Series Operation (#3563)

* Sample command

* Join command with checks

* More dataframes commands

* Groupby and aggregate commands

* Missing feature dataframe flag

* Renamed file

* New commands for dataframes

* error parser and df reference

* filter command for dataframes

* removed name from nu_dataframe

* commands to save to parquet and csv

* polars new version

* new dataframe commands

* series type and print

* Series basic arithmetics

* Add new column to dataframe

* Command names changed to nushell standard
This commit is contained in:
Fernando Herrera
2021-06-07 18:27:46 +01:00
committed by GitHub
parent 16faafb7a8
commit aa1cd7eba6
39 changed files with 1290 additions and 787 deletions

View File

@ -1,12 +1,15 @@
pub mod nu_dataframe;
pub mod nu_groupby;
pub mod nu_series;
pub use nu_dataframe::NuDataFrame;
pub use nu_groupby::NuGroupBy;
pub use nu_series::NuSeries;
use serde::{Deserialize, Serialize};
#[derive(Debug, Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Serialize, Deserialize)]
pub enum PolarsData {
EagerDataFrame(NuDataFrame),
GroupBy(NuGroupBy),
Series(NuSeries),
}

View File

@ -4,16 +4,15 @@ use std::{cmp::Ordering, collections::hash_map::Entry, collections::HashMap};
use bigdecimal::FromPrimitive;
use chrono::{DateTime, FixedOffset, NaiveDateTime};
use nu_errors::ShellError;
use nu_source::Tag;
use nu_source::{Span, Tag};
use num_bigint::BigInt;
use polars::prelude::{AnyValue, DataFrame, NamedFrom, Series, TimeUnit};
use serde::de::{Deserialize, Deserializer, Visitor};
use serde::Serialize;
use std::fmt;
use serde::{Deserialize, Serialize};
use crate::{Dictionary, Primitive, UntaggedValue, Value};
use super::PolarsData;
const SECS_PER_DAY: i64 = 86_400;
#[derive(Debug)]
@ -40,26 +39,9 @@ impl Default for ColumnValues {
type ColumnMap = HashMap<String, ColumnValues>;
// TODO. Using Option to help with deserialization. It will be better to find
// a way to use serde with dataframes
#[derive(Debug, Clone, Serialize)]
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct NuDataFrame {
#[serde(skip_serializing)]
pub dataframe: Option<DataFrame>,
}
impl Default for NuDataFrame {
fn default() -> Self {
NuDataFrame { dataframe: None }
}
}
impl NuDataFrame {
pub fn new(df: polars::prelude::DataFrame) -> Self {
NuDataFrame {
dataframe: Some(df),
}
}
dataframe: DataFrame,
}
// TODO. Better definition of equality and comparison for a dataframe.
@ -88,30 +70,46 @@ impl Hash for NuDataFrame {
fn hash<H: Hasher>(&self, _: &mut H) {}
}
impl<'de> Visitor<'de> for NuDataFrame {
type Value = Self;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("an integer between -2^31 and 2^31")
impl AsRef<DataFrame> for NuDataFrame {
fn as_ref(&self) -> &polars::prelude::DataFrame {
&self.dataframe
}
}
impl<'de> Deserialize<'de> for NuDataFrame {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_i32(NuDataFrame::default())
impl AsMut<DataFrame> for NuDataFrame {
fn as_mut(&mut self) -> &mut polars::prelude::DataFrame {
&mut self.dataframe
}
}
impl NuDataFrame {
pub fn new(dataframe: polars::prelude::DataFrame) -> Self {
NuDataFrame { dataframe }
}
pub fn try_from_stream<T>(input: &mut T, span: &Span) -> Result<NuDataFrame, ShellError>
where
T: Iterator<Item = Value>,
{
input
.next()
.and_then(|value| match value.value {
UntaggedValue::DataFrame(PolarsData::EagerDataFrame(df)) => Some(df),
_ => None,
})
.ok_or(ShellError::labeled_error(
"No dataframe in stream",
"no dataframe found in input stream",
span,
))
}
pub fn try_from_iter<T>(iter: T, tag: &Tag) -> Result<Self, ShellError>
where
T: Iterator<Item = Value>,
{
// Dictionary to store the columnar data extracted from
// the input. During the iteration we will sort if the values
// the input. During the iteration we check if the values
// have different type
let mut column_values: ColumnMap = HashMap::new();
@ -120,10 +118,12 @@ impl NuDataFrame {
UntaggedValue::Row(dictionary) => insert_row(&mut column_values, dictionary)?,
UntaggedValue::Table(table) => insert_table(&mut column_values, table)?,
_ => {
return Err(ShellError::labeled_error(
return Err(ShellError::labeled_error_with_secondary(
"Format not supported",
"Value not supported for conversion",
&value.tag,
"Perhaps you want to use a List of Tables or a Dictionary",
&value.tag,
));
}
}
@ -132,26 +132,37 @@ impl NuDataFrame {
from_parsed_columns(column_values, tag)
}
pub fn to_value(self, tag: Tag) -> Value {
Value {
value: UntaggedValue::DataFrame(PolarsData::EagerDataFrame(self)),
tag,
}
}
pub fn dataframe_to_value(df: DataFrame, tag: Tag) -> Value {
Value {
value: UntaggedValue::DataFrame(PolarsData::EagerDataFrame(NuDataFrame::new(df))),
tag,
}
}
// Print is made out a head and if the dataframe is too large, then a tail
pub fn print(&self) -> Result<Vec<Value>, ShellError> {
if let Some(df) = &self.dataframe {
let size: usize = 20;
let df = &self.as_ref();
let size: usize = 20;
if df.height() > size {
let sample_size = size / 2;
let mut values = self.head(Some(sample_size))?;
add_separator(&mut values, df);
let remaining = df.height() - sample_size;
let tail_size = remaining.min(sample_size);
let mut tail_values = self.tail(Some(tail_size))?;
values.append(&mut tail_values);
if df.height() > size {
let sample_size = size / 2;
let mut values = self.head(Some(sample_size))?;
add_separator(&mut values, df);
let remaining = df.height() - sample_size;
let tail_size = remaining.min(sample_size);
let mut tail_values = self.tail(Some(tail_size))?;
values.append(&mut tail_values);
Ok(values)
} else {
Ok(self.head(Some(size))?)
}
Ok(values)
} else {
unreachable!("No dataframe found in print command")
Ok(self.head(Some(size))?)
}
}
@ -163,71 +174,47 @@ impl NuDataFrame {
}
pub fn tail(&self, rows: Option<usize>) -> Result<Vec<Value>, ShellError> {
if let Some(df) = &self.dataframe {
let to_row = df.height();
let size = rows.unwrap_or(5);
let from_row = to_row.saturating_sub(size);
let df = &self.as_ref();
let to_row = df.height();
let size = rows.unwrap_or(5);
let from_row = to_row.saturating_sub(size);
let values = self.to_rows(from_row, to_row)?;
let values = self.to_rows(from_row, to_row)?;
Ok(values)
} else {
unreachable!()
}
Ok(values)
}
pub fn to_rows(&self, from_row: usize, to_row: usize) -> Result<Vec<Value>, ShellError> {
if let Some(df) = &self.dataframe {
let column_names = df.get_column_names();
let df = &self.as_ref();
let column_names = df.get_column_names();
let mut values: Vec<Value> = Vec::new();
let mut values: Vec<Value> = Vec::new();
let upper_row = to_row.min(df.height());
for i in from_row..upper_row {
let row = df.get_row(i);
let mut dictionary_row = Dictionary::default();
let upper_row = to_row.min(df.height());
for i in from_row..upper_row {
let row = df.get_row(i);
let mut dictionary_row = Dictionary::default();
for (val, name) in row.0.iter().zip(column_names.iter()) {
let untagged_val = anyvalue_to_untagged(val)?;
for (val, name) in row.0.iter().zip(column_names.iter()) {
let untagged_val = anyvalue_to_untagged(val)?;
let dict_val = Value {
value: untagged_val,
tag: Tag::unknown(),
};
dictionary_row.insert(name.to_string(), dict_val);
}
let value = Value {
value: UntaggedValue::Row(dictionary_row),
let dict_val = Value {
value: untagged_val,
tag: Tag::unknown(),
};
values.push(value);
dictionary_row.insert(name.to_string(), dict_val);
}
Ok(values)
} else {
unreachable!()
}
}
}
let value = Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
};
impl AsRef<polars::prelude::DataFrame> for NuDataFrame {
fn as_ref(&self) -> &polars::prelude::DataFrame {
match &self.dataframe {
Some(df) => df,
None => unreachable!("Accessing ref to dataframe from nu_dataframe"),
values.push(value);
}
}
}
impl AsMut<polars::prelude::DataFrame> for NuDataFrame {
fn as_mut(&mut self) -> &mut polars::prelude::DataFrame {
match &mut self.dataframe {
Some(df) => df,
None => unreachable!("Accessing mut ref to dataframe from nu_dataframe"),
}
Ok(values)
}
}
@ -391,10 +378,12 @@ fn insert_value(
UntaggedValue::Primitive(Primitive::String(_)),
) => col_val.values.push(value),
_ => {
return Err(ShellError::labeled_error(
return Err(ShellError::labeled_error_with_secondary(
"Different values in column",
"Value with different type",
&value.tag,
"Perhaps you want to change it to this value type",
&prev_value.tag,
));
}
}
@ -418,7 +407,7 @@ fn from_parsed_columns(column_values: ColumnMap, tag: &Tag) -> Result<NuDataFram
}
InputValue::Integer => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_f32()).collect();
column.values.iter().map(|v| v.as_i64()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
@ -434,9 +423,7 @@ fn from_parsed_columns(column_values: ColumnMap, tag: &Tag) -> Result<NuDataFram
let df = DataFrame::new(df_series);
match df {
Ok(df) => Ok(NuDataFrame {
dataframe: Some(df),
}),
Ok(df) => Ok(NuDataFrame::new(df)),
Err(e) => {
return Err(ShellError::labeled_error(
"Error while creating dataframe",

View File

@ -1,11 +1,11 @@
use nu_source::Tag;
use nu_source::{Span, Tag};
use polars::frame::groupby::{GroupBy, GroupTuples};
use serde::{Deserialize, Serialize};
use super::NuDataFrame;
use super::{NuDataFrame, PolarsData};
use nu_errors::ShellError;
use crate::{TaggedDictBuilder, Value};
use crate::{TaggedDictBuilder, UntaggedValue, Value};
#[derive(Debug, Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Serialize, Deserialize)]
pub struct NuGroupBy {
@ -23,11 +23,25 @@ impl NuGroupBy {
}
}
pub fn try_from_stream<T>(input: &mut T, span: &Span) -> Result<NuGroupBy, ShellError>
where
T: Iterator<Item = Value>,
{
input
.next()
.and_then(|value| match value.value {
UntaggedValue::DataFrame(PolarsData::GroupBy(group)) => Some(group),
_ => None,
})
.ok_or(ShellError::labeled_error(
"No groupby object in stream",
"no groupby object found in input stream",
span,
))
}
pub fn to_groupby(&self) -> Result<GroupBy, ShellError> {
let df = match &self.dataframe.dataframe {
Some(df) => df,
None => unreachable!("No dataframe in nu_dataframe"),
};
let df = self.dataframe.as_ref();
let by = df.select_series(&self.by).map_err(|e| {
ShellError::labeled_error("Error creating groupby", format!("{}", e), Tag::unknown())
@ -50,9 +64,6 @@ impl NuGroupBy {
impl AsRef<polars::prelude::DataFrame> for NuGroupBy {
fn as_ref(&self) -> &polars::prelude::DataFrame {
match &self.dataframe.dataframe {
Some(df) => df,
None => unreachable!("Accessing reference to dataframe from nu_groupby"),
}
self.dataframe.as_ref()
}
}

View File

@ -0,0 +1,330 @@
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::vec;
use nu_errors::ShellError;
use nu_source::{Span, Tag};
use polars::prelude::{DataType, NamedFrom, Series};
use serde::{Deserialize, Serialize};
use crate::{Dictionary, Primitive, UntaggedValue, Value};
use super::PolarsData;
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct NuSeries {
series: Series,
dtype: String,
}
// TODO. Better definition of equality and comparison for a dataframe.
// Probably it make sense to have a name field and use it for comparisons
impl PartialEq for NuSeries {
fn eq(&self, _: &Self) -> bool {
false
}
}
impl Eq for NuSeries {}
impl PartialOrd for NuSeries {
fn partial_cmp(&self, _: &Self) -> Option<Ordering> {
Some(Ordering::Equal)
}
}
impl Ord for NuSeries {
fn cmp(&self, _: &Self) -> Ordering {
Ordering::Equal
}
}
impl Hash for NuSeries {
fn hash<H: Hasher>(&self, _: &mut H) {}
}
impl NuSeries {
pub fn new(series: Series) -> Self {
let dtype = series.dtype().to_string();
NuSeries { series, dtype }
}
pub fn try_from_stream<T>(input: &mut T, span: &Span) -> Result<NuSeries, ShellError>
where
T: Iterator<Item = Value>,
{
input
.next()
.and_then(|value| match value.value {
UntaggedValue::DataFrame(PolarsData::Series(series)) => Some(series),
_ => None,
})
.ok_or(ShellError::labeled_error(
"No series in stream",
"no series found in input stream",
span,
))
}
pub fn try_from_iter<T>(iter: T, name: Option<String>) -> Result<Self, ShellError>
where
T: Iterator<Item = Value>,
{
let mut vec_values: Vec<Value> = Vec::new();
for value in iter {
match value.value {
UntaggedValue::Primitive(Primitive::Int(_))
| UntaggedValue::Primitive(Primitive::Decimal(_))
| UntaggedValue::Primitive(Primitive::String(_)) => {
insert_value(value, &mut vec_values)?
}
_ => {
return Err(ShellError::labeled_error_with_secondary(
"Format not supported",
"Value not supported for conversion",
&value.tag.span,
"Perhaps you want to use a list of primitive values (int, decimal, string)",
&value.tag.span,
));
}
}
}
from_parsed_vector(vec_values, name)
}
pub fn to_value(self, tag: Tag) -> Value {
Value {
value: UntaggedValue::DataFrame(PolarsData::Series(self)),
tag,
}
}
pub fn series_to_value(series: Series, tag: Tag) -> Value {
Value {
value: UntaggedValue::DataFrame(PolarsData::Series(NuSeries::new(series))),
tag,
}
}
pub fn series_to_untagged(series: Series) -> UntaggedValue {
UntaggedValue::DataFrame(PolarsData::Series(NuSeries::new(series)))
}
pub fn dtype(&self) -> &str {
&self.dtype
}
pub fn series(self) -> Series {
self.series
}
}
impl AsRef<Series> for NuSeries {
fn as_ref(&self) -> &Series {
&self.series
}
}
impl AsMut<Series> for NuSeries {
fn as_mut(&mut self) -> &mut Series {
&mut self.series
}
}
macro_rules! series_to_chunked {
($converter: expr, $self: expr) => {{
let chunked_array = $converter.map_err(|e| {
ShellError::labeled_error("Parsing Error", format!("{}", e), Span::unknown())
})?;
let size = 20;
let (head_size, skip, tail_size) = if $self.as_ref().len() > size {
let remaining = $self.as_ref().len() - (size / 2);
let skip = $self.as_ref().len() - remaining;
(size / 2, skip, remaining.min(size / 2))
} else {
(size, 0, 0)
};
let head = chunked_array
.into_iter()
.take(head_size)
.map(|value| match value {
Some(v) => {
let mut dictionary_row = Dictionary::default();
let value = Value {
value: UntaggedValue::Primitive(v.into()),
tag: Tag::unknown(),
};
let header = format!("{} ({})", $self.as_ref().name(), $self.as_ref().dtype());
dictionary_row.insert(header, value);
Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
}
}
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::unknown(),
},
});
let res = if $self.as_ref().len() < size {
head.collect::<Vec<Value>>()
} else {
let middle = std::iter::once({
let mut dictionary_row = Dictionary::default();
let value = Value {
value: UntaggedValue::Primitive("...".into()),
tag: Tag::unknown(),
};
let header = format!("{} ({})", $self.as_ref().name(), $self.as_ref().dtype());
dictionary_row.insert(header, value);
Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
}
});
let tail =
chunked_array
.into_iter()
.skip(skip)
.take(tail_size)
.map(|value| match value {
Some(v) => {
let mut dictionary_row = Dictionary::default();
let value = Value {
value: UntaggedValue::Primitive(v.into()),
tag: Tag::unknown(),
};
let header = format!("{} ({})", $self.as_ref().name(), $self.dtype());
dictionary_row.insert(header, value);
Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
}
}
None => Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::unknown(),
},
});
head.chain(middle).chain(tail).collect::<Vec<Value>>()
};
Ok(res)
}};
}
impl NuSeries {
pub fn print(&self) -> Result<Vec<Value>, ShellError> {
match self.as_ref().dtype() {
DataType::Boolean => series_to_chunked!(self.as_ref().bool(), self),
DataType::UInt8 => series_to_chunked!(self.as_ref().u8(), self),
DataType::UInt16 => series_to_chunked!(self.as_ref().u16(), self),
DataType::UInt32 => series_to_chunked!(self.as_ref().u32(), self),
DataType::UInt64 => series_to_chunked!(self.as_ref().u64(), self),
DataType::Int8 => series_to_chunked!(self.as_ref().i8(), self),
DataType::Int16 => series_to_chunked!(self.as_ref().i16(), self),
DataType::Int32 => series_to_chunked!(self.as_ref().i32(), self),
DataType::Int64 => series_to_chunked!(self.as_ref().i64(), self),
DataType::Float32 => series_to_chunked!(self.as_ref().f32(), self),
DataType::Float64 => series_to_chunked!(self.as_ref().f64(), self),
DataType::Utf8 => series_to_chunked!(self.as_ref().utf8(), self),
DataType::Date32 => series_to_chunked!(self.as_ref().date32(), self),
DataType::Date64 => series_to_chunked!(self.as_ref().date64(), self),
DataType::Null => Ok(vec![Value {
value: UntaggedValue::Primitive(Primitive::Nothing),
tag: Tag::unknown(),
}]),
//DataType::List(_) => None,
//DataType::Time64(TimeUnit) => None,
//DataType::Duration(TimeUnit) => None,
// DataType::Categorical => None,
_ => unimplemented!(),
}
}
}
fn insert_value(value: Value, vec_values: &mut Vec<Value>) -> Result<(), ShellError> {
// Checking that the type for the value is the same
// for the previous value in the column
if vec_values.is_empty() {
Ok(vec_values.push(value))
} else {
let prev_value = &vec_values[vec_values.len() - 1];
match (&prev_value.value, &value.value) {
(
UntaggedValue::Primitive(Primitive::Int(_)),
UntaggedValue::Primitive(Primitive::Int(_)),
)
| (
UntaggedValue::Primitive(Primitive::Decimal(_)),
UntaggedValue::Primitive(Primitive::Decimal(_)),
)
| (
UntaggedValue::Primitive(Primitive::String(_)),
UntaggedValue::Primitive(Primitive::String(_)),
) => Ok(vec_values.push(value)),
_ => Err(ShellError::labeled_error_with_secondary(
"Different values in column",
"Value with different type",
&value.tag,
"Perhaps you want to change it to this value type",
&prev_value.tag,
)),
}
}
}
fn from_parsed_vector(
vec_values: Vec<Value>,
name: Option<String>,
) -> Result<NuSeries, ShellError> {
let series = match &vec_values[0].value {
UntaggedValue::Primitive(Primitive::Int(_)) => {
let series_values: Result<Vec<_>, _> = vec_values.iter().map(|v| v.as_i64()).collect();
let series_name = match &name {
Some(n) => n.as_ref(),
None => "int",
};
Series::new(series_name, series_values?)
}
UntaggedValue::Primitive(Primitive::Decimal(_)) => {
let series_values: Result<Vec<_>, _> = vec_values.iter().map(|v| v.as_f64()).collect();
let series_name = match &name {
Some(n) => n.as_ref(),
None => "decimal",
};
Series::new(series_name, series_values?)
}
UntaggedValue::Primitive(Primitive::String(_)) => {
let series_values: Result<Vec<_>, _> =
vec_values.iter().map(|v| v.as_string()).collect();
let series_name = match &name {
Some(n) => n.as_ref(),
None => "string",
};
Series::new(series_name, series_values?)
}
_ => unreachable!("The untagged type is checked while creating vec_values"),
};
Ok(NuSeries::new(series))
}

View File

@ -672,7 +672,11 @@ impl ShellTypeName for UntaggedValue {
UntaggedValue::Error(_) => "error",
UntaggedValue::Block(_) => "block",
#[cfg(feature = "dataframe")]
UntaggedValue::DataFrame(_) => "dataframe",
UntaggedValue::DataFrame(PolarsData::EagerDataFrame(_)) => "dataframe",
#[cfg(feature = "dataframe")]
UntaggedValue::DataFrame(PolarsData::Series(_)) => "series",
#[cfg(feature = "dataframe")]
UntaggedValue::DataFrame(PolarsData::GroupBy(_)) => "groupby",
}
}
}