Mega refactor of the task processing and rendering logic; Split filter into a separate task, and add support for running filter tasks individually; Change the format for sending model and filter data from the API, but maintain backwards compatibility for now with the old API

This commit is contained in:
cmdr2 2023-07-28 18:57:28 +05:30
parent b93c624efa
commit e61549e0cd
11 changed files with 626 additions and 300 deletions

View File

@ -5,7 +5,7 @@ import traceback
from typing import Union
from easydiffusion import app
from easydiffusion.types import TaskData
from easydiffusion.types import ModelsData
from easydiffusion.utils import log
from sdkit import Context
from sdkit.models import load_model, scan_model, unload_model, download_model, get_model_info_from_db
@ -57,7 +57,9 @@ def init():
def load_default_models(context: Context):
set_vram_optimizations(context)
from easydiffusion import runtime
runtime.set_vram_optimizations(context)
config = app.getConfig()
context.embeddings_path = os.path.join(app.MODELS_DIR, "embeddings")
@ -138,43 +140,32 @@ def resolve_model_to_use_single(model_name: str = None, model_type: str = None,
raise Exception(f"Could not find the desired model {model_name}! Is it present in the {model_dir} folder?")
def reload_models_if_necessary(context: Context, task_data: TaskData):
face_fix_lower = task_data.use_face_correction.lower() if task_data.use_face_correction else ""
upscale_lower = task_data.use_upscale.lower() if task_data.use_upscale else ""
model_paths_in_req = {
"stable-diffusion": task_data.use_stable_diffusion_model,
"vae": task_data.use_vae_model,
"hypernetwork": task_data.use_hypernetwork_model,
"codeformer": task_data.use_face_correction if "codeformer" in face_fix_lower else None,
"gfpgan": task_data.use_face_correction if "gfpgan" in face_fix_lower else None,
"realesrgan": task_data.use_upscale if "realesrgan" in upscale_lower else None,
"latent_upscaler": True if "latent_upscaler" in upscale_lower else None,
"nsfw_checker": True if task_data.block_nsfw else None,
"lora": task_data.use_lora_model,
}
def reload_models_if_necessary(context: Context, models_data: ModelsData, models_to_force_reload: list = []):
models_to_reload = {
model_type: path
for model_type, path in model_paths_in_req.items()
for model_type, path in models_data.model_paths.items()
if context.model_paths.get(model_type) != path
}
if task_data.codeformer_upscale_faces:
if models_data.model_paths.get("codeformer"):
if "realesrgan" not in models_to_reload and "realesrgan" not in context.models:
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
models_to_reload["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
elif "realesrgan" in models_to_reload and models_to_reload["realesrgan"] is None:
del models_to_reload["realesrgan"] # don't unload realesrgan
if set_vram_optimizations(context) or set_clip_skip(context, task_data): # reload SD
models_to_reload["stable-diffusion"] = model_paths_in_req["stable-diffusion"]
for model_type in models_to_force_reload:
if model_type not in models_data.model_paths:
continue
models_to_reload[model_type] = models_data.model_paths[model_type]
for model_type, model_path_in_req in models_to_reload.items():
context.model_paths[model_type] = model_path_in_req
action_fn = unload_model if context.model_paths[model_type] is None else load_model
extra_params = models_data.model_params.get(model_type, {})
try:
action_fn(context, model_type, scan_model=False) # we've scanned them already
action_fn(context, model_type, scan_model=False, **extra_params) # we've scanned them already
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
except Exception as e:
@ -183,24 +174,15 @@ def reload_models_if_necessary(context: Context, task_data: TaskData):
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
def resolve_model_paths(task_data: TaskData):
task_data.use_stable_diffusion_model = resolve_model_to_use(
task_data.use_stable_diffusion_model, model_type="stable-diffusion"
)
task_data.use_vae_model = resolve_model_to_use(task_data.use_vae_model, model_type="vae")
task_data.use_hypernetwork_model = resolve_model_to_use(task_data.use_hypernetwork_model, model_type="hypernetwork")
task_data.use_lora_model = resolve_model_to_use(task_data.use_lora_model, model_type="lora")
if task_data.use_face_correction:
if "gfpgan" in task_data.use_face_correction.lower():
model_type = "gfpgan"
elif "codeformer" in task_data.use_face_correction.lower():
model_type = "codeformer"
def resolve_model_paths(models_data: ModelsData):
model_paths = models_data.model_paths
for model_type in model_paths:
if model_type in ("latent_upscaler", "nsfw_checker"): # doesn't use model paths
continue
if model_type == "codeformer":
download_if_necessary("codeformer", "codeformer.pth", "codeformer-0.1.0")
task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, model_type)
if task_data.use_upscale and "realesrgan" in task_data.use_upscale.lower():
task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, "realesrgan")
model_paths[model_type] = resolve_model_to_use(model_paths[model_type], model_type=model_type)
def fail_if_models_did_not_load(context: Context):
@ -235,17 +217,6 @@ def download_if_necessary(model_type: str, file_name: str, model_id: str):
download_model(model_type, model_id, download_base_dir=app.MODELS_DIR)
def set_vram_optimizations(context: Context):
config = app.getConfig()
vram_usage_level = config.get("vram_usage_level", "balanced")
if vram_usage_level != context.vram_usage_level:
context.vram_usage_level = vram_usage_level
return True
return False
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
@ -266,16 +237,6 @@ def any_model_exists(model_type: str) -> bool:
return False
def set_clip_skip(context: Context, task_data: TaskData):
clip_skip = task_data.clip_skip
if clip_skip != context.clip_skip:
context.clip_skip = clip_skip
return True
return False
def make_model_folders():
for model_type in KNOWN_MODEL_TYPES:
model_dir_path = os.path.join(app.MODELS_DIR, model_type)

View File

@ -0,0 +1,53 @@
"""
A runtime that runs on a specific device (in a thread).
It can run various tasks like image generation, image filtering, model merge etc by using that thread-local context.
This creates an `sdkit.Context` that's bound to the device specified while calling the `init()` function.
"""
from easydiffusion import device_manager
from easydiffusion.utils import log
from sdkit import Context
from sdkit.utils import get_device_usage
context = Context() # thread-local
"""
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
"""
def init(device):
"""
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
"""
context.stop_processing = False
context.temp_images = {}
context.partial_x_samples = None
context.model_load_errors = {}
context.enable_codeformer = True
from easydiffusion import app
app_config = app.getConfig()
context.test_diffusers = (
app_config.get("test_diffusers", False) and app_config.get("update_branch", "main") != "main"
)
log.info("Device usage during initialization:")
get_device_usage(device, log_info=True, process_usage_only=False)
device_manager.device_init(context, device)
def set_vram_optimizations(context: Context):
from easydiffusion import app
config = app.getConfig()
vram_usage_level = config.get("vram_usage_level", "balanced")
if vram_usage_level != context.vram_usage_level:
context.vram_usage_level = vram_usage_level
return True
return False

View File

@ -9,7 +9,16 @@ import traceback
from typing import List, Union
from easydiffusion import app, model_manager, task_manager
from easydiffusion.types import GenerateImageRequest, MergeRequest, TaskData
from easydiffusion.tasks import RenderTask, FilterTask
from easydiffusion.types import (
GenerateImageRequest,
FilterImageRequest,
MergeRequest,
TaskData,
ModelsData,
OutputFormatData,
convert_legacy_render_req_to_new,
)
from easydiffusion.utils import log
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
@ -97,6 +106,10 @@ def init():
def render(req: dict):
return render_internal(req)
@server_api.post("/filter")
def render(req: dict):
return filter_internal(req)
@server_api.post("/model/merge")
def model_merge(req: dict):
print(req)
@ -228,9 +241,13 @@ def ping_internal(session_id: str = None):
def render_internal(req: dict):
try:
req = convert_legacy_render_req_to_new(req)
# separate out the request data into rendering and task-specific data
render_req: GenerateImageRequest = GenerateImageRequest.parse_obj(req)
task_data: TaskData = TaskData.parse_obj(req)
models_data: ModelsData = ModelsData.parse_obj(req)
output_format: OutputFormatData = OutputFormatData.parse_obj(req)
# Overwrite user specified save path
config = app.getConfig()
@ -240,28 +257,53 @@ def render_internal(req: dict):
render_req.init_image_mask = req.get("mask") # hack: will rename this in the HTTP API in a future revision
app.save_to_config(
task_data.use_stable_diffusion_model,
task_data.use_vae_model,
task_data.use_hypernetwork_model,
models_data.model_paths.get("stable-diffusion"),
models_data.model_paths.get("vae"),
models_data.model_paths.get("hypernetwork"),
task_data.vram_usage_level,
)
# enqueue the task
new_task = task_manager.render(render_req, task_data)
task = RenderTask(render_req, task_data, models_data, output_format)
return enqueue_task(task)
except HTTPException as e:
raise e
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def filter_internal(req: dict):
try:
session_id = req.get("session_id", "session")
filter_req: FilterImageRequest = FilterImageRequest.parse_obj(req)
models_data: ModelsData = ModelsData.parse_obj(req)
output_format: OutputFormatData = OutputFormatData.parse_obj(req)
# enqueue the task
task = FilterTask(filter_req, session_id, models_data, output_format)
return enqueue_task(task)
except HTTPException as e:
raise e
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def enqueue_task(task):
try:
task_manager.enqueue_task(task)
response = {
"status": str(task_manager.current_state),
"queue": len(task_manager.tasks_queue),
"stream": f"/image/stream/{id(new_task)}",
"task": id(new_task),
"stream": f"/image/stream/{task.id}",
"task": task.id,
}
return JSONResponse(response, headers=NOCACHE_HEADERS)
except ChildProcessError as e: # Render thread is dead
raise HTTPException(status_code=500, detail=f"Rendering thread has died.") # HTTP500 Internal Server Error
except ConnectionRefusedError as e: # Unstarted task pending limit reached, deny queueing too many.
raise HTTPException(status_code=503, detail=str(e)) # HTTP503 Service Unavailable
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def model_merge_internal(req: dict):

View File

@ -17,7 +17,7 @@ from typing import Any, Hashable
import torch
from easydiffusion import device_manager
from easydiffusion.types import GenerateImageRequest, TaskData
from easydiffusion.tasks import Task
from easydiffusion.utils import log
from sdkit.utils import gc
@ -27,6 +27,7 @@ LOCK_TIMEOUT = 15 # Maximum locking time in seconds before failing a task.
# It's better to get an exception than a deadlock... ALWAYS use timeout in critical paths.
DEVICE_START_TIMEOUT = 60 # seconds - Maximum time to wait for a render device to init.
MAX_OVERLOAD_ALLOWED_RATIO = 2 # i.e. 2x pending tasks compared to the number of render threads
class SymbolClass(type): # Print nicely formatted Symbol names.
@ -58,46 +59,6 @@ class ServerStates:
pass
class RenderTask: # Task with output queue and completion lock.
def __init__(self, req: GenerateImageRequest, task_data: TaskData):
task_data.request_id = id(self)
self.render_request: GenerateImageRequest = req # Initial Request
self.task_data: TaskData = task_data
self.response: Any = None # Copy of the last reponse
self.render_device = None # Select the task affinity. (Not used to change active devices).
self.temp_images: list = [None] * req.num_outputs * (1 if task_data.show_only_filtered_image else 2)
self.error: Exception = None
self.lock: threading.Lock = threading.Lock() # Locks at task start and unlocks when task is completed
self.buffer_queue: queue.Queue = queue.Queue() # Queue of JSON string segments
async def read_buffer_generator(self):
try:
while not self.buffer_queue.empty():
res = self.buffer_queue.get(block=False)
self.buffer_queue.task_done()
yield res
except queue.Empty as e:
yield
@property
def status(self):
if self.lock.locked():
return "running"
if isinstance(self.error, StopAsyncIteration):
return "stopped"
if self.error:
return "error"
if not self.buffer_queue.empty():
return "buffer"
if self.response:
return "completed"
return "pending"
@property
def is_pending(self):
return bool(not self.response and not self.error)
# Temporary cache to allow to query tasks results for a short time after they are completed.
class DataCache:
def __init__(self):
@ -123,8 +84,8 @@ class DataCache:
# Remove Items
for key in to_delete:
(_, val) = self._base[key]
if isinstance(val, RenderTask):
log.debug(f"RenderTask {key} expired. Data removed.")
if isinstance(val, Task):
log.debug(f"Task {key} expired. Data removed.")
elif isinstance(val, SessionState):
log.debug(f"Session {key} expired. Data removed.")
else:
@ -220,8 +181,8 @@ class SessionState:
tasks.append(task)
return tasks
def put(self, task, ttl=TASK_TTL):
task_id = id(task)
def put(self, task: Task, ttl=TASK_TTL):
task_id = task.id
self._tasks_ids.append(task_id)
if not task_cache.put(task_id, task, ttl):
return False
@ -230,11 +191,16 @@ class SessionState:
return True
def keep_task_alive(task: Task):
task_cache.keep(task.id, TASK_TTL)
session_cache.keep(task.session_id, TASK_TTL)
def thread_get_next_task():
from easydiffusion import renderer
from easydiffusion import runtime
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
log.warn(f"Render thread on device: {renderer.context.device} failed to acquire manager lock.")
log.warn(f"Render thread on device: {runtime.context.device} failed to acquire manager lock.")
return None
if len(tasks_queue) <= 0:
manager_lock.release()
@ -242,7 +208,7 @@ def thread_get_next_task():
task = None
try: # Select a render task.
for queued_task in tasks_queue:
if queued_task.render_device and renderer.context.device != queued_task.render_device:
if queued_task.render_device and runtime.context.device != queued_task.render_device:
# Is asking for a specific render device.
if is_alive(queued_task.render_device) > 0:
continue # requested device alive, skip current one.
@ -251,7 +217,7 @@ def thread_get_next_task():
queued_task.error = Exception(queued_task.render_device + " is not currently active.")
task = queued_task
break
if not queued_task.render_device and renderer.context.device == "cpu" and is_alive() > 1:
if not queued_task.render_device and runtime.context.device == "cpu" and is_alive() > 1:
# not asking for any specific devices, cpu want to grab task but other render devices are alive.
continue # Skip Tasks, don't run on CPU unless there is nothing else or user asked for it.
task = queued_task
@ -266,19 +232,19 @@ def thread_get_next_task():
def thread_render(device):
global current_state, current_state_error
from easydiffusion import model_manager, renderer
from easydiffusion import model_manager, runtime
try:
renderer.init(device)
runtime.init(device)
weak_thread_data[threading.current_thread()] = {
"device": renderer.context.device,
"device_name": renderer.context.device_name,
"device": runtime.context.device,
"device_name": runtime.context.device_name,
"alive": True,
}
current_state = ServerStates.LoadingModel
model_manager.load_default_models(renderer.context)
model_manager.load_default_models(runtime.context)
current_state = ServerStates.Online
except Exception as e:
@ -290,8 +256,8 @@ def thread_render(device):
session_cache.clean()
task_cache.clean()
if not weak_thread_data[threading.current_thread()]["alive"]:
log.info(f"Shutting down thread for device {renderer.context.device}")
model_manager.unload_all(renderer.context)
log.info(f"Shutting down thread for device {runtime.context.device}")
model_manager.unload_all(runtime.context)
return
if isinstance(current_state_error, SystemExit):
current_state = ServerStates.Unavailable
@ -311,62 +277,31 @@ def thread_render(device):
task.response = {"status": "failed", "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
continue
log.info(f"Session {task.task_data.session_id} starting task {id(task)} on {renderer.context.device_name}")
log.info(f"Session {task.session_id} starting task {task.id} on {runtime.context.device_name}")
if not task.lock.acquire(blocking=False):
raise Exception("Got locked task from queue.")
try:
task.run()
def step_callback():
global current_state_error
task_cache.keep(id(task), TASK_TTL)
session_cache.keep(task.task_data.session_id, TASK_TTL)
if (
isinstance(current_state_error, SystemExit)
or isinstance(current_state_error, StopAsyncIteration)
or isinstance(task.error, StopAsyncIteration)
):
renderer.context.stop_processing = True
if isinstance(current_state_error, StopAsyncIteration):
task.error = current_state_error
current_state_error = None
log.info(f"Session {task.task_data.session_id} sent cancel signal for task {id(task)}")
current_state = ServerStates.LoadingModel
model_manager.resolve_model_paths(task.task_data)
model_manager.reload_models_if_necessary(renderer.context, task.task_data)
model_manager.fail_if_models_did_not_load(renderer.context)
current_state = ServerStates.Rendering
task.response = renderer.make_images(
task.render_request,
task.task_data,
task.buffer_queue,
task.temp_images,
step_callback,
)
# Before looping back to the generator, mark cache as still alive.
task_cache.keep(id(task), TASK_TTL)
session_cache.keep(task.task_data.session_id, TASK_TTL)
keep_task_alive(task)
except Exception as e:
task.error = str(e)
task.response = {"status": "failed", "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
log.error(traceback.format_exc())
finally:
gc(renderer.context)
gc(runtime.context)
task.lock.release()
task_cache.keep(id(task), TASK_TTL)
session_cache.keep(task.task_data.session_id, TASK_TTL)
keep_task_alive(task)
if isinstance(task.error, StopAsyncIteration):
log.info(f"Session {task.task_data.session_id} task {id(task)} cancelled!")
log.info(f"Session {task.session_id} task {task.id} cancelled!")
elif task.error is not None:
log.info(f"Session {task.task_data.session_id} task {id(task)} failed!")
log.info(f"Session {task.session_id} task {task.id} failed!")
else:
log.info(
f"Session {task.task_data.session_id} task {id(task)} completed by {renderer.context.device_name}."
)
log.info(f"Session {task.session_id} task {task.id} completed by {runtime.context.device_name}.")
current_state = ServerStates.Online
@ -548,28 +483,27 @@ def shutdown_event(): # Signal render thread to close on shutdown
current_state_error = SystemExit("Application shutting down.")
def render(render_req: GenerateImageRequest, task_data: TaskData):
def enqueue_task(task: Task):
current_thread_count = is_alive()
if current_thread_count <= 0: # Render thread is dead
raise ChildProcessError("Rendering thread has died.")
# Alive, check if task in cache
session = get_cached_session(task_data.session_id, update_ttl=True)
session = get_cached_session(task.session_id, update_ttl=True)
pending_tasks = list(filter(lambda t: t.is_pending, session.tasks))
if current_thread_count < len(pending_tasks):
if len(pending_tasks) > current_thread_count * MAX_OVERLOAD_ALLOWED_RATIO:
raise ConnectionRefusedError(
f"Session {task_data.session_id} already has {len(pending_tasks)} pending tasks out of {current_thread_count}."
f"Session {task.session_id} already has {len(pending_tasks)} pending tasks, with {current_thread_count} workers."
)
new_task = RenderTask(render_req, task_data)
if session.put(new_task, TASK_TTL):
if session.put(task, TASK_TTL):
# Use twice the normal timeout for adding user requests.
# Tries to force session.put to fail before tasks_queue.put would.
if manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT * 2):
try:
tasks_queue.append(new_task)
tasks_queue.append(task)
idle_event.set()
return new_task
return task
finally:
manager_lock.release()
raise RuntimeError("Failed to add task to cache.")

View File

@ -0,0 +1,3 @@
from .task import Task
from .render_images import RenderTask
from .filter_images import FilterTask

View File

@ -0,0 +1,110 @@
import json
import pprint
from sdkit.filter import apply_filters
from sdkit.models import load_model
from sdkit.utils import img_to_base64_str, log
from easydiffusion import model_manager, runtime
from easydiffusion.types import FilterImageRequest, FilterImageResponse, ModelsData, OutputFormatData
from .task import Task
class FilterTask(Task):
"For applying filters to input images"
def __init__(
self, req: FilterImageRequest, session_id: str, models_data: ModelsData, output_format: OutputFormatData
):
super().__init__(session_id)
self.request = req
self.models_data = models_data
self.output_format = output_format
# convert to multi-filter format, if necessary
if isinstance(req.filter, str):
req.filter_params = {req.filter: req.filter_params}
req.filter = [req.filter]
if not isinstance(req.image, list):
req.image = [req.image]
def run(self):
"Runs the image filtering task on the assigned thread"
context = runtime.context
model_manager.resolve_model_paths(self.models_data)
model_manager.reload_models_if_necessary(context, self.models_data)
model_manager.fail_if_models_did_not_load(context)
print_task_info(self.request, self.models_data, self.output_format)
images = filter_images(context, self.request.image, self.request.filter, self.request.filter_params)
output_format = self.output_format
images = [
img_to_base64_str(
img, output_format.output_format, output_format.output_quality, output_format.output_lossless
)
for img in images
]
res = FilterImageResponse(self.request, self.models_data, images=images)
res = res.json()
self.buffer_queue.put(json.dumps(res))
log.info("Filter task completed")
self.response = res
def filter_images(context, images, filters, filter_params={}):
filters = filters if isinstance(filters, list) else [filters]
for filter_name in filters:
params = filter_params.get(filter_name, {})
previous_state = before_filter(context, filter_name, params)
try:
images = apply_filters(context, filter_name, images, **params)
finally:
after_filter(context, filter_name, params, previous_state)
return images
def before_filter(context, filter_name, filter_params):
if filter_name == "codeformer":
from easydiffusion.model_manager import DEFAULT_MODELS, resolve_model_to_use
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
prev_realesrgan_path = None
upscale_faces = filter_params.get("upscale_faces", False)
if upscale_faces and default_realesrgan not in context.model_paths["realesrgan"]:
prev_realesrgan_path = context.model_paths.get("realesrgan")
context.model_paths["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
load_model(context, "realesrgan")
return prev_realesrgan_path
def after_filter(context, filter_name, filter_params, previous_state):
if filter_name == "codeformer":
prev_realesrgan_path = previous_state
if prev_realesrgan_path:
context.model_paths["realesrgan"] = prev_realesrgan_path
load_model(context, "realesrgan")
def print_task_info(req: FilterImageRequest, models_data: ModelsData, output_format: OutputFormatData):
req_str = pprint.pformat({"filter": req.filter, "filter_params": req.filter_params}).replace("[", "\[")
models_data = pprint.pformat(models_data.dict()).replace("[", "\[")
output_format = pprint.pformat(output_format.dict()).replace("[", "\[")
log.info(f"request: {req_str}")
log.info(f"models data: {models_data}")
log.info(f"output format: {output_format}")

View File

@ -3,70 +3,109 @@ import pprint
import queue
import time
from easydiffusion import device_manager
from easydiffusion.types import GenerateImageRequest
from easydiffusion import model_manager, runtime
from easydiffusion.types import GenerateImageRequest, ModelsData, OutputFormatData
from easydiffusion.types import Image as ResponseImage
from easydiffusion.types import Response, TaskData, UserInitiatedStop
from easydiffusion.model_manager import DEFAULT_MODELS, resolve_model_to_use
from easydiffusion.types import GenerateImageResponse, TaskData, UserInitiatedStop
from easydiffusion.utils import get_printable_request, log, save_images_to_disk
from sdkit import Context
from sdkit.filter import apply_filters
from sdkit.generate import generate_images
from sdkit.models import load_model
from sdkit.utils import (
diffusers_latent_samples_to_images,
gc,
img_to_base64_str,
img_to_buffer,
latent_samples_to_images,
get_device_usage,
)
context = Context() # thread-local
"""
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
"""
from .task import Task
from .filter_images import filter_images
def init(device):
"""
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
"""
context.stop_processing = False
context.temp_images = {}
context.partial_x_samples = None
context.model_load_errors = {}
context.enable_codeformer = True
class RenderTask(Task):
"For image generation"
from easydiffusion import app
def __init__(
self, req: GenerateImageRequest, task_data: TaskData, models_data: ModelsData, output_format: OutputFormatData
):
super().__init__(task_data.session_id)
app_config = app.getConfig()
context.test_diffusers = (
app_config.get("test_diffusers", False) and app_config.get("update_branch", "main") != "main"
)
task_data.request_id = self.id
self.render_request: GenerateImageRequest = req # Initial Request
self.task_data: TaskData = task_data
self.models_data = models_data
self.output_format = output_format
self.temp_images: list = [None] * req.num_outputs * (1 if task_data.show_only_filtered_image else 2)
log.info("Device usage during initialization:")
get_device_usage(device, log_info=True, process_usage_only=False)
def run(self):
"Runs the image generation task on the assigned thread"
device_manager.device_init(context, device)
from easydiffusion import task_manager
context = runtime.context
def step_callback():
task_manager.keep_task_alive(self)
task_manager.current_state = task_manager.ServerStates.Rendering
if isinstance(task_manager.current_state_error, (SystemExit, StopAsyncIteration)) or isinstance(
self.error, StopAsyncIteration
):
context.stop_processing = True
if isinstance(task_manager.current_state_error, StopAsyncIteration):
self.error = task_manager.current_state_error
task_manager.current_state_error = None
log.info(f"Session {self.session_id} sent cancel signal for task {self.id}")
task_manager.current_state = task_manager.ServerStates.LoadingModel
model_manager.resolve_model_paths(self.models_data)
models_to_force_reload = []
if runtime.set_vram_optimizations(context) or self.has_clip_skip_changed(context):
models_to_force_reload.append("stable-diffusion")
model_manager.reload_models_if_necessary(context, self.models_data, models_to_force_reload)
model_manager.fail_if_models_did_not_load(context)
task_manager.current_state = task_manager.ServerStates.Rendering
self.response = make_images(
context,
self.render_request,
self.task_data,
self.models_data,
self.output_format,
self.buffer_queue,
self.temp_images,
step_callback,
)
def has_clip_skip_changed(self, context):
if not context.test_diffusers:
return False
model = context.models["stable-diffusion"]
new_clip_skip = self.models_data.model_params.get("stable-diffusion", {}).get("clip_skip", False)
return model["clip_skip"] != new_clip_skip
def make_images(
context,
req: GenerateImageRequest,
task_data: TaskData,
models_data: ModelsData,
output_format: OutputFormatData,
data_queue: queue.Queue,
task_temp_images: list,
step_callback,
):
context.stop_processing = False
print_task_info(req, task_data)
print_task_info(req, task_data, models_data, output_format)
images, seeds = make_images_internal(req, task_data, data_queue, task_temp_images, step_callback)
images, seeds = make_images_internal(
context, req, task_data, models_data, output_format, data_queue, task_temp_images, step_callback
)
res = Response(
req,
task_data,
images=construct_response(images, seeds, task_data, base_seed=req.seed),
res = GenerateImageResponse(
req, task_data, models_data, output_format, images=construct_response(images, seeds, output_format)
)
res = res.json()
data_queue.put(json.dumps(res))
@ -75,21 +114,32 @@ def make_images(
return res
def print_task_info(req: GenerateImageRequest, task_data: TaskData):
req_str = pprint.pformat(get_printable_request(req, task_data)).replace("[", "\[")
def print_task_info(
req: GenerateImageRequest, task_data: TaskData, models_data: ModelsData, output_format: OutputFormatData
):
req_str = pprint.pformat(get_printable_request(req, task_data, output_format)).replace("[", "\[")
task_str = pprint.pformat(task_data.dict()).replace("[", "\[")
models_data = pprint.pformat(models_data.dict()).replace("[", "\[")
output_format = pprint.pformat(output_format.dict()).replace("[", "\[")
log.info(f"request: {req_str}")
log.info(f"task data: {task_str}")
# log.info(f"models data: {models_data}")
log.info(f"output format: {output_format}")
def make_images_internal(
context,
req: GenerateImageRequest,
task_data: TaskData,
models_data: ModelsData,
output_format: OutputFormatData,
data_queue: queue.Queue,
task_temp_images: list,
step_callback,
):
images, user_stopped = generate_images_internal(
context,
req,
task_data,
data_queue,
@ -98,11 +148,14 @@ def make_images_internal(
task_data.stream_image_progress,
task_data.stream_image_progress_interval,
)
gc(context)
filtered_images = filter_images(req, task_data, images, user_stopped)
filters, filter_params = task_data.filters, task_data.filter_params
filtered_images = filter_images(context, images, filters, filter_params) if not user_stopped else images
if task_data.save_to_disk_path is not None:
save_images_to_disk(images, filtered_images, req, task_data)
save_images_to_disk(images, filtered_images, req, task_data, output_format)
seeds = [*range(req.seed, req.seed + len(images))]
if task_data.show_only_filtered_image or filtered_images is images:
@ -112,6 +165,7 @@ def make_images_internal(
def generate_images_internal(
context,
req: GenerateImageRequest,
task_data: TaskData,
data_queue: queue.Queue,
@ -123,6 +177,7 @@ def generate_images_internal(
context.temp_images.clear()
callback = make_step_callback(
context,
req,
task_data,
data_queue,
@ -155,65 +210,14 @@ def generate_images_internal(
return images, user_stopped
def filter_images(req: GenerateImageRequest, task_data: TaskData, images: list, user_stopped):
if user_stopped:
return images
if task_data.block_nsfw:
images = apply_filters(context, "nsfw_checker", images)
if task_data.use_face_correction and "codeformer" in task_data.use_face_correction.lower():
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
prev_realesrgan_path = None
if task_data.codeformer_upscale_faces and default_realesrgan not in context.model_paths["realesrgan"]:
prev_realesrgan_path = context.model_paths["realesrgan"]
context.model_paths["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
load_model(context, "realesrgan")
try:
images = apply_filters(
context,
"codeformer",
images,
upscale_faces=task_data.codeformer_upscale_faces,
codeformer_fidelity=task_data.codeformer_fidelity,
)
finally:
if prev_realesrgan_path:
context.model_paths["realesrgan"] = prev_realesrgan_path
load_model(context, "realesrgan")
elif task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
images = apply_filters(context, "gfpgan", images)
if task_data.use_upscale:
if "realesrgan" in task_data.use_upscale.lower():
images = apply_filters(context, "realesrgan", images, scale=task_data.upscale_amount)
elif task_data.use_upscale == "latent_upscaler":
images = apply_filters(
context,
"latent_upscaler",
images,
scale=task_data.upscale_amount,
latent_upscaler_options={
"prompt": req.prompt,
"negative_prompt": req.negative_prompt,
"seed": req.seed,
"num_inference_steps": task_data.latent_upscaler_steps,
"guidance_scale": 0,
},
)
return images
def construct_response(images: list, seeds: list, task_data: TaskData, base_seed: int):
def construct_response(images: list, seeds: list, output_format: OutputFormatData):
return [
ResponseImage(
data=img_to_base64_str(
img,
task_data.output_format,
task_data.output_quality,
task_data.output_lossless,
output_format.output_format,
output_format.output_quality,
output_format.output_lossless,
),
seed=seed,
)
@ -222,6 +226,7 @@ def construct_response(images: list, seeds: list, task_data: TaskData, base_seed
def make_step_callback(
context,
req: GenerateImageRequest,
task_data: TaskData,
data_queue: queue.Queue,
@ -242,7 +247,7 @@ def make_step_callback(
images = latent_samples_to_images(context, x_samples)
if task_data.block_nsfw:
images = apply_filters(context, "nsfw_checker", images)
images = filter_images(context, images, "nsfw_checker")
for i, img in enumerate(images):
buf = img_to_buffer(img, output_format="JPEG")

View File

@ -0,0 +1,47 @@
from threading import Lock
from queue import Queue, Empty as EmptyQueueException
from typing import Any
class Task:
"Task with output queue and completion lock"
def __init__(self, session_id):
self.id = id(self)
self.session_id = session_id
self.render_device = None # Select the task affinity. (Not used to change active devices).
self.error: Exception = None
self.lock: Lock = Lock() # Locks at task start and unlocks when task is completed
self.buffer_queue: Queue = Queue() # Queue of JSON string segments
self.response: Any = None # Copy of the last reponse
async def read_buffer_generator(self):
try:
while not self.buffer_queue.empty():
res = self.buffer_queue.get(block=False)
self.buffer_queue.task_done()
yield res
except EmptyQueueException as e:
yield
@property
def status(self):
if self.lock.locked():
return "running"
if isinstance(self.error, StopAsyncIteration):
return "stopped"
if self.error:
return "error"
if not self.buffer_queue.empty():
return "buffer"
if self.response:
return "completed"
return "pending"
@property
def is_pending(self):
return bool(not self.response and not self.error)
def run(self):
"Override this to implement the task's behavior"
pass

View File

@ -1,4 +1,4 @@
from typing import Any, List, Union
from typing import Any, List, Dict, Union
from pydantic import BaseModel
@ -17,6 +17,8 @@ class GenerateImageRequest(BaseModel):
init_image: Any = None
init_image_mask: Any = None
control_image: Any = None
control_alpha: Union[float, List[float]] = None
prompt_strength: float = 0.8
preserve_init_image_color_profile = False
@ -26,6 +28,35 @@ class GenerateImageRequest(BaseModel):
tiling: str = "none" # "none", "x", "y", "xy"
class FilterImageRequest(BaseModel):
image: Any = None
filter: Union[str, List[str]] = None
filter_params: dict = {}
class ModelsData(BaseModel):
"""
Contains the information related to the models involved in a request.
- To load a model: set the relative path(s) to the model in `model_paths`. No effect if already loaded.
- To unload a model: set the model to `None` in `model_paths`. No effect if already unloaded.
Models that aren't present in `model_paths` will not be changed.
"""
model_paths: Dict[str, Union[str, None, List[str]]] = None
"model_type to string path, or list of string paths"
model_params: Dict[str, Dict[str, Any]] = {}
"model_type to dict of parameters"
class OutputFormatData(BaseModel):
output_format: str = "jpeg" # or "png" or "webp"
output_quality: int = 75
output_lossless: bool = False
class TaskData(BaseModel):
request_id: str = None
session_id: str = "session"
@ -40,12 +71,12 @@ class TaskData(BaseModel):
use_vae_model: Union[str, List[str]] = None
use_hypernetwork_model: Union[str, List[str]] = None
use_lora_model: Union[str, List[str]] = None
use_controlnet_model: Union[str, List[str]] = None
filters: List[str] = []
filter_params: Dict[str, Dict[str, Any]] = {}
show_only_filtered_image: bool = False
block_nsfw: bool = False
output_format: str = "jpeg" # or "png" or "webp"
output_quality: int = 75
output_lossless: bool = False
metadata_output_format: str = "txt" # or "json"
stream_image_progress: bool = False
stream_image_progress_interval: int = 5
@ -80,24 +111,38 @@ class Image:
}
class Response:
class GenerateImageResponse:
render_request: GenerateImageRequest
task_data: TaskData
models_data: ModelsData
images: list
def __init__(self, render_request: GenerateImageRequest, task_data: TaskData, images: list):
def __init__(
self,
render_request: GenerateImageRequest,
task_data: TaskData,
models_data: ModelsData,
output_format: OutputFormatData,
images: list,
):
self.render_request = render_request
self.task_data = task_data
self.models_data = models_data
self.output_format = output_format
self.images = images
def json(self):
del self.render_request.init_image
del self.render_request.init_image_mask
task_data = self.task_data.dict()
task_data.update(self.output_format.dict())
res = {
"status": "succeeded",
"render_request": self.render_request.dict(),
"task_data": self.task_data.dict(),
"task_data": task_data,
# "models_data": self.models_data.dict(), # haven't migrated the UI to the new format (yet)
"output": [],
}
@ -107,5 +152,102 @@ class Response:
return res
class FilterImageResponse:
request: FilterImageRequest
models_data: ModelsData
images: list
def __init__(self, request: FilterImageRequest, models_data: ModelsData, images: list):
self.request = request
self.models_data = models_data
self.images = images
def json(self):
del self.request.image
res = {
"status": "succeeded",
"request": self.request.dict(),
"models_data": self.models_data.dict(),
"output": [],
}
for image in self.images:
res["output"].append(image)
return res
class UserInitiatedStop(Exception):
pass
def convert_legacy_render_req_to_new(old_req: dict):
new_req = dict(old_req)
# new keys
model_paths = new_req["model_paths"] = {}
model_params = new_req["model_params"] = {}
filters = new_req["filters"] = []
filter_params = new_req["filter_params"] = {}
# move the model info
model_paths["stable-diffusion"] = old_req.get("use_stable_diffusion_model")
model_paths["vae"] = old_req.get("use_vae_model")
model_paths["hypernetwork"] = old_req.get("use_hypernetwork_model")
model_paths["lora"] = old_req.get("use_lora_model")
model_paths["controlnet"] = old_req.get("use_controlnet_model")
model_paths["gfpgan"] = old_req.get("use_face_correction", "")
model_paths["gfpgan"] = model_paths["gfpgan"] if "gfpgan" in model_paths["gfpgan"].lower() else None
model_paths["codeformer"] = old_req.get("use_face_correction", "")
model_paths["codeformer"] = model_paths["codeformer"] if "codeformer" in model_paths["codeformer"].lower() else None
model_paths["realesrgan"] = old_req.get("use_upscale", "")
model_paths["realesrgan"] = model_paths["realesrgan"] if "realesrgan" in model_paths["realesrgan"].lower() else None
model_paths["latent_upscaler"] = old_req.get("use_upscale", "")
model_paths["latent_upscaler"] = (
model_paths["latent_upscaler"] if "latent_upscaler" in model_paths["latent_upscaler"].lower() else None
)
if old_req.get("block_nsfw"):
model_paths["nsfw_checker"] = "nsfw_checker"
# move the model params
if model_paths["stable-diffusion"]:
model_params["stable-diffusion"] = {"clip_skip": bool(old_req["clip_skip"])}
# move the filter params
if model_paths["realesrgan"]:
filter_params["realesrgan"] = {"scale": int(old_req["upscale_amount"])}
if model_paths["latent_upscaler"]:
filter_params["latent_upscaler"] = {
"prompt": old_req["prompt"],
"negative_prompt": old_req.get("negative_prompt"),
"seed": int(old_req.get("seed", 42)),
"num_inference_steps": int(old_req.get("latent_upscaler_steps", 10)),
"guidance_scale": 0,
}
if model_paths["codeformer"]:
filter_params["codeformer"] = {
"upscale_faces": bool(old_req["codeformer_upscale_faces"]),
"codeformer_fidelity": float(old_req["codeformer_fidelity"]),
}
# set the filters
if old_req.get("block_nsfw"):
filters.append("nsfw_checker")
if model_paths["codeformer"]:
filters.append("codeformer")
elif model_paths["gfpgan"]:
filters.append("gfpgan")
if model_paths["realesrgan"]:
filters.append("realesrgan")
elif model_paths["latent_upscaler"]:
filters.append("latent_upscaler")
return new_req

View File

@ -7,7 +7,7 @@ from datetime import datetime
from functools import reduce
from easydiffusion import app
from easydiffusion.types import GenerateImageRequest, TaskData
from easydiffusion.types import GenerateImageRequest, TaskData, OutputFormatData
from numpy import base_repr
from sdkit.utils import save_dicts, save_images
@ -114,12 +114,14 @@ def format_file_name(
return filename_regex.sub("_", format)
def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData):
def save_images_to_disk(
images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData, output_format: OutputFormatData
):
now = time.time()
app_config = app.getConfig()
folder_format = app_config.get("folder_format", "$id")
save_dir_path = os.path.join(task_data.save_to_disk_path, format_folder_name(folder_format, req, task_data))
metadata_entries = get_metadata_entries_for_request(req, task_data)
metadata_entries = get_metadata_entries_for_request(req, task_data, output_format)
file_number = calculate_img_number(save_dir_path, task_data)
make_filename = make_filename_callback(
app_config.get("filename_format", "$p_$tsb64"),
@ -134,9 +136,9 @@ def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageR
filtered_images,
save_dir_path,
file_name=make_filename,
output_format=task_data.output_format,
output_quality=task_data.output_quality,
output_lossless=task_data.output_lossless,
output_format=output_format.output_format,
output_quality=output_format.output_quality,
output_lossless=output_format.output_lossless,
)
if task_data.metadata_output_format:
for metadata_output_format in task_data.metadata_output_format.split(","):
@ -146,7 +148,7 @@ def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageR
save_dir_path,
file_name=make_filename,
output_format=metadata_output_format,
file_format=task_data.output_format,
file_format=output_format.output_format,
)
else:
make_filter_filename = make_filename_callback(
@ -162,17 +164,17 @@ def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageR
images,
save_dir_path,
file_name=make_filename,
output_format=task_data.output_format,
output_quality=task_data.output_quality,
output_lossless=task_data.output_lossless,
output_format=output_format.output_format,
output_quality=output_format.output_quality,
output_lossless=output_format.output_lossless,
)
save_images(
filtered_images,
save_dir_path,
file_name=make_filter_filename,
output_format=task_data.output_format,
output_quality=task_data.output_quality,
output_lossless=task_data.output_lossless,
output_format=output_format.output_format,
output_quality=output_format.output_quality,
output_lossless=output_format.output_lossless,
)
if task_data.metadata_output_format:
for metadata_output_format in task_data.metadata_output_format.split(","):
@ -181,20 +183,21 @@ def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageR
metadata_entries,
save_dir_path,
file_name=make_filter_filename,
output_format=task_data.metadata_output_format,
file_format=task_data.output_format,
output_format=metadata_output_format,
file_format=output_format.output_format,
)
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData):
metadata = get_printable_request(req, task_data)
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData, output_format: OutputFormatData):
metadata = get_printable_request(req, task_data, output_format)
# if text, format it in the text format expected by the UI
is_txt_format = task_data.metadata_output_format and "txt" in task_data.metadata_output_format.lower().split(",")
if is_txt_format:
def format_value(value):
if isinstance(value, list):
return ", ".join([ str(it) for it in value ])
return ", ".join([str(it) for it in value])
return value
metadata = {
@ -208,9 +211,10 @@ def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskD
return entries
def get_printable_request(req: GenerateImageRequest, task_data: TaskData):
def get_printable_request(req: GenerateImageRequest, task_data: TaskData, output_format: OutputFormatData):
req_metadata = req.dict()
task_data_metadata = task_data.dict()
task_data_metadata.update(output_format.dict())
app_config = app.getConfig()
using_diffusers = app_config.get("test_diffusers", False)
@ -224,6 +228,7 @@ def get_printable_request(req: GenerateImageRequest, task_data: TaskData):
metadata[key] = task_data_metadata[key]
elif key == "use_embedding_models" and using_diffusers:
embeddings_extensions = {".pt", ".bin", ".safetensors"}
def scan_directory(directory_path: str):
used_embeddings = []
for entry in os.scandir(directory_path):
@ -232,15 +237,18 @@ def get_printable_request(req: GenerateImageRequest, task_data: TaskData):
if entry_extension not in embeddings_extensions:
continue
embedding_name_regex = regex.compile(r"(^|[\s,])" + regex.escape(os.path.splitext(entry.name)[0]) + r"([+-]*$|[\s,]|[+-]+[\s,])")
embedding_name_regex = regex.compile(
r"(^|[\s,])" + regex.escape(os.path.splitext(entry.name)[0]) + r"([+-]*$|[\s,]|[+-]+[\s,])"
)
if embedding_name_regex.search(req.prompt) or embedding_name_regex.search(req.negative_prompt):
used_embeddings.append(entry.path)
elif entry.is_dir():
used_embeddings.extend(scan_directory(entry.path))
return used_embeddings
used_embeddings = scan_directory(os.path.join(app.MODELS_DIR, "embeddings"))
metadata["use_embedding_models"] = used_embeddings if len(used_embeddings) > 0 else None
# Clean up the metadata
if req.init_image is None and "prompt_strength" in metadata:
del metadata["prompt_strength"]
@ -254,7 +262,9 @@ def get_printable_request(req: GenerateImageRequest, task_data: TaskData):
del metadata["latent_upscaler_steps"]
if not using_diffusers:
for key in (x for x in ["use_lora_model", "lora_alpha", "clip_skip", "tiling", "latent_upscaler_steps"] if x in metadata):
for key in (
x for x in ["use_lora_model", "lora_alpha", "clip_skip", "tiling", "latent_upscaler_steps"] if x in metadata
):
del metadata[key]
return metadata

View File

@ -1047,17 +1047,22 @@
}
}
class FilterTask extends Task {
constructor(options = {}) {}
constructor(options = {}) {
super(options)
}
/** Send current task to server.
* @param {*} [timeout=-1] Optional timeout value in ms
* @returns the response from the render request.
* @memberof Task
*/
async post(timeout = -1) {
let jsonResponse = await super.post("/filter", timeout)
let res = await super.post("/filter", timeout)
//this._setId(jsonResponse.task)
this._setStatus(TaskStatus.waiting)
return res
}
checkReqBody() {}
enqueue(progressCallback) {
return Task.enqueueNew(this, FilterTask, progressCallback)
}
@ -1068,6 +1073,20 @@
if (this.isStopped) {
return
}
this._setStatus(TaskStatus.pending)
progressCallback?.call(this, { reqBody: this._reqBody })
Object.freeze(this._reqBody)
// Post task request to backend
let renderRes = undefined
try {
renderRes = yield this.post()
yield progressCallback?.call(this, { renderResponse: renderRes })
} catch (e) {
yield progressCallback?.call(this, { detail: e.message })
throw e
}
}
static start(task, progressCallback) {
if (typeof task !== "object") {