2019-11-16 15:31:28 +01:00
|
|
|
|
# group-by
|
|
|
|
|
|
|
|
|
|
This command creates a new table with the data from the table rows grouped by the column given.
|
|
|
|
|
|
|
|
|
|
## Examples
|
|
|
|
|
|
|
|
|
|
Let's say we have this table of all countries in the world sorted by their population:
|
|
|
|
|
|
|
|
|
|
```shell
|
2020-07-13 08:39:36 +02:00
|
|
|
|
> open countries_by_population.json | from json | first 10
|
2019-11-16 15:31:28 +01:00
|
|
|
|
━━━┯━━━━━━┯━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━┯━━━━━━━━
|
|
|
|
|
# │ rank │ country or area │ UN continental region │ UN statistical region │ population 2018 │ population 2019 │ change
|
|
|
|
|
───┼──────┼─────────────────┼───────────────────────┼───────────────────────┼─────────────────┼─────────────────┼────────
|
|
|
|
|
0 │ 1 │ China │ Asia │ Eastern Asia │ 1,427,647,786 │ 1,433,783,686 │ +0.4%
|
|
|
|
|
1 │ 2 │ India │ Asia │ Southern Asia │ 1,352,642,280 │ 1,366,417,754 │ +1.0%
|
|
|
|
|
2 │ 3 │ United States │ Americas │ Northern America │ 327,096,265 │ 329,064,917 │ +0.6%
|
|
|
|
|
3 │ 4 │ Indonesia │ Asia │ South-eastern Asia │ 267,670,543 │ 270,625,568 │ +1.1%
|
|
|
|
|
4 │ 5 │ Pakistan │ Asia │ Southern Asia │ 212,228,286 │ 216,565,318 │ +2.0%
|
|
|
|
|
5 │ 6 │ Brazil │ Americas │ South America │ 209,469,323 │ 211,049,527 │ +0.8%
|
|
|
|
|
6 │ 7 │ Nigeria │ Africa │ Western Africa │ 195,874,683 │ 200,963,599 │ +2.6%
|
|
|
|
|
7 │ 8 │ Bangladesh │ Asia │ Southern Asia │ 161,376,708 │ 163,046,161 │ +1.0%
|
|
|
|
|
8 │ 9 │ Russia │ Europe │ Eastern Europe │ 145,734,038 │ 145,872,256 │ +0.1%
|
|
|
|
|
9 │ 10 │ Mexico │ Americas │ Central America │ 126,190,788 │ 127,575,529 │ +1.1%
|
|
|
|
|
━━━┷━━━━━━┷━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━┷━━━━━━━━
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
Here we have listed only the first 10 lines. In total this table has got 233 rows which is to big to get information easily out of it.
|
|
|
|
|
|
|
|
|
|
We can use the `group-by` command on 'UN statistical region' to create a table per continental region.
|
|
|
|
|
|
|
|
|
|
```shell
|
2020-07-13 08:39:36 +02:00
|
|
|
|
> open countries_by_population.json | from json | group-by "UN continental region"
|
2019-11-16 15:31:28 +01:00
|
|
|
|
━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━
|
|
|
|
|
Asia │ Americas │ Africa │ Europe │ Oceania
|
|
|
|
|
──────────────────┼──────────────────┼──────────────────┼──────────────────┼──────────────────
|
|
|
|
|
[table: 51 rows] │ [table: 53 rows] │ [table: 58 rows] │ [table: 48 rows] │ [table: 23 rows]
|
|
|
|
|
━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━
|
|
|
|
|
```
|
|
|
|
|
|
2020-03-13 18:23:41 +01:00
|
|
|
|
Now we can already get some information like "which continental regions are there" and "how many countries are in each region".
|
2019-11-16 15:31:28 +01:00
|
|
|
|
If we want to see only the countries in the continental region of Oceania we can type:
|
|
|
|
|
|
|
|
|
|
```shell
|
2020-07-13 08:39:36 +02:00
|
|
|
|
> open countries_by_population.json | from json | group-by "UN continental region" | get Oceania
|
2019-11-16 15:31:28 +01:00
|
|
|
|
━━━━┯━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━┯━━━━━━━━
|
|
|
|
|
# │ rank │ country or area │ UN continental region │ UN statistical region │ population 2018 │ population 2019 │ change
|
|
|
|
|
────┼──────┼────────────────────────────────┼───────────────────────┼───────────────────────────┼─────────────────┼─────────────────┼────────
|
|
|
|
|
0 │ 55 │ Australia │ Oceania │ Australia and New Zealand │ 24,898,152 │ 25,203,198 │ +1.2%
|
|
|
|
|
1 │ 98 │ Papua New Guinea │ Oceania │ Melanesia │ 8,606,323 │ 8,776,109 │ +2.0%
|
|
|
|
|
2 │ 125 │ New Zealand │ Oceania │ Australia and New Zealand │ 4,743,131 │ 4,783,063 │ +0.8%
|
|
|
|
|
3 │ 161 │ Fiji │ Oceania │ Melanesia │ 883,483 │ 889,953 │ +0.7%
|
|
|
|
|
4 │ 166 │ Solomon Islands │ Oceania │ Melanesia │ 652,857 │ 669,823 │ +2.6%
|
|
|
|
|
5 │ 181 │ Vanuatu │ Oceania │ Melanesia │ 292,680 │ 299,882 │ +2.5%
|
|
|
|
|
6 │ 183 │ New Caledonia │ Oceania │ Melanesia │ 279,993 │ 282,750 │ +1.0%
|
|
|
|
|
7 │ 185 │ French Polynesia │ Oceania │ Polynesia │ 277,679 │ 279,287 │ +0.6%
|
|
|
|
|
8 │ 188 │ Samoa │ Oceania │ Polynesia │ 196,129 │ 197,097 │ +0.5%
|
|
|
|
|
9 │ 191 │ Guam │ Oceania │ Micronesia │ 165,768 │ 167,294 │ +0.9%
|
|
|
|
|
10 │ 193 │ Kiribati │ Oceania │ Micronesia │ 115,847 │ 117,606 │ +1.5%
|
|
|
|
|
11 │ 194 │ Federated States of Micronesia │ Oceania │ Micronesia │ 112,640 │ 113,815 │ +1.0%
|
|
|
|
|
12 │ 196 │ Tonga │ Oceania │ Polynesia │ 110,589 │ 110,940 │ +0.3%
|
|
|
|
|
13 │ 207 │ Marshall Islands │ Oceania │ Micronesia │ 58,413 │ 58,791 │ +0.6%
|
|
|
|
|
14 │ 209 │ Northern Mariana Islands │ Oceania │ Micronesia │ 56,882 │ 56,188 │ −1.2%
|
|
|
|
|
15 │ 210 │ American Samoa │ Oceania │ Polynesia │ 55,465 │ 55,312 │ −0.3%
|
|
|
|
|
16 │ 221 │ Palau │ Oceania │ Micronesia │ 17,907 │ 18,008 │ +0.6%
|
|
|
|
|
17 │ 222 │ Cook Islands │ Oceania │ Polynesia │ 17,518 │ 17,548 │ +0.2%
|
|
|
|
|
18 │ 224 │ Tuvalu │ Oceania │ Polynesia │ 11,508 │ 11,646 │ +1.2%
|
|
|
|
|
19 │ 225 │ Wallis and Futuna │ Oceania │ Polynesia │ 11,661 │ 11,432 │ −2.0%
|
|
|
|
|
20 │ 226 │ Nauru │ Oceania │ Micronesia │ 10,670 │ 10,756 │ +0.8%
|
|
|
|
|
21 │ 231 │ Niue │ Oceania │ Polynesia │ 1,620 │ 1,615 │ −0.3%
|
|
|
|
|
22 │ 232 │ Tokelau │ Oceania │ Polynesia │ 1,319 │ 1,340 │ +1.6%
|
|
|
|
|
━━━━┷━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━┷━━━━━━━━
|
|
|
|
|
```
|