forked from extern/easydiffusion
Allow changing the strength of the codeformer model (1 - fidelity); Improve the styling of the sub-settings
This commit is contained in:
parent
047390873c
commit
d0184a1598
11
CHANGES.md
11
CHANGES.md
@ -22,11 +22,12 @@
|
||||
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
|
||||
|
||||
### Detailed changelog
|
||||
* 2.5.41 - 4 Jun 2023 - Allow sharing an Easy Diffusion instance via https://try.cloudflare.com/ . You can find this option at the bottom of the Settings tab. Thanks @JeLuf.
|
||||
* 2.5.41 - 4 Jun 2023 - Show an option to download for tiled images. Shows a button on the generated image. Creates larger images by tiling them with the image generated by Easy Diffusion. Thanks @JeLuf.
|
||||
* 2.5.41 - 4 Jun 2023 - Allow LoRA strengths between -2 and 2. Thanks @ogmaresca.
|
||||
* 2.5.40 - 4 Jun 2023 - Reduce the VRAM usage of Latent Upscaling when using "balanced" VRAM usage mode.
|
||||
* 2.5.40 - 4 Jun 2023 - Fix the "realesrgan" key error when using CodeFormer with more than 1 image in a batch.
|
||||
* 2.5.41 - 6 Jun 2023 - Allow changing the strength of CodeFormer, and slightly improved styling of the CodeFormer options.
|
||||
* 2.5.41 - 5 Jun 2023 - Allow sharing an Easy Diffusion instance via https://try.cloudflare.com/ . You can find this option at the bottom of the Settings tab. Thanks @JeLuf.
|
||||
* 2.5.41 - 5 Jun 2023 - Show an option to download for tiled images. Shows a button on the generated image. Creates larger images by tiling them with the image generated by Easy Diffusion. Thanks @JeLuf.
|
||||
* 2.5.41 - 5 Jun 2023 - Allow LoRA strengths between -2 and 2. Thanks @ogmaresca.
|
||||
* 2.5.40 - 5 Jun 2023 - Reduce the VRAM usage of Latent Upscaling when using "balanced" VRAM usage mode.
|
||||
* 2.5.40 - 5 Jun 2023 - Fix the "realesrgan" key error when using CodeFormer with more than 1 image in a batch.
|
||||
* 2.5.40 - 3 Jun 2023 - Added CodeFormer as another option for fixing faces and eyes. CodeFormer tends to perform better than GFPGAN for many images. Thanks @patriceac for the implementation, and for contacting the CodeFormer team (who were supportive of it being integrated into Easy Diffusion).
|
||||
* 2.5.39 - 25 May 2023 - (beta-only) Seamless Tiling - make seamlessly tiled images, e.g. rock and grass textures. Thanks @JeLuf.
|
||||
* 2.5.38 - 24 May 2023 - Better reporting of errors, and show an explanation if the user cannot disable the "Use CPU" setting.
|
||||
|
@ -165,6 +165,7 @@ def filter_images(req: GenerateImageRequest, task_data: TaskData, images: list,
|
||||
filters_to_apply.append("codeformer")
|
||||
|
||||
filter_params["upscale_faces"] = task_data.codeformer_upscale_faces
|
||||
filter_params["codeformer_fidelity"] = task_data.codeformer_fidelity
|
||||
elif task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
|
||||
filters_to_apply.append("gfpgan")
|
||||
if task_data.use_upscale:
|
||||
|
@ -52,6 +52,7 @@ class TaskData(BaseModel):
|
||||
stream_image_progress_interval: int = 5
|
||||
clip_skip: bool = False
|
||||
codeformer_upscale_faces: bool = False
|
||||
codeformer_fidelity: float = 0.5
|
||||
|
||||
|
||||
class MergeRequest(BaseModel):
|
||||
|
@ -266,11 +266,12 @@
|
||||
<div><ul>
|
||||
<li><b class="settings-subheader">Render Settings</b></li>
|
||||
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slower images)</small></label></li>
|
||||
<li class="pl-5">
|
||||
<li class="pl-5" id="use_face_correction_container">
|
||||
<input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div>
|
||||
<div id="codeformer_settings" class="displayNone sub-settings">
|
||||
<input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox" checked><label for="codeformer_upscale_faces">Upscale Faces <small>(improves the resolution of faces)</small></label>
|
||||
</div>
|
||||
<table id="codeformer_settings" class="displayNone sub-settings">
|
||||
<tr class="pl-5"><td><label for="codeformer_fidelity_slider">Strength:</label></td><td><input id="codeformer_fidelity_slider" name="codeformer_fidelity_slider" class="editor-slider" value="10" type="range" min="0" max="10"> <input id="codeformer_fidelity" name="codeformer_fidelity" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
|
||||
<tr class="pl-5"><td><label for="codeformer_upscale_faces">Upscale Faces:</label></td><td><input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox" checked> <label><small>(improves the resolution of faces)</small></label></td></tr>
|
||||
</table>
|
||||
</li>
|
||||
<li class="pl-5">
|
||||
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Scale up by</label>
|
||||
@ -284,9 +285,9 @@
|
||||
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
|
||||
<option value="latent_upscaler">Latent Upscaler 2x</option>
|
||||
</select>
|
||||
<div id="latent_upscaler_settings" class="displayNone sub-settings">
|
||||
<label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td> <input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)">
|
||||
</div>
|
||||
<table id="latent_upscaler_settings" class="displayNone sub-settings">
|
||||
<tr class="pl-5"><td><label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td><input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
|
||||
</table>
|
||||
</li>
|
||||
<li class="pl-5"><input id="show_only_filtered_image" name="show_only_filtered_image" type="checkbox" checked> <label for="show_only_filtered_image">Show only the corrected/upscaled image</label></li>
|
||||
</ul></div>
|
||||
|
@ -1324,6 +1324,14 @@ body.wait-pause {
|
||||
margin-left: 0.5em;
|
||||
}
|
||||
|
||||
.expandedSettingRow {
|
||||
background: var(--background-color1);
|
||||
width: 95%;
|
||||
border-radius: 4pt;
|
||||
margin-top: 5pt;
|
||||
margin-bottom: 3pt;
|
||||
}
|
||||
|
||||
/* TOAST NOTIFICATIONS */
|
||||
.toast-notification {
|
||||
position: fixed;
|
||||
|
@ -94,6 +94,8 @@ let upscaleAmountField = document.querySelector("#upscale_amount")
|
||||
let latentUpscalerSettings = document.querySelector("#latent_upscaler_settings")
|
||||
let latentUpscalerStepsSlider = document.querySelector("#latent_upscaler_steps_slider")
|
||||
let latentUpscalerStepsField = document.querySelector("#latent_upscaler_steps")
|
||||
let codeformerFidelitySlider = document.querySelector("#codeformer_fidelity_slider")
|
||||
let codeformerFidelityField = document.querySelector("#codeformer_fidelity")
|
||||
let stableDiffusionModelField = new ModelDropdown(document.querySelector("#stable_diffusion_model"), "stable-diffusion")
|
||||
let clipSkipField = document.querySelector("#clip_skip")
|
||||
let tilingField = document.querySelector("#tiling")
|
||||
@ -1266,6 +1268,7 @@ function getCurrentUserRequest() {
|
||||
|
||||
if (gfpganModelField.value.includes("codeformer")) {
|
||||
newTask.reqBody.codeformer_upscale_faces = document.querySelector("#codeformer_upscale_faces").checked
|
||||
newTask.reqBody.codeformer_fidelity = 1 - parseFloat(codeformerFidelityField.value)
|
||||
}
|
||||
}
|
||||
if (useUpscalingField.checked) {
|
||||
@ -1588,8 +1591,10 @@ function onFixFaceModelChange() {
|
||||
let codeformerSettings = document.querySelector("#codeformer_settings")
|
||||
if (gfpganModelField.value === "codeformer" && !gfpganModelField.disabled) {
|
||||
codeformerSettings.classList.remove("displayNone")
|
||||
codeformerSettings.classList.add("expandedSettingRow")
|
||||
} else {
|
||||
codeformerSettings.classList.add("displayNone")
|
||||
codeformerSettings.classList.remove("expandedSettingRow")
|
||||
}
|
||||
}
|
||||
gfpganModelField.addEventListener("change", onFixFaceModelChange)
|
||||
@ -1610,9 +1615,11 @@ function onUpscaleModelChange() {
|
||||
upscale4x.disabled = true
|
||||
upscaleAmountField.value = "2"
|
||||
latentUpscalerSettings.classList.remove("displayNone")
|
||||
latentUpscalerSettings.classList.add("expandedSettingRow")
|
||||
} else {
|
||||
upscale4x.disabled = false
|
||||
latentUpscalerSettings.classList.add("displayNone")
|
||||
latentUpscalerSettings.classList.remove("expandedSettingRow")
|
||||
}
|
||||
}
|
||||
upscaleModelField.addEventListener("change", onUpscaleModelChange)
|
||||
@ -1627,6 +1634,27 @@ document.onkeydown = function(e) {
|
||||
}
|
||||
}
|
||||
|
||||
/********************* CodeFormer Fidelity **************************/
|
||||
function updateCodeformerFidelity() {
|
||||
codeformerFidelityField.value = codeformerFidelitySlider.value / 10
|
||||
codeformerFidelityField.dispatchEvent(new Event("change"))
|
||||
}
|
||||
|
||||
function updateCodeformerFidelitySlider() {
|
||||
if (codeformerFidelityField.value < 0) {
|
||||
codeformerFidelityField.value = 0
|
||||
} else if (codeformerFidelityField.value > 1) {
|
||||
codeformerFidelityField.value = 1
|
||||
}
|
||||
|
||||
codeformerFidelitySlider.value = codeformerFidelityField.value * 10
|
||||
codeformerFidelitySlider.dispatchEvent(new Event("change"))
|
||||
}
|
||||
|
||||
codeformerFidelitySlider.addEventListener("input", updateCodeformerFidelity)
|
||||
codeformerFidelityField.addEventListener("input", updateCodeformerFidelitySlider)
|
||||
updateCodeformerFidelity()
|
||||
|
||||
/********************* Latent Upscaler Steps **************************/
|
||||
function updateLatentUpscalerSteps() {
|
||||
latentUpscalerStepsField.value = latentUpscalerStepsSlider.value
|
||||
@ -1981,25 +2009,25 @@ resumeBtn.addEventListener("click", function() {
|
||||
|
||||
function tunnelUpdate(event) {
|
||||
if ("cloudflare" in event) {
|
||||
document.getElementById('cloudflare-off').classList.add("displayNone")
|
||||
document.getElementById('cloudflare-on').classList.remove("displayNone")
|
||||
document.getElementById("cloudflare-off").classList.add("displayNone")
|
||||
document.getElementById("cloudflare-on").classList.remove("displayNone")
|
||||
cloudflareAddressField.innerHTML = event.cloudflare
|
||||
document.getElementById('toggle-cloudflare-tunnel').innerHTML = "Stop"
|
||||
document.getElementById("toggle-cloudflare-tunnel").innerHTML = "Stop"
|
||||
} else {
|
||||
document.getElementById('cloudflare-on').classList.add("displayNone")
|
||||
document.getElementById('cloudflare-off').classList.remove("displayNone")
|
||||
document.getElementById('toggle-cloudflare-tunnel').innerHTML = "Start"
|
||||
document.getElementById("cloudflare-on").classList.add("displayNone")
|
||||
document.getElementById("cloudflare-off").classList.remove("displayNone")
|
||||
document.getElementById("toggle-cloudflare-tunnel").innerHTML = "Start"
|
||||
}
|
||||
}
|
||||
|
||||
document.getElementById('toggle-cloudflare-tunnel').addEventListener("click", async function() {
|
||||
document.getElementById("toggle-cloudflare-tunnel").addEventListener("click", async function() {
|
||||
let command = "stop"
|
||||
if (document.getElementById('toggle-cloudflare-tunnel').innerHTML == "Start") {
|
||||
command = "start"
|
||||
if (document.getElementById("toggle-cloudflare-tunnel").innerHTML == "Start") {
|
||||
command = "start"
|
||||
}
|
||||
showToast(`Cloudflare tunnel ${command} initiated. Please wait.`)
|
||||
|
||||
let res = await fetch("/tunnel/cloudflare/"+command, {
|
||||
let res = await fetch("/tunnel/cloudflare/" + command, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
|
Loading…
Reference in New Issue
Block a user