import json import traceback TASK_TTL = 15 * 60 # Discard last session's task timeout import queue, threading, time from typing import Any, Generator, Hashable, Optional, Union from pydantic import BaseModel from sd_internal import Request, Response class SymbolClass(type): # Print nicely formatted Symbol names. def __repr__(self): return self.__qualname__ def __str__(self): return self.__name__ class Symbol(metaclass=SymbolClass): pass class ServerStates: class Init(Symbol): pass class LoadingModel(Symbol): pass class Online(Symbol): pass class Rendering(Symbol): pass class Unavailable(Symbol): pass class RenderTask(): # Task with output queue and completion lock. def __init__(self, req: Request): self.request: Request = req # Initial Request self.response: Any = None # Copy of the last reponse self.temp_images:[] = [None] * req.num_outputs * (1 if req.show_only_filtered_image else 2) self.error: Exception = None self.lock: threading.Lock = threading.Lock() # Locks at task start and unlocks when task is completed self.buffer_queue: queue.Queue = queue.Queue() # Queue of JSON string segments async def read_buffer_generator(self): try: while not self.buffer_queue.empty(): res = self.buffer_queue.get(block=False) self.buffer_queue.task_done() yield res except queue.Empty as e: yield # defaults from https://huggingface.co/blog/stable_diffusion class ImageRequest(BaseModel): session_id: str = "session" prompt: str = "" negative_prompt: str = "" init_image: str = None # base64 mask: str = None # base64 num_outputs: int = 1 num_inference_steps: int = 50 guidance_scale: float = 7.5 width: int = 512 height: int = 512 seed: int = 42 prompt_strength: float = 0.8 sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms" # allow_nsfw: bool = False save_to_disk_path: str = None turbo: bool = True use_cpu: bool = False use_full_precision: bool = False use_face_correction: str = None # or "GFPGANv1.3" use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B" use_stable_diffusion_model: str = "sd-v1-4" show_only_filtered_image: bool = False output_format: str = "jpeg" # or "png" stream_progress_updates: bool = False stream_image_progress: bool = False # Temporary cache to allow to query tasks results for a short time after they are completed. class TaskCache(): def __init__(self): self._base = dict() self._lock: threading.Lock = threading.RLock() def _get_ttl_time(self, ttl: int) -> int: return int(time.time()) + ttl def _is_expired(self, timestamp: int) -> bool: return int(time.time()) >= timestamp def clean(self) -> None: self._lock.acquire() try: # Create a list of expired keys to delete to_delete = [] for key in self._base: ttl, _ = self._base[key] if self._is_expired(ttl): to_delete.append(key) # Remove Items for key in to_delete: del self._base[key] print(f'Session {key} expired. Data removed.') finally: self._lock.release() def clear(self) -> None: self._lock.acquire() try: self._base.clear() finally: self._lock.release() def delete(self, key: Hashable) -> bool: self._lock.acquire() try: if key not in self._base: return False del self._base[key] return True finally: self._lock.release() def keep(self, key: Hashable, ttl: int) -> bool: self._lock.acquire() try: if key in self._base: _, value = self._base.get(key) self._base[key] = (self._get_ttl_time(ttl), value) return True return False finally: self._lock.release() def put(self, key: Hashable, value: Any, ttl: int) -> bool: self._lock.acquire() try: self._base[key] = ( self._get_ttl_time(ttl), value ) except Exception as e: print(str(e)) print(traceback.format_exc()) return False else: return True finally: self._lock.release() def tryGet(self, key: Hashable) -> Any: self._lock.acquire() try: ttl, value = self._base.get(key, (None, None)) if ttl is not None and self._is_expired(ttl): print(f'Session {key} expired. Discarding data.') self.delete(key) return None return value finally: self._lock.release() current_state = ServerStates.Init current_state_error:Exception = None current_model_path = None tasks_queue = queue.Queue() task_cache = TaskCache() default_model_to_load = None def preload_model(file_path=None): global current_state, current_state_error, current_model_path if file_path == None: file_path = default_model_to_load if file_path == current_model_path: return current_state = ServerStates.LoadingModel try: from . import runtime runtime.load_model_ckpt(ckpt_to_use=file_path) current_model_path = file_path current_state_error = None current_state = ServerStates.Online except Exception as e: current_model_path = None current_state_error = e current_state = ServerStates.Unavailable print(traceback.format_exc()) def thread_render(): global current_state, current_state_error, current_model_path from . import runtime current_state = ServerStates.Online preload_model() while True: task_cache.clean() if isinstance(current_state_error, SystemExit): current_state = ServerStates.Unavailable return task = None try: task = tasks_queue.get(timeout=1) except queue.Empty as e: if isinstance(current_state_error, SystemExit): current_state = ServerStates.Unavailable return else: continue #if current_model_path != task.request.use_stable_diffusion_model: # preload_model(task.request.use_stable_diffusion_model) if current_state_error: task.error = current_state_error continue print(f'Session {task.request.session_id} starting task {id(task)}') try: task.lock.acquire(blocking=False) res = runtime.mk_img(task.request) if current_model_path == task.request.use_stable_diffusion_model: current_state = ServerStates.Rendering else: current_state = ServerStates.LoadingModel except Exception as e: task.error = e task.lock.release() tasks_queue.task_done() print(traceback.format_exc()) continue dataQueue = None if task.request.stream_progress_updates: dataQueue = task.buffer_queue for result in res: if current_state == ServerStates.LoadingModel: current_state = ServerStates.Rendering current_model_path = task.request.use_stable_diffusion_model if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration): runtime.stop_processing = True if isinstance(current_state_error, StopAsyncIteration): task.error = current_state_error current_state_error = None print(f'Session {task.request.session_id} sent cancel signal for task {id(task)}') if dataQueue: dataQueue.put(result) if isinstance(result, str): result = json.loads(result) task.response = result if 'output' in result: for out_obj in result['output']: if 'path' in out_obj: img_id = out_obj['path'][out_obj['path'].rindex('/') + 1:] task.temp_images[int(img_id)] = runtime.temp_images[out_obj['path'][11:]] elif 'data' in out_obj: task.temp_images[result['output'].index(out_obj)] = out_obj['data'] task_cache.keep(task.request.session_id, TASK_TTL) # Task completed task.lock.release() tasks_queue.task_done() task_cache.keep(task.request.session_id, TASK_TTL) if isinstance(task.error, StopAsyncIteration): print(f'Session {task.request.session_id} task {id(task)} cancelled!') elif task.error is not None: print(f'Session {task.request.session_id} task {id(task)} failed!') else: print(f'Session {task.request.session_id} task {id(task)} completed.') current_state = ServerStates.Online render_thread = threading.Thread(target=thread_render) def start_render_thread(): # Start Rendering Thread render_thread.daemon = True render_thread.start() def shutdown_event(): # Signal render thread to close on shutdown global current_state_error current_state_error = SystemExit('Application shutting down.') def render(req : ImageRequest): if not render_thread.is_alive(): # Render thread is dead raise ChildProcessError('Rendering thread has died.') # Alive, check if task in cache task = task_cache.tryGet(req.session_id) if task and not task.response and not task.error and not task.lock.locked(): # Unstarted task pending, deny queueing more than one. raise ConnectionRefusedError(f'Session {req.session_id} has an already pending task.') # from . import runtime r = Request() r.session_id = req.session_id r.prompt = req.prompt r.negative_prompt = req.negative_prompt r.init_image = req.init_image r.mask = req.mask r.num_outputs = req.num_outputs r.num_inference_steps = req.num_inference_steps r.guidance_scale = req.guidance_scale r.width = req.width r.height = req.height r.seed = req.seed r.prompt_strength = req.prompt_strength r.sampler = req.sampler # r.allow_nsfw = req.allow_nsfw r.turbo = req.turbo r.use_cpu = req.use_cpu r.use_full_precision = req.use_full_precision r.save_to_disk_path = req.save_to_disk_path r.use_upscale: str = req.use_upscale r.use_face_correction = req.use_face_correction r.show_only_filtered_image = req.show_only_filtered_image r.output_format = req.output_format r.stream_progress_updates = True # the underlying implementation only supports streaming r.stream_image_progress = req.stream_image_progress if not req.stream_progress_updates: r.stream_image_progress = False new_task = RenderTask(r) if task_cache.put(r.session_id, new_task, TASK_TTL): tasks_queue.put(new_task) return new_task raise RuntimeError('Failed to add task to cache.')