(input, modelKey, noneEntry = "", sorted = true) {
this.modelFilter = input
this.noneEntry = noneEntry
this.modelKey = modelKey
this.sorted = sorted
if (modelsOptions !== undefined) {
// reuse models from cache (only useful for plugins, which are loaded after models)
this.inputModels = modelsOptions[this.modelKey]
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
let k = Array.isArray(modelsOptions[key]) ? modelsOptions[key] : [modelsOptions[key]]
this.inputModels.push(...k)
}
this.populateModels()
}
document.addEventListener(
"refreshModels",
this.bind(function(e) {
// reload the models
this.inputModels = modelsOptions[this.modelKey]
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
let k = Array.isArray(modelsOptions[key]) ? modelsOptions[key] : [modelsOptions[key]]
this.inputModels.push(...k)
}
this.populateModels()
}, this)
)
@ -554,11 +569,15 @@ class ModelDropdown {
})
const childFolderNames = Array.from(foldersMap.keys())
this.sortStringArray(childFolderNames)
if (this.sorted) {
this.sortStringArray(childFolderNames)
}
const folderElements = childFolderNames.map((name) => foldersMap.get(name))
const modelNames = Array.from(modelsMap.keys())
this.sortStringArray(modelNames)
if (this.sorted) {
this.sortStringArray(modelNames)
}
const modelElements = modelNames.map((name) => modelsMap.get(name))
if (modelElements.length && folderName) {

View File

@ -402,12 +402,12 @@ function debounce(func, wait, immediate) {
function preventNonNumericalInput(e) {
e = e || window.event
let charCode = typeof e.which == "undefined" ? e.keyCode : e.which
let charStr = String.fromCharCode(charCode)
let re = e.target.getAttribute("pattern") || "^[0-9]+$"
re = new RegExp(re)
const charCode = typeof e.which == "undefined" ? e.keyCode : e.which
const charStr = String.fromCharCode(charCode)
const newInputValue = `${e.target.value}${charStr}`
const re = new RegExp(e.target.getAttribute("pattern") || "^[0-9]+$")
if (!charStr.match(re)) {
if (!re.test(charStr) && !re.test(newInputValue)) {
e.preventDefault()
}
}

View File

@ -0,0 +1,326 @@
;(function(){
"use strict";
const PAPERSIZE = [
{id: "a3p", width: 297, height: 420, unit: "mm"},
{id: "a3l", width: 420, height: 297, unit: "mm"},
{id: "a4p", width: 210, height: 297, unit: "mm"},
{id: "a4l", width: 297, height: 210, unit: "mm"},
{id: "ll", width: 279, height: 216, unit: "mm"},
{id: "lp", width: 216, height: 279, unit: "mm"},
{id: "hd", width: 1920, height: 1080, unit: "pixels"},
{id: "4k", width: 3840, height: 2160, unit: "pixels"},
]
// ---- Register plugin
PLUGINS['IMAGE_INFO_BUTTONS'].push({
html: '<i class="fa-solid fa-table-cells-large"></i> Download tiled image',
on_click: onDownloadTiledImage,
filter: (req, img) => req.tiling != "none",
})
var thisImage
function onDownloadTiledImage(req, img) {
document.getElementById("download-tiled-image-dialog").showModal()
thisImage = new Image()
thisImage.src = img.src
thisImage.dataset["prompt"] = img.dataset["prompt"]
}
// ---- Add HTML
document.getElementById('container').lastElementChild.insertAdjacentHTML("afterend",
`<dialog id="download-tiled-image-dialog">
<h1>Download tiled image</h1>
<div class="download-tiled-image dtim-container">
<div class="download-tiled-image-top">
<div class="tab-container">
<span id="tab-image-tiles" class="tab active">
<span>Number of tiles</small></span>
</span>
<span id="tab-image-size" class="tab">
<span>Image dimensions</span>
</span>
</div>
<div>
<div id="tab-content-image-tiles" class="tab-content active">
<div class="tab-content-inner">
<label for="dtim1-width">Width:</label> <input id="dtim1-width" min="1" max="99" type="number" value="2">
<label for="dtim1-height">Height:</label> <input id="dtim1-height" min="1" max="99" type="number" value="2">
</div>
</div>
<div id="tab-content-image-size" class="tab-content">
<div class="tab-content-inner">
<div class="method-2-options">
<label for="dtim2-width">Width:</label> <input id="dtim2-width" size="3" value="1920">
<label for="dtim2-height">Height:</label> <input id="dtim2-height" size="3" value="1080">
<select id="dtim2-unit">
<option>pixels</option>
<option>mm</option>
<option>inches</option>
</select>
</div>
<div class="method-2-dpi">
<label for="dtim2-dpi">DPI:</label> <input id="dtim2-dpi" size="3" value="72">
</div>
<div class="method-2-paper">
<i>Some standard sizes:</i><br>
<button id="dtim2-a3p">A3 portrait</button><button id="dtim2-a3l">A3 landscape</button><br>
<button id="dtim2-a4p">A4 portrait</button><button id="dtim2-a4l">A4 landscape</button><br>
<button id="dtim2-lp">Letter portrait</button><button id="dtim2-ll">Letter landscape</button><br>
<button id="dtim2-hd">Full HD</button><button id="dtim2-4k">4K</button>
</div>
</div>
</div>
</div>
</div>
<div class="download-tiled-image-placement">
<div class="tab-container">
<span id="tab-image-placement" class="tab active">
<span>Tile placement</span>
</span>
</div>
<div>
<div id="tab-content-image-placement" class="tab-content active">
<div class="tab-content-inner">
<img id="dtim-1tl" class="active" src="" />
<img id="dtim-1tr" src="" /><br>
<img id="dtim-1bl" src="" />
<img id="dtim-1br" src="" /> <br>
<img id="dtim-1center" src="" />
<img id="dtim-4center" src="" /> <br>
</div>
</div>
</div>
</div>
<div class="dtim-ok">
<button class="primaryButton" id="dti-ok">Download</button>
</div>
<div class="dtim-newtab">
<button class="primaryButton" id="dti-newtab">Open in new tab</button>
</div>
<div class="dtim-cancel">
<button class="primaryButton" id="dti-cancel">Cancel</button>
</div>
</div>
</dialog>`)
let downloadTiledImageDialog = document.getElementById("download-tiled-image-dialog")
let dtim1_width = document.getElementById("dtim1-width")
let dtim1_height = document.getElementById("dtim1-height")
let dtim2_width = document.getElementById("dtim2-width")
let dtim2_height = document.getElementById("dtim2-height")
let dtim2_unit = document.getElementById("dtim2-unit")
let dtim2_dpi = document.getElementById("dtim2-dpi")
let tabTiledTilesOptions = document.getElementById("tab-image-tiles")
let tabTiledSizeOptions = document.getElementById("tab-image-size")
linkTabContents(tabTiledTilesOptions)
linkTabContents(tabTiledSizeOptions)
prettifyInputs(downloadTiledImageDialog)
// ---- Predefined image dimensions
PAPERSIZE.forEach( function(p) {
document.getElementById("dtim2-" + p.id).addEventListener("click", (e) => {
dtim2_unit.value = p.unit
dtim2_width.value = p.width
dtim2_height.value = p.height
})
})
// ---- Close popup
document.getElementById("dti-cancel").addEventListener("click", (e) => downloadTiledImageDialog.close())
downloadTiledImageDialog.addEventListener('click', function (event) {
var rect = downloadTiledImageDialog.getBoundingClientRect();
var isInDialog=(rect.top <= event.clientY && event.clientY <= rect.top + rect.height
&& rect.left <= event.clientX && event.clientX <= rect.left + rect.width);
if (!isInDialog) {
downloadTiledImageDialog.close();
}
});
// ---- Stylesheet
const styleSheet = document.createElement("style")
styleSheet.textContent = `
dialog {
background: var(--background-color2);
color: var(--text-color);
border-radius: 7px;
border: 1px solid var(--background-color3);
}
dialog::backdrop {
background: rgba(0, 0, 0, 0.5);
}
button[disabled] {
opacity: 0.5;
}
.method-2-dpi {
margin-top: 1em;
margin-bottom: 1em;
}
.method-2-paper button {
width: 10em;
padding: 4px;
margin: 4px;
}
.download-tiled-image .tab-content {
background: var(--background-color1);
border-radius: 3pt;
}
.dtim-container { display: grid;
grid-template-columns: auto auto;
grid-template-rows: auto auto;
gap: 1em 0px;
grid-auto-flow: row;
grid-template-areas:
"dtim-tab dtim-tab dtim-plc"
"dtim-ok dtim-newtab dtim-cancel";
}
.download-tiled-image-top {
justify-self: center;
grid-area: dtim-tab;
}
.download-tiled-image-placement {
justify-self: center;
grid-area: dtim-plc;
margin-left: 1em;
}
.dtim-ok {
justify-self: center;
align-self: start;
grid-area: dtim-ok;
}
.dtim-newtab {
justify-self: center;
align-self: start;
grid-area: dtim-newtab;
}
.dtim-cancel {
justify-self: center;
align-self: start;
grid-area: dtim-cancel;
}
#tab-content-image-placement img {
margin: 4px;
opacity: 0.3;
border: solid 2px var(--background-color1);
}
#tab-content-image-placement img:hover {
margin: 4px;
opacity: 1;
border: solid 2px var(--accent-color);
filter: brightness(2);
}
#tab-content-image-placement img.active {
margin: 4px;
opacity: 1;
border: solid 2px var(--background-color1);
}
`
document.head.appendChild(styleSheet)
// ---- Placement widget
function updatePlacementWidget(event) {
document.querySelector("#tab-content-image-placement img.active").classList.remove("active")
event.target.classList.add("active")
}
document.querySelectorAll("#tab-content-image-placement img").forEach(
(i) => i.addEventListener("click", updatePlacementWidget)
)
function getPlacement() {
return document.querySelector("#tab-content-image-placement img.active").id.substr(5)
}
// ---- Make the image
function downloadTiledImage(image, width, height, offsetX=0, offsetY=0, new_tab=false) {
const canvas = document.createElement('canvas')
canvas.width = width
canvas.height = height
const context = canvas.getContext('2d')
const w = image.width
const h = image.height
for (var x = offsetX; x < width; x += w) {
for (var y = offsetY; y < height; y += h) {
context.drawImage(image, x, y, w, h)
}
}
if (new_tab) {
var newTab = window.open("")
newTab.document.write(`<html><head><title>${width}×${height}, "${image.dataset["prompt"]}"</title></head><body><img src="${canvas.toDataURL()}"></body></html>`)
} else {
const link = document.createElement('a')
link.href = canvas.toDataURL()
link.download = image.dataset["prompt"].replace(/[^a-zA-Z0-9]+/g, "-").substr(0,22)+crypto.randomUUID()+".png"
link.click()
}
}
function onDownloadTiledImageClick(e, newtab=false) {
var width, height, offsetX, offsetY
if (isTabActive(tabTiledTilesOptions)) {
width = thisImage.width * dtim1_width.value
height = thisImage.height * dtim1_height.value
} else {
if ( dtim2_unit.value == "pixels" ) {
width = dtim2_width.value
height= dtim2_height.value
} else if ( dtim2_unit.value == "mm" ) {
width = Math.floor( dtim2_width.value * dtim2_dpi.value / 25.4 )
height = Math.floor( dtim2_height.value * dtim2_dpi.value / 25.4 )
} else { // inch
width = Math.floor( dtim2_width.value * dtim2_dpi.value )
height = Math.floor( dtim2_height.value * dtim2_dpi.value )
}
}
var placement = getPlacement()
if (placement == "1tl") {
offsetX = 0
offsetY = 0
} else if (placement == "1tr") {
offsetX = width - thisImage.width * Math.ceil( width / thisImage.width )
offsetY = 0
} else if (placement == "1bl") {
offsetX = 0
offsetY = height - thisImage.height * Math.ceil( height / thisImage.height )
} else if (placement == "1br") {
offsetX = width - thisImage.width * Math.ceil( width / thisImage.width )
offsetY = height - thisImage.height * Math.ceil( height / thisImage.height )
} else if (placement == "4center") {
offsetX = width/2 - thisImage.width * Math.ceil( width/2 / thisImage.width )
offsetY = height/2 - thisImage.height * Math.ceil( height/2 / thisImage.height )
} else if (placement == "1center") {
offsetX = width/2 - thisImage.width/2 - thisImage.width * Math.ceil( (width/2 - thisImage.width/2) / thisImage.width )
offsetY = height/2 - thisImage.height/2 - thisImage.height * Math.ceil( (height/2 - thisImage.height/2) / thisImage.height )
}
downloadTiledImage(thisImage, width, height, offsetX, offsetY, newtab)
downloadTiledImageDialog.close()
}
document.getElementById("dti-ok").addEventListener("click", onDownloadTiledImageClick)
document.getElementById("dti-newtab").addEventListener("click", (e) => onDownloadTiledImageClick(e,true))
})()