forked from extern/easydiffusion
499 lines
17 KiB
Python
499 lines
17 KiB
Python
import os, re
|
|
import traceback
|
|
import torch
|
|
import numpy as np
|
|
from omegaconf import OmegaConf
|
|
from PIL import Image
|
|
from tqdm import tqdm, trange
|
|
from itertools import islice
|
|
from einops import rearrange
|
|
import time
|
|
from pytorch_lightning import seed_everything
|
|
from torch import autocast
|
|
from contextlib import nullcontext
|
|
from einops import rearrange, repeat
|
|
from ldm.util import instantiate_from_config
|
|
from optimizedSD.optimUtils import split_weighted_subprompts
|
|
from transformers import logging
|
|
|
|
from gfpgan import GFPGANer
|
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
from realesrgan import RealESRGANer
|
|
|
|
import uuid
|
|
|
|
logging.set_verbosity_error()
|
|
|
|
# consts
|
|
config_yaml = "optimizedSD/v1-inference.yaml"
|
|
filename_regex = re.compile('[^a-zA-Z0-9]')
|
|
|
|
# api stuff
|
|
from . import Request, Response, Image as ResponseImage
|
|
import base64
|
|
from io import BytesIO
|
|
|
|
# local
|
|
session_id = str(uuid.uuid4())[-8:]
|
|
|
|
ckpt_file = None
|
|
gfpgan_file = None
|
|
real_esrgan_file = None
|
|
|
|
model = None
|
|
modelCS = None
|
|
modelFS = None
|
|
model_gfpgan = None
|
|
model_real_esrgan = None
|
|
|
|
model_is_half = False
|
|
model_fs_is_half = False
|
|
device = None
|
|
unet_bs = 1
|
|
precision = 'autocast'
|
|
sampler_plms = None
|
|
sampler_ddim = None
|
|
|
|
has_valid_gpu = False
|
|
force_full_precision = False
|
|
try:
|
|
gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
|
|
has_valid_gpu = True
|
|
force_full_precision = ('nvidia' in gpu_name.lower()) and ('1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
|
|
if force_full_precision:
|
|
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name)
|
|
except:
|
|
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!')
|
|
pass
|
|
|
|
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast', half_model_fs=False):
|
|
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
|
|
|
|
ckpt_file = ckpt_to_use
|
|
device = device_to_use if has_valid_gpu else 'cpu'
|
|
precision = precision_to_use if not force_full_precision else 'full'
|
|
unet_bs = unet_bs_to_use
|
|
|
|
if device == 'cpu':
|
|
precision = 'full'
|
|
|
|
sd = load_model_from_config(f"{ckpt_file}.ckpt")
|
|
li, lo = [], []
|
|
for key, value in sd.items():
|
|
sp = key.split(".")
|
|
if (sp[0]) == "model":
|
|
if "input_blocks" in sp:
|
|
li.append(key)
|
|
elif "middle_block" in sp:
|
|
li.append(key)
|
|
elif "time_embed" in sp:
|
|
li.append(key)
|
|
else:
|
|
lo.append(key)
|
|
for key in li:
|
|
sd["model1." + key[6:]] = sd.pop(key)
|
|
for key in lo:
|
|
sd["model2." + key[6:]] = sd.pop(key)
|
|
|
|
config = OmegaConf.load(f"{config_yaml}")
|
|
|
|
model = instantiate_from_config(config.modelUNet)
|
|
_, _ = model.load_state_dict(sd, strict=False)
|
|
model.eval()
|
|
model.cdevice = device
|
|
model.unet_bs = unet_bs
|
|
model.turbo = turbo
|
|
|
|
modelCS = instantiate_from_config(config.modelCondStage)
|
|
_, _ = modelCS.load_state_dict(sd, strict=False)
|
|
modelCS.eval()
|
|
modelCS.cond_stage_model.device = device
|
|
|
|
modelFS = instantiate_from_config(config.modelFirstStage)
|
|
_, _ = modelFS.load_state_dict(sd, strict=False)
|
|
modelFS.eval()
|
|
del sd
|
|
|
|
if device != "cpu" and precision == "autocast":
|
|
model.half()
|
|
modelCS.half()
|
|
model_is_half = True
|
|
else:
|
|
model_is_half = False
|
|
|
|
if half_model_fs:
|
|
modelFS.half()
|
|
model_fs_is_half = True
|
|
else:
|
|
model_fs_is_half = False
|
|
|
|
print('loaded ', ckpt_file, 'to', device, 'precision', precision)
|
|
|
|
def load_model_gfpgan(gfpgan_to_use):
|
|
global gfpgan_file, model_gfpgan
|
|
|
|
if gfpgan_to_use is None:
|
|
return
|
|
|
|
gfpgan_file = gfpgan_to_use
|
|
model_path = gfpgan_to_use + ".pth"
|
|
|
|
if device == 'cpu':
|
|
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
|
|
else:
|
|
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda'))
|
|
|
|
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision)
|
|
|
|
def load_model_real_esrgan(real_esrgan_to_use):
|
|
global real_esrgan_file, model_real_esrgan
|
|
|
|
if real_esrgan_to_use is None:
|
|
return
|
|
|
|
real_esrgan_file = real_esrgan_to_use
|
|
model_path = real_esrgan_to_use + ".pth"
|
|
|
|
RealESRGAN_models = {
|
|
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
|
|
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
}
|
|
|
|
model_to_use = RealESRGAN_models[real_esrgan_to_use]
|
|
|
|
if device == 'cpu':
|
|
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
|
|
model_real_esrgan.device = torch.device('cpu')
|
|
model_real_esrgan.model.to('cpu')
|
|
else:
|
|
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half)
|
|
|
|
model_real_esrgan.model.name = real_esrgan_to_use
|
|
|
|
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision)
|
|
|
|
def mk_img(req: Request):
|
|
global modelFS, device
|
|
global model_gfpgan, model_real_esrgan
|
|
|
|
res = Response()
|
|
res.images = []
|
|
|
|
model.turbo = req.turbo
|
|
if req.use_cpu:
|
|
if device != 'cpu':
|
|
device = 'cpu'
|
|
|
|
if model_is_half:
|
|
load_model_ckpt(ckpt_file, device)
|
|
|
|
load_model_gfpgan(gfpgan_file)
|
|
load_model_real_esrgan(real_esrgan_file)
|
|
else:
|
|
if has_valid_gpu:
|
|
prev_device = device
|
|
device = 'cuda'
|
|
|
|
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
|
|
(precision == 'full' and not req.use_full_precision and not force_full_precision) or \
|
|
(req.init_image is None and model_fs_is_half) or \
|
|
(req.init_image is not None and not model_fs_is_half and not force_full_precision):
|
|
|
|
load_model_ckpt(ckpt_file, device, model.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'), half_model_fs=(req.init_image is not None and not req.use_full_precision))
|
|
|
|
if prev_device != device:
|
|
load_model_gfpgan(gfpgan_file)
|
|
load_model_real_esrgan(real_esrgan_file)
|
|
|
|
if req.use_face_correction != gfpgan_file:
|
|
load_model_gfpgan(req.use_face_correction)
|
|
|
|
if req.use_upscale != real_esrgan_file:
|
|
load_model_real_esrgan(req.use_upscale)
|
|
|
|
model.cdevice = device
|
|
modelCS.cond_stage_model.device = device
|
|
|
|
opt_prompt = req.prompt
|
|
opt_seed = req.seed
|
|
opt_n_samples = req.num_outputs
|
|
opt_n_iter = 1
|
|
opt_scale = req.guidance_scale
|
|
opt_C = 4
|
|
opt_H = req.height
|
|
opt_W = req.width
|
|
opt_f = 8
|
|
opt_ddim_steps = req.num_inference_steps
|
|
opt_ddim_eta = 0.0
|
|
opt_strength = req.prompt_strength
|
|
opt_save_to_disk_path = req.save_to_disk_path
|
|
opt_init_img = req.init_image
|
|
opt_use_face_correction = req.use_face_correction
|
|
opt_use_upscale = req.use_upscale
|
|
opt_show_only_filtered = req.show_only_filtered_image
|
|
opt_format = 'png'
|
|
|
|
print(req.to_string(), '\n device', device)
|
|
|
|
print('\n\n Using precision:', precision)
|
|
|
|
seed_everything(opt_seed)
|
|
|
|
batch_size = opt_n_samples
|
|
prompt = opt_prompt
|
|
assert prompt is not None
|
|
data = [batch_size * [prompt]]
|
|
|
|
if precision == "autocast" and device != "cpu":
|
|
precision_scope = autocast
|
|
else:
|
|
precision_scope = nullcontext
|
|
|
|
if req.init_image is None:
|
|
handler = _txt2img
|
|
|
|
init_latent = None
|
|
t_enc = None
|
|
else:
|
|
handler = _img2img
|
|
|
|
init_image = load_img(req.init_image)
|
|
init_image = init_image.to(device)
|
|
|
|
if device != "cpu" and precision == "autocast":
|
|
init_image = init_image.half()
|
|
|
|
modelFS.to(device)
|
|
|
|
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
|
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
|
|
|
|
if device != "cpu":
|
|
mem = torch.cuda.memory_allocated() / 1e6
|
|
modelFS.to("cpu")
|
|
while torch.cuda.memory_allocated() / 1e6 >= mem:
|
|
time.sleep(1)
|
|
|
|
assert 0. <= opt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
t_enc = int(opt_strength * opt_ddim_steps)
|
|
print(f"target t_enc is {t_enc} steps")
|
|
|
|
if opt_save_to_disk_path is not None:
|
|
session_out_path = os.path.join(opt_save_to_disk_path, session_id)
|
|
os.makedirs(session_out_path, exist_ok=True)
|
|
else:
|
|
session_out_path = None
|
|
|
|
seeds = ""
|
|
with torch.no_grad():
|
|
for n in trange(opt_n_iter, desc="Sampling"):
|
|
for prompts in tqdm(data, desc="data"):
|
|
|
|
with precision_scope("cuda"):
|
|
modelCS.to(device)
|
|
uc = None
|
|
if opt_scale != 1.0:
|
|
uc = modelCS.get_learned_conditioning(batch_size * [""])
|
|
if isinstance(prompts, tuple):
|
|
prompts = list(prompts)
|
|
|
|
subprompts, weights = split_weighted_subprompts(prompts[0])
|
|
if len(subprompts) > 1:
|
|
c = torch.zeros_like(uc)
|
|
totalWeight = sum(weights)
|
|
# normalize each "sub prompt" and add it
|
|
for i in range(len(subprompts)):
|
|
weight = weights[i]
|
|
# if not skip_normalize:
|
|
weight = weight / totalWeight
|
|
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
|
|
else:
|
|
c = modelCS.get_learned_conditioning(prompts)
|
|
|
|
# run the handler
|
|
if handler == _txt2img:
|
|
x_samples = _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed)
|
|
else:
|
|
x_samples = _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed)
|
|
|
|
modelFS.to(device)
|
|
|
|
print("saving images")
|
|
for i in range(batch_size):
|
|
|
|
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
|
|
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
|
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
|
|
x_sample = x_sample.astype(np.uint8)
|
|
img = Image.fromarray(x_sample)
|
|
|
|
if opt_save_to_disk_path is not None:
|
|
prompt_flattened = filename_regex.sub('_', prompts[0])
|
|
prompt_flattened = prompt_flattened[:50]
|
|
|
|
img_id = str(uuid.uuid4())[-8:]
|
|
|
|
file_path = f"{prompt_flattened}_{img_id}"
|
|
img_out_path = os.path.join(session_out_path, f"{file_path}.{opt_format}")
|
|
meta_out_path = os.path.join(session_out_path, f"{file_path}.txt")
|
|
|
|
if not opt_show_only_filtered:
|
|
save_image(img, img_out_path)
|
|
|
|
save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_strength, opt_use_face_correction, opt_use_upscale)
|
|
|
|
if not opt_show_only_filtered:
|
|
img_data = img_to_base64_str(img)
|
|
res.images.append(ResponseImage(data=img_data, seed=opt_seed))
|
|
|
|
if (opt_use_face_correction is not None and opt_use_face_correction.startswith('GFPGAN')) or \
|
|
(opt_use_upscale is not None and opt_use_upscale.startswith('RealESRGAN')):
|
|
|
|
gc()
|
|
filters_applied = []
|
|
|
|
if opt_use_face_correction:
|
|
_, _, output = model_gfpgan.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
|
|
x_sample = output[:,:,::-1]
|
|
filters_applied.append(opt_use_face_correction)
|
|
|
|
if opt_use_upscale:
|
|
output, _ = model_real_esrgan.enhance(x_sample[:,:,::-1])
|
|
x_sample = output[:,:,::-1]
|
|
filters_applied.append(opt_use_upscale)
|
|
|
|
filtered_image = Image.fromarray(x_sample)
|
|
|
|
filtered_img_data = img_to_base64_str(filtered_image)
|
|
res.images.append(ResponseImage(data=filtered_img_data, seed=opt_seed))
|
|
|
|
filters_applied = "_".join(filters_applied)
|
|
|
|
if opt_save_to_disk_path is not None:
|
|
filtered_img_out_path = os.path.join(session_out_path, f"{file_path}_{filters_applied}.{opt_format}")
|
|
save_image(filtered_image, filtered_img_out_path)
|
|
|
|
seeds += str(opt_seed) + ","
|
|
opt_seed += 1
|
|
|
|
if device != "cpu":
|
|
mem = torch.cuda.memory_allocated() / 1e6
|
|
modelFS.to("cpu")
|
|
while torch.cuda.memory_allocated() / 1e6 >= mem:
|
|
time.sleep(1)
|
|
del x_samples
|
|
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
|
|
|
|
return res
|
|
|
|
def save_image(img, img_out_path):
|
|
try:
|
|
img.save(img_out_path)
|
|
except:
|
|
print('could not save the file', traceback.format_exc())
|
|
|
|
def save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_prompt_strength, opt_correct_face, opt_upscale):
|
|
metadata = f"{prompts[0]}\nWidth: {opt_W}\nHeight: {opt_H}\nSeed: {opt_seed}\nSteps: {opt_ddim_steps}\nGuidance Scale: {opt_scale}\nPrompt Strength: {opt_prompt_strength}\nUse Face Correction: {opt_correct_face}\nUse Upscaling: {opt_upscale}"
|
|
|
|
try:
|
|
with open(meta_out_path, 'w') as f:
|
|
f.write(metadata)
|
|
except:
|
|
print('could not save the file', traceback.format_exc())
|
|
|
|
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed):
|
|
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f]
|
|
|
|
if device != "cpu":
|
|
mem = torch.cuda.memory_allocated() / 1e6
|
|
modelCS.to("cpu")
|
|
while torch.cuda.memory_allocated() / 1e6 >= mem:
|
|
time.sleep(1)
|
|
|
|
samples_ddim = model.sample(
|
|
S=opt_ddim_steps,
|
|
conditioning=c,
|
|
seed=opt_seed,
|
|
shape=shape,
|
|
verbose=False,
|
|
unconditional_guidance_scale=opt_scale,
|
|
unconditional_conditioning=uc,
|
|
eta=opt_ddim_eta,
|
|
x_T=start_code,
|
|
sampler = 'plms',
|
|
)
|
|
|
|
return samples_ddim
|
|
|
|
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed):
|
|
# encode (scaled latent)
|
|
z_enc = model.stochastic_encode(
|
|
init_latent,
|
|
torch.tensor([t_enc] * batch_size).to(device),
|
|
opt_seed,
|
|
opt_ddim_eta,
|
|
opt_ddim_steps,
|
|
)
|
|
# decode it
|
|
samples_ddim = model.sample(
|
|
t_enc,
|
|
c,
|
|
z_enc,
|
|
unconditional_guidance_scale=opt_scale,
|
|
unconditional_conditioning=uc,
|
|
sampler = 'ddim'
|
|
)
|
|
|
|
return samples_ddim
|
|
|
|
def gc():
|
|
if device == 'cpu':
|
|
return
|
|
|
|
torch.cuda.empty_cache()
|
|
torch.cuda.ipc_collect()
|
|
|
|
# internal
|
|
|
|
def chunk(it, size):
|
|
it = iter(it)
|
|
return iter(lambda: tuple(islice(it, size)), ())
|
|
|
|
|
|
def load_model_from_config(ckpt, verbose=False):
|
|
print(f"Loading model from {ckpt}")
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
if "global_step" in pl_sd:
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
sd = pl_sd["state_dict"]
|
|
return sd
|
|
|
|
# utils
|
|
|
|
def load_img(img_str):
|
|
image = base64_str_to_img(img_str).convert("RGB")
|
|
w, h = image.size
|
|
print(f"loaded input image of size ({w}, {h}) from base64")
|
|
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
|
|
image = image.resize((w, h), resample=Image.LANCZOS)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
return 2.*image - 1.
|
|
|
|
# https://stackoverflow.com/a/61114178
|
|
def img_to_base64_str(img):
|
|
buffered = BytesIO()
|
|
img.save(buffered, format="PNG")
|
|
buffered.seek(0)
|
|
img_byte = buffered.getvalue()
|
|
img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode()
|
|
return img_str
|
|
|
|
def base64_str_to_img(img_str):
|
|
img_str = img_str[len("data:image/png;base64,"):]
|
|
data = base64.b64decode(img_str)
|
|
buffered = BytesIO(data)
|
|
img = Image.open(buffered)
|
|
return img
|