forked from extern/easydiffusion
Ddim decode for img2img
This commit is contained in:
parent
6a8985d8dd
commit
e503c6092e
@ -819,19 +819,8 @@ def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, o
|
||||
|
||||
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(thread_data.device))
|
||||
|
||||
#samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,unconditional_conditioning=uc, )
|
||||
samples_ddim = sampler.sample(
|
||||
t_enc,
|
||||
batch_size,
|
||||
shape = [opt_C, opt_H // opt_f, opt_W // opt_f],
|
||||
conditioning=c,
|
||||
x0=z_enc,
|
||||
unconditional_guidance_scale=opt_scale,
|
||||
unconditional_conditioning=uc,
|
||||
img_callback=img_callback,
|
||||
mask=mask,
|
||||
x_T=x_T
|
||||
)
|
||||
samples_ddim = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt_scale,unconditional_conditioning=uc, img_callback=img_callback)
|
||||
|
||||
else:
|
||||
z_enc = thread_data.model.stochastic_encode(
|
||||
init_latent,
|
||||
|
Loading…
Reference in New Issue
Block a user