use crate::{ lex, lite_parse, type_check::{math_result_type, type_compatible}, LiteBlock, ParseError, Token, TokenContents, }; use nu_protocol::{ ast::{ Block, Call, Expr, Expression, FullCellPath, Operator, PathMember, Pipeline, RangeInclusion, RangeOperator, Statement, }, engine::StateWorkingSet, span, DeclId, Flag, PositionalArg, Signature, Span, SyntaxShape, Type, VarId, }; #[derive(Debug, Clone)] pub enum Import {} #[derive(Debug, Clone)] pub struct VarDecl { var_id: VarId, expression: Expression, } fn garbage(span: Span) -> Expression { Expression::garbage(span) } fn garbage_statement(spans: &[Span]) -> Statement { Statement::Pipeline(Pipeline::from_vec(vec![garbage(span(spans))])) } fn is_identifier_byte(b: u8) -> bool { b != b'.' && b != b'[' && b != b'(' && b != b'{' } fn is_identifier(bytes: &[u8]) -> bool { bytes.iter().all(|x| is_identifier_byte(*x)) } fn is_variable(bytes: &[u8]) -> bool { if bytes.len() > 1 && bytes[0] == b'$' { is_identifier(&bytes[1..]) } else { is_identifier(bytes) } } fn check_call(command: Span, sig: &Signature, call: &Call) -> Option { if call.positional.len() < sig.required_positional.len() { let missing = &sig.required_positional[call.positional.len()]; Some(ParseError::MissingPositional(missing.name.clone(), command)) } else { for req_flag in sig.named.iter().filter(|x| x.required) { if call.named.iter().all(|(n, _)| n != &req_flag.long) { return Some(ParseError::MissingRequiredFlag( req_flag.long.clone(), command, )); } } None } } fn check_name<'a>( working_set: &mut StateWorkingSet, spans: &'a [Span], ) -> Option<(&'a Span, ParseError)> { if spans.len() == 1 { None } else if spans.len() < 4 { if working_set.get_span_contents(spans[1]) == b"=" { let name = String::from_utf8_lossy(working_set.get_span_contents(spans[0])); Some(( &spans[1], ParseError::AssignmentMismatch( format!("{} missing name", name), "missing name".into(), spans[1], ), )) } else { None } } else if working_set.get_span_contents(spans[2]) != b"=" { let name = String::from_utf8_lossy(working_set.get_span_contents(spans[0])); Some(( &spans[2], ParseError::AssignmentMismatch( format!("{} missing sign", name), "missing equal sign".into(), spans[2], ), )) } else { None } } pub fn parse_external_call( _working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Expression, Option) { // TODO: add external parsing let mut args = vec![]; let name = spans[0]; for span in &spans[1..] { args.push(*span); } ( Expression { expr: Expr::ExternalCall(name, args), span: span(spans), ty: Type::Unknown, custom_completion: None, }, None, ) } fn parse_long_flag( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, sig: &Signature, ) -> (Option, Option, Option) { let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents.starts_with(b"--") { // FIXME: only use the first you find let split: Vec<_> = arg_contents.split(|x| *x == b'=').collect(); let long_name = String::from_utf8(split[0].into()); if let Ok(long_name) = long_name { if let Some(flag) = sig.get_long_flag(&long_name) { if let Some(arg_shape) = &flag.arg { if split.len() > 1 { // and we also have the argument let mut span = arg_span; span.start += long_name.len() + 1; //offset by long flag and '=' let (arg, err) = parse_value(working_set, span, arg_shape); (Some(long_name), Some(arg), err) } else if let Some(arg) = spans.get(*spans_idx + 1) { let (arg, err) = parse_value(working_set, *arg, arg_shape); *spans_idx += 1; (Some(long_name), Some(arg), err) } else { ( Some(long_name), None, Some(ParseError::MissingFlagParam(arg_span)), ) } } else { // A flag with no argument (Some(long_name), None, None) } } else { ( Some(long_name.clone()), None, Some(ParseError::UnknownFlag( sig.name.clone(), long_name.clone(), arg_span, )), ) } } else { (Some("--".into()), None, Some(ParseError::NonUtf8(arg_span))) } } else { (None, None, None) } } fn parse_short_flags( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, positional_idx: usize, sig: &Signature, ) -> (Option>, Option) { let mut error = None; let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents.starts_with(b"-") && arg_contents.len() > 1 { let short_flags = &arg_contents[1..]; let mut found_short_flags = vec![]; let mut unmatched_short_flags = vec![]; for short_flag in short_flags.iter().enumerate() { let short_flag_char = char::from(*short_flag.1); let orig = arg_span; let short_flag_span = Span { start: orig.start + 1 + short_flag.0, end: orig.start + 1 + short_flag.0 + 1, }; if let Some(flag) = sig.get_short_flag(short_flag_char) { // If we require an arg and are in a batch of short flags, error if !found_short_flags.is_empty() && flag.arg.is_some() { error = error.or(Some(ParseError::ShortFlagBatchCantTakeArg(short_flag_span))) } found_short_flags.push(flag); } else { unmatched_short_flags.push(short_flag_span); } } if found_short_flags.is_empty() { // check to see if we have a negative number if let Some(positional) = sig.get_positional(positional_idx) { if positional.shape == SyntaxShape::Int || positional.shape == SyntaxShape::Number { if String::from_utf8_lossy(arg_contents).parse::().is_ok() { return (None, None); } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents).to_string()), *first, )) }); } } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents).to_string()), *first, )) }); } } else if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents).to_string()), *first, )) }); } } else if !unmatched_short_flags.is_empty() { if let Some(first) = unmatched_short_flags.first() { let contents = working_set.get_span_contents(*first); error = error.or_else(|| { Some(ParseError::UnknownFlag( sig.name.clone(), format!("-{}", String::from_utf8_lossy(contents).to_string()), *first, )) }); } } (Some(found_short_flags), error) } else { (None, None) } } fn first_kw_idx( working_set: &StateWorkingSet, signature: &Signature, spans: &[Span], spans_idx: usize, positional_idx: usize, ) -> (Option, usize) { for idx in (positional_idx + 1)..signature.num_positionals() { if let Some(PositionalArg { shape: SyntaxShape::Keyword(kw, ..), .. }) = signature.get_positional(idx) { #[allow(clippy::needless_range_loop)] for span_idx in spans_idx..spans.len() { let contents = working_set.get_span_contents(spans[span_idx]); if contents == kw { return (Some(idx), span_idx); } } } } (None, spans.len()) } fn calculate_end_span( working_set: &StateWorkingSet, signature: &Signature, spans: &[Span], spans_idx: usize, positional_idx: usize, ) -> usize { if signature.rest_positional.is_some() { spans.len() } else { let (kw_pos, kw_idx) = first_kw_idx(working_set, signature, spans, spans_idx, positional_idx); if let Some(kw_pos) = kw_pos { // We found a keyword. Keywords, once found, create a guidepost to // show us where the positionals will lay into the arguments. Because they're // keywords, they get to set this by being present let positionals_between = kw_pos - positional_idx - 1; if positionals_between > (kw_idx - spans_idx) { kw_idx } else { kw_idx - positionals_between } } else { // Make space for the remaining require positionals, if we can if positional_idx < signature.required_positional.len() && spans.len() > (signature.required_positional.len() - positional_idx) { spans.len() - (signature.required_positional.len() - positional_idx - 1) } else if signature.num_positionals_after(positional_idx) == 0 { spans.len() } else { spans_idx + 1 } } } } fn parse_multispan_value( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, shape: &SyntaxShape, ) -> (Expression, Option) { let mut error = None; match shape { SyntaxShape::VarWithOptType => { let (arg, err) = parse_var_with_opt_type(working_set, spans, spans_idx); error = error.or(err); (arg, error) } SyntaxShape::RowCondition => { let (arg, err) = parse_row_condition(working_set, &spans[*spans_idx..]); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Expression => { let (arg, err) = parse_expression(working_set, &spans[*spans_idx..]); error = error.or(err); *spans_idx = spans.len() - 1; (arg, error) } SyntaxShape::Keyword(keyword, arg) => { let arg_span = spans[*spans_idx]; let arg_contents = working_set.get_span_contents(arg_span); if arg_contents != keyword { // When keywords mismatch, this is a strong indicator of something going wrong. // We won't often override the current error, but as this is a strong indicator // go ahead and override the current error and tell the user about the missing // keyword/literal. error = Some(ParseError::ExpectedKeyword( String::from_utf8_lossy(keyword).into(), arg_span, )) } *spans_idx += 1; if *spans_idx >= spans.len() { error = error.or_else(|| { Some(ParseError::KeywordMissingArgument( String::from_utf8_lossy(keyword).into(), spans[*spans_idx - 1], )) }); return ( Expression { expr: Expr::Keyword( keyword.clone(), spans[*spans_idx - 1], Box::new(Expression::garbage(arg_span)), ), span: arg_span, ty: Type::Unknown, custom_completion: None, }, error, ); } let keyword_span = spans[*spans_idx - 1]; let (expr, err) = parse_multispan_value(working_set, spans, spans_idx, arg); error = error.or(err); let ty = expr.ty.clone(); ( Expression { expr: Expr::Keyword(keyword.clone(), keyword_span, Box::new(expr)), span: arg_span, ty, custom_completion: None, }, error, ) } _ => { // All other cases are single-span values let arg_span = spans[*spans_idx]; let (arg, err) = parse_value(working_set, arg_span, shape); error = error.or(err); (arg, error) } } } pub fn parse_internal_call( working_set: &mut StateWorkingSet, command_span: Span, spans: &[Span], decl_id: usize, ) -> (Box, Span, Option) { let mut error = None; let mut call = Call::new(); call.decl_id = decl_id; call.head = command_span; let signature = working_set.get_decl(decl_id).signature(); // The index into the positional parameter in the definition let mut positional_idx = 0; // The index into the spans of argument data given to parse // Starting at the first argument let mut spans_idx = 0; while spans_idx < spans.len() { let arg_span = spans[spans_idx]; // Check if we're on a long flag, if so, parse let (long_name, arg, err) = parse_long_flag(working_set, spans, &mut spans_idx, &signature); if let Some(long_name) = long_name { // We found a long flag, like --bar error = error.or(err); call.named.push((long_name, arg)); spans_idx += 1; continue; } // Check if we're on a short flag or group of short flags, if so, parse let (short_flags, err) = parse_short_flags( working_set, spans, &mut spans_idx, positional_idx, &signature, ); if let Some(short_flags) = short_flags { error = error.or(err); for flag in short_flags { if let Some(arg_shape) = flag.arg { if let Some(arg) = spans.get(spans_idx + 1) { let (arg, err) = parse_value(working_set, *arg, &arg_shape); error = error.or(err); call.named.push((flag.long.clone(), Some(arg))); spans_idx += 1; } else { error = error.or(Some(ParseError::MissingFlagParam(arg_span))) } } else { call.named.push((flag.long.clone(), None)); } } spans_idx += 1; continue; } // Parse a positional arg if there is one if let Some(positional) = signature.get_positional(positional_idx) { let end = calculate_end_span(working_set, &signature, spans, spans_idx, positional_idx); // println!( // "start: {} end: {} positional_idx: {}", // spans_idx, end, positional_idx // ); let orig_idx = spans_idx; let (arg, err) = parse_multispan_value( working_set, &spans[..end], &mut spans_idx, &positional.shape, ); error = error.or(err); let arg = if !type_compatible(&positional.shape.to_type(), &arg.ty) { let span = span(&spans[orig_idx..spans_idx]); error = error.or_else(|| { Some(ParseError::TypeMismatch( positional.shape.to_type(), arg.ty, arg.span, )) }); Expression::garbage(span) } else { arg }; call.positional.push(arg); positional_idx += 1; } else { call.positional.push(Expression::garbage(arg_span)); error = error.or(Some(ParseError::ExtraPositional(arg_span))) } error = error.or(err); spans_idx += 1; } let err = check_call(command_span, &signature, &call); error = error.or(err); // FIXME: type unknown (Box::new(call), span(spans), error) } pub fn parse_call( working_set: &mut StateWorkingSet, spans: &[Span], expand_aliases: bool, ) -> (Expression, Option) { // assume spans.len() > 0? let mut pos = 0; let mut shorthand = vec![]; while pos < spans.len() { // Check if there is any environment shorthand let name = working_set.get_span_contents(spans[pos]); let split: Vec<_> = name.splitn(2, |x| *x == b'=').collect(); if split.len() == 2 { shorthand.push(split); pos += 1; } else { break; } } if pos == spans.len() { return ( Expression::garbage(span(spans)), Some(ParseError::UnknownCommand(spans[0])), ); } let name = working_set.get_span_contents(spans[pos]); let cmd_start = pos; if expand_aliases { if let Some(expansion) = working_set.find_alias(name) { let orig_span = spans[pos]; //let mut spans = spans.to_vec(); let mut new_spans: Vec = vec![]; new_spans.extend(&spans[0..pos]); new_spans.extend(expansion); if spans.len() > pos { new_spans.extend(&spans[(pos + 1)..]); } let (result, err) = parse_call(working_set, &new_spans, false); let expression = match result { Expression { expr: Expr::Call(mut call), span, ty, custom_completion: None, } => { call.head = orig_span; Expression { expr: Expr::Call(call), span, ty, custom_completion: None, } } x => x, }; return (expression, err); } } pos += 1; if let Some(mut decl_id) = working_set.find_decl(name) { let mut name = name.to_vec(); while pos < spans.len() { // look to see if it's a subcommand let mut new_name = name.to_vec(); new_name.push(b' '); new_name.extend(working_set.get_span_contents(spans[pos])); if expand_aliases { if let Some(expansion) = working_set.find_alias(&new_name) { let orig_span = span(&spans[cmd_start..pos + 1]); //let mut spans = spans.to_vec(); let mut new_spans: Vec = vec![]; new_spans.extend(&spans[0..cmd_start]); new_spans.extend(expansion); if spans.len() > pos { new_spans.extend(&spans[(pos + 1)..]); } let (result, err) = parse_call(working_set, &new_spans, false); let expression = match result { Expression { expr: Expr::Call(mut call), span, ty, custom_completion: None, } => { call.head = orig_span; Expression { expr: Expr::Call(call), span, ty, custom_completion: None, } } x => x, }; return (expression, err); } } if let Some(did) = working_set.find_decl(&new_name) { decl_id = did; } else { break; } name = new_name; pos += 1; } // Before the internal parsing we check if there is no let or alias declarations // that are missing their name, e.g.: let = 1 or alias = 2 if spans.len() > 1 { let test_equal = working_set.get_span_contents(spans[1]); if test_equal == [b'='] { return ( garbage(Span::new(0, 0)), Some(ParseError::UnknownState( "Incomplete statement".into(), span(spans), )), ); } } // parse internal command let (call, _, err) = parse_internal_call(working_set, span(&spans[0..pos]), &spans[pos..], decl_id); ( Expression { expr: Expr::Call(call), span: span(spans), ty: Type::Unknown, // FIXME custom_completion: None, }, err, ) } else { // We might be parsing left-unbounded range ("..10") let bytes = working_set.get_span_contents(spans[0]); if let (Some(b'.'), Some(b'.')) = (bytes.get(0), bytes.get(1)) { let (range_expr, range_err) = parse_range(working_set, spans[0]); if range_err.is_none() { return (range_expr, range_err); } } parse_external_call(working_set, spans) } } pub fn parse_int(token: &[u8], span: Span) -> (Expression, Option) { if let Some(token) = token.strip_prefix(b"0x") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 16) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Some(token) = token.strip_prefix(b"0b") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 2) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Some(token) = token.strip_prefix(b"0o") { if let Ok(v) = i64::from_str_radix(&String::from_utf8_lossy(token), 8) { ( Expression { expr: Expr::Int(v), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Mismatch( "int".into(), "incompatible int".into(), span, )), ) } } else if let Ok(x) = String::from_utf8_lossy(token).parse::() { ( Expression { expr: Expr::Int(x), span, ty: Type::Int, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("int".into(), span)), ) } } pub fn parse_float(token: &[u8], span: Span) -> (Expression, Option) { if let Ok(x) = String::from_utf8_lossy(token).parse::() { ( Expression { expr: Expr::Float(x), span, ty: Type::Float, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("float".into(), span)), ) } } pub fn parse_number(token: &[u8], span: Span) -> (Expression, Option) { if let (x, None) = parse_int(token, span) { (x, None) } else if let (x, None) = parse_float(token, span) { (x, None) } else { ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } pub fn parse_range( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { // Range follows the following syntax: [][][] // where is ".." // and is ".." or "..<" // and one of the or bounds must be present (just '..' is not allowed since it // looks like parent directory) let contents = working_set.get_span_contents(span); let token = if let Ok(s) = String::from_utf8(contents.into()) { s } else { return (garbage(span), Some(ParseError::NonUtf8(span))); }; // First, figure out what exact operators are used and determine their positions let dotdot_pos: Vec<_> = token.match_indices("..").map(|(pos, _)| pos).collect(); let (next_op_pos, range_op_pos) = match dotdot_pos.len() { 1 => (None, dotdot_pos[0]), 2 => (Some(dotdot_pos[0]), dotdot_pos[1]), _ => return ( garbage(span), Some(ParseError::Expected( "one range operator ('..' or '..<') and optionally one next operator ('..')" .into(), span, )), ), }; let (inclusion, range_op_str, range_op_span) = if let Some(pos) = token.find("..<") { if pos == range_op_pos { let op_str = "..<"; let op_span = Span::new( span.start + range_op_pos, span.start + range_op_pos + op_str.len(), ); (RangeInclusion::RightExclusive, "..<", op_span) } else { return ( garbage(span), Some(ParseError::Expected( "inclusive operator preceding second range bound".into(), span, )), ); } } else { let op_str = ".."; let op_span = Span::new( span.start + range_op_pos, span.start + range_op_pos + op_str.len(), ); (RangeInclusion::Inclusive, "..", op_span) }; // Now, based on the operator positions, figure out where the bounds & next are located and // parse them // TODO: Actually parse the next number let from = if token.starts_with("..") { // token starts with either next operator, or range operator -- we don't care which one None } else { let from_span = Span::new(span.start, span.start + dotdot_pos[0]); match parse_value(working_set, from_span, &SyntaxShape::Number) { (expression, None) => Some(Box::new(expression)), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } }; let to = if token.ends_with(range_op_str) { None } else { let to_span = Span::new(range_op_span.end, span.end); match parse_value(working_set, to_span, &SyntaxShape::Number) { (expression, None) => Some(Box::new(expression)), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } }; if let (None, None) = (&from, &to) { return ( garbage(span), Some(ParseError::Expected( "at least one range bound set".into(), span, )), ); } let (next, next_op_span) = if let Some(pos) = next_op_pos { let next_op_span = Span::new(span.start + pos, span.start + pos + "..".len()); let next_span = Span::new(next_op_span.end, range_op_span.start); match parse_value(working_set, next_span, &SyntaxShape::Number) { (expression, None) => (Some(Box::new(expression)), next_op_span), _ => { return ( garbage(span), Some(ParseError::Expected("number".into(), span)), ) } } } else { (None, Span::unknown()) }; let range_op = RangeOperator { inclusion, span: range_op_span, next_op_span, }; ( Expression { expr: Expr::Range(from, next, to, range_op), span, ty: Type::Range, custom_completion: None, }, None, ) } pub(crate) fn parse_dollar_expr( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let contents = working_set.get_span_contents(span); if contents.starts_with(b"$\"") { parse_string_interpolation(working_set, span) } else if let (expr, None) = parse_range(working_set, span) { (expr, None) } else { parse_full_column_path(working_set, None, span) } } pub fn parse_string_interpolation( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { #[derive(PartialEq, Eq, Debug)] enum InterpolationMode { String, Expression, } let mut error = None; let contents = working_set.get_span_contents(span); let start = if contents.starts_with(b"$\"") { span.start + 2 } else { span.start }; let end = if contents.ends_with(b"\"") && contents.len() > 2 { span.end - 1 } else { span.end }; let inner_span = Span { start, end }; let contents = working_set.get_span_contents(inner_span).to_vec(); let mut output = vec![]; let mut mode = InterpolationMode::String; let mut token_start = start; let mut depth = 0; let mut b = start; #[allow(clippy::needless_range_loop)] while b != end { if contents[b - start] == b'(' && mode == InterpolationMode::String { depth = 1; mode = InterpolationMode::Expression; if token_start < b { let span = Span { start: token_start, end: b, }; let str_contents = working_set.get_span_contents(span); output.push(Expression { expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()), span, ty: Type::String, custom_completion: None, }); } token_start = b; } else if contents[b - start] == b'(' && mode == InterpolationMode::Expression { depth += 1; } else if contents[b - start] == b')' && mode == InterpolationMode::Expression { match depth { 0 => {} 1 => { mode = InterpolationMode::String; if token_start < b { let span = Span { start: token_start, end: b + 1, }; let (expr, err) = parse_full_column_path(working_set, None, span); error = error.or(err); output.push(expr); } token_start = b + 1; } _ => depth -= 1, } } b += 1; } match mode { InterpolationMode::String => { if token_start < end { let span = Span { start: token_start, end, }; let str_contents = working_set.get_span_contents(span); output.push(Expression { expr: Expr::String(String::from_utf8_lossy(str_contents).to_string()), span, ty: Type::String, custom_completion: None, }); } } InterpolationMode::Expression => { if token_start < end { let span = Span { start: token_start, end, }; let (expr, err) = parse_full_column_path(working_set, None, span); error = error.or(err); output.push(expr); } } } if let Some(decl_id) = working_set.find_decl(b"build-string") { ( Expression { expr: Expr::Call(Box::new(Call { head: Span { start: span.start, end: span.start + 2, }, named: vec![], positional: output, decl_id, })), span, ty: Type::String, custom_completion: None, }, error, ) } else { ( Expression::garbage(span), Some(ParseError::UnknownCommand(span)), ) } } pub fn parse_variable_expr( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let contents = working_set.get_span_contents(span); if contents == b"$true" { return ( Expression { expr: Expr::Bool(true), span, ty: Type::Bool, custom_completion: None, }, None, ); } else if contents == b"$false" { return ( Expression { expr: Expr::Bool(false), span, ty: Type::Bool, custom_completion: None, }, None, ); } let (id, err) = parse_variable(working_set, span); if err.is_none() { if let Some(id) = id { ( Expression { expr: Expr::Var(id), span, ty: working_set.get_variable(id).clone(), custom_completion: None, }, None, ) } else { (garbage(span), Some(ParseError::VariableNotFound(span))) } } else { (garbage(span), err) } } pub fn parse_full_column_path( working_set: &mut StateWorkingSet, implicit_head: Option, span: Span, ) -> (Expression, Option) { // FIXME: assume for now a paren expr, but needs more let full_column_span = span; let source = working_set.get_span_contents(span); let mut error = None; let (tokens, err) = lex(source, span.start, &[b'\n'], &[b'.']); error = error.or(err); let mut tokens = tokens.into_iter().peekable(); if let Some(head) = tokens.peek() { let bytes = working_set.get_span_contents(head.span); let (head, mut expect_dot) = if bytes.starts_with(b"(") { let mut start = head.span.start; let mut end = head.span.end; if bytes.starts_with(b"(") { start += 1; } if bytes.ends_with(b")") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( ")".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = working_set.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n'], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = parse_block(working_set, &output, true); error = error.or(err); let block_id = working_set.add_block(output); tokens.next(); ( Expression { expr: Expr::Subexpression(block_id), span, ty: Type::Unknown, // FIXME custom_completion: None, }, true, ) } else if bytes.starts_with(b"$") { let (out, err) = parse_variable_expr(working_set, head.span); error = error.or(err); tokens.next(); (out, true) } else if let Some(var_id) = implicit_head { ( Expression { expr: Expr::Var(var_id), span: Span::unknown(), ty: Type::Unknown, custom_completion: None, }, false, ) } else { return ( garbage(span), Some(ParseError::Mismatch( "variable or subexpression".into(), String::from_utf8_lossy(bytes).to_string(), span, )), ); }; let mut tail = vec![]; for path_element in tokens { let bytes = working_set.get_span_contents(path_element.span); if expect_dot { expect_dot = false; if bytes.len() != 1 || bytes[0] != b'.' { error = error.or_else(|| Some(ParseError::Expected('.'.into(), path_element.span))); } } else { expect_dot = true; match parse_int(bytes, path_element.span) { ( Expression { expr: Expr::Int(val), span, .. }, None, ) => tail.push(PathMember::Int { val: val as usize, span, }), _ => { let (result, err) = parse_string(working_set, path_element.span); error = error.or(err); match result { Expression { expr: Expr::String(string), span, .. } => { tail.push(PathMember::String { val: string, span }); } _ => { error = error .or_else(|| Some(ParseError::Expected("string".into(), span))); } } } } } } ( Expression { expr: Expr::FullCellPath(Box::new(FullCellPath { head, tail })), ty: Type::Unknown, span: full_column_span, custom_completion: None, }, error, ) } else { (garbage(span), error) } } pub fn parse_string( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let bytes = if (bytes.starts_with(b"\"") && bytes.ends_with(b"\"") && bytes.len() > 1) || (bytes.starts_with(b"\'") && bytes.ends_with(b"\'") && bytes.len() > 1) { &bytes[1..(bytes.len() - 1)] } else { bytes }; if let Ok(token) = String::from_utf8(bytes.into()) { ( Expression { expr: Expr::String(token), span, ty: Type::String, custom_completion: None, }, None, ) } else { ( garbage(span), Some(ParseError::Expected("string".into(), span)), ) } } //TODO: Handle error case pub fn parse_shape_name( _working_set: &StateWorkingSet, bytes: &[u8], span: Span, ) -> (SyntaxShape, Option) { let result = match bytes { b"any" => SyntaxShape::Any, b"string" => SyntaxShape::String, b"cell-path" => SyntaxShape::CellPath, b"number" => SyntaxShape::Number, b"range" => SyntaxShape::Range, b"int" => SyntaxShape::Int, b"path" => SyntaxShape::FilePath, b"glob" => SyntaxShape::GlobPattern, b"block" => SyntaxShape::Block(None), //FIXME b"cond" => SyntaxShape::RowCondition, b"operator" => SyntaxShape::Operator, b"math" => SyntaxShape::MathExpression, b"variable" => SyntaxShape::Variable, b"signature" => SyntaxShape::Signature, b"expr" => SyntaxShape::Expression, _ => return (SyntaxShape::Any, Some(ParseError::UnknownType(span))), }; (result, None) } pub fn parse_type(_working_set: &StateWorkingSet, bytes: &[u8]) -> Type { if bytes == b"int" { Type::Int } else { Type::Unknown } } pub fn parse_var_with_opt_type( working_set: &mut StateWorkingSet, spans: &[Span], spans_idx: &mut usize, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(spans[*spans_idx]).to_vec(); if bytes.ends_with(b":") { // We end with colon, so the next span should be the type if *spans_idx + 1 < spans.len() { *spans_idx += 1; let type_bytes = working_set.get_span_contents(spans[*spans_idx]); let ty = parse_type(working_set, type_bytes); let id = working_set.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), ty.clone()); ( Expression { expr: Expr::Var(id), span: span(&spans[*spans_idx - 1..*spans_idx + 1]), ty, custom_completion: None, }, None, ) } else { let id = working_set.add_variable(bytes[0..(bytes.len() - 1)].to_vec(), Type::Unknown); ( Expression { expr: Expr::Var(id), span: spans[*spans_idx], ty: Type::Unknown, custom_completion: None, }, Some(ParseError::MissingType(spans[*spans_idx])), ) } } else { let id = working_set.add_variable(bytes, Type::Unknown); ( Expression { expr: Expr::Var(id), span: span(&spans[*spans_idx..*spans_idx + 1]), ty: Type::Unknown, custom_completion: None, }, None, ) } } pub fn expand_to_cell_path( working_set: &mut StateWorkingSet, expression: &mut Expression, var_id: VarId, ) { if let Expression { expr: Expr::String(_), span, .. } = expression { // Re-parse the string as if it were a cell-path let (new_expression, _err) = parse_full_column_path(working_set, Some(var_id), *span); *expression = new_expression; } } pub fn parse_row_condition( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Expression, Option) { let var_id = working_set.add_variable(b"$it".to_vec(), Type::Unknown); let (expression, err) = parse_math_expression(working_set, spans, Some(var_id)); let span = span(spans); ( Expression { ty: Type::Bool, span, expr: Expr::RowCondition(var_id, Box::new(expression)), custom_completion: None, }, err, ) } pub fn parse_signature( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let (sig, err) = parse_signature_helper(working_set, Span { start, end }); error = error.or(err); ( Expression { expr: Expr::Signature(sig), span, ty: Type::Unknown, custom_completion: None, }, error, ) } pub fn parse_signature_helper( working_set: &mut StateWorkingSet, span: Span, ) -> (Box, Option) { enum ParseMode { ArgMode, TypeMode, } enum Arg { Positional(PositionalArg, bool), // bool - required Flag(Flag), } let mut error = None; let source = working_set.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n', b','], &[b':']); error = error.or(err); let mut args: Vec = vec![]; let mut rest_arg = None; let mut parse_mode = ParseMode::ArgMode; for token in &output { match token { Token { contents: crate::TokenContents::Item, span, } => { let span = *span; let contents = working_set.get_span_contents(span); if contents == b":" { match parse_mode { ParseMode::ArgMode => { parse_mode = ParseMode::TypeMode; } ParseMode::TypeMode => { // We're seeing two types for the same thing for some reason, error error = error.or_else(|| Some(ParseError::Expected("type".into(), span))); } } } else { match parse_mode { ParseMode::ArgMode => { if contents.starts_with(b"--") && contents.len() > 2 { // Long flag let flags: Vec<_> = contents.split(|x| x == &b'(').map(|x| x.to_vec()).collect(); let long = String::from_utf8_lossy(&flags[0]).to_string(); let variable_name = flags[0][2..].to_vec(); let var_id = working_set.add_variable(variable_name, Type::Unknown); if flags.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: None, required: false, var_id: Some(var_id), })); } else { let short_flag = &flags[1]; let short_flag = if !short_flag.starts_with(b"-") || !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); short_flag } else { &short_flag[1..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); let long = String::from_utf8_lossy(&flags[0]).to_string(); let variable_name = flags[0][2..].to_vec(); let var_id = working_set.add_variable(variable_name, Type::Unknown); if chars.len() == 1 { args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long, short: Some(chars[0]), required: false, var_id: Some(var_id), })); } else { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } } } else if contents.starts_with(b"-") && contents.len() > 1 { // Short flag let short_flag = &contents[1..]; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() > 1 { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long: String::new(), short: None, required: false, var_id: None, })); } else { let mut encoded_var_name = vec![0u8; 4]; let len = chars[0].encode_utf8(&mut encoded_var_name).len(); let variable_name = encoded_var_name[0..len].to_vec(); let var_id = working_set.add_variable(variable_name, Type::Unknown); args.push(Arg::Flag(Flag { arg: None, desc: String::new(), long: String::new(), short: Some(chars[0]), required: false, var_id: Some(var_id), })); } } else if contents.starts_with(b"(-") { let short_flag = &contents[2..]; let short_flag = if !short_flag.ends_with(b")") { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); short_flag } else { &short_flag[..(short_flag.len() - 1)] }; let short_flag = String::from_utf8_lossy(short_flag).to_string(); let chars: Vec = short_flag.chars().collect(); if chars.len() == 1 { match args.last_mut() { Some(Arg::Flag(flag)) => { if flag.short.is_some() { error = error.or_else(|| { Some(ParseError::Expected( "one short flag".into(), span, )) }); } else { flag.short = Some(chars[0]); } } _ => { error = error.or_else(|| { Some(ParseError::Expected( "unknown flag".into(), span, )) }); } } } else { error = error.or_else(|| { Some(ParseError::Expected("short flag".into(), span)) }); } } else if contents.ends_with(b"?") { let contents: Vec<_> = contents[..(contents.len() - 1)].into(); let name = String::from_utf8_lossy(&contents).to_string(); let var_id = working_set.add_variable(contents, Type::Unknown); // Positional arg, optional args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, false, )) } else if let Some(contents) = contents.strip_prefix(b"...") { let name = String::from_utf8_lossy(contents).to_string(); let contents_vec: Vec = contents.to_vec(); let var_id = working_set.add_variable(contents_vec, Type::Unknown); if rest_arg.is_none() { rest_arg = Some(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, false, )); } else { error = error.or(Some(ParseError::MultipleRestParams(span))) } } else { let name = String::from_utf8_lossy(contents).to_string(); let contents_vec = contents.to_vec(); let var_id = working_set.add_variable(contents_vec, Type::Unknown); // Positional arg, required args.push(Arg::Positional( PositionalArg { desc: String::new(), name, shape: SyntaxShape::Any, var_id: Some(var_id), }, true, )) } } ParseMode::TypeMode => { if let Some(last) = args.last_mut() { let (syntax_shape, err) = parse_shape_name(working_set, contents, span); error = error.or(err); //TODO check if we're replacing one already match last { Arg::Positional(PositionalArg { shape, var_id, .. }, ..) => { working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *shape = syntax_shape; } Arg::Flag(Flag { arg, var_id, .. }) => { working_set.set_variable_type(var_id.expect("internal error: all custom parameters must have var_ids"), syntax_shape.to_type()); *arg = Some(syntax_shape) } } } parse_mode = ParseMode::ArgMode; } } } } Token { contents: crate::TokenContents::Comment, span, } => { let contents = working_set.get_span_contents(Span { start: span.start + 1, end: span.end, }); let mut contents = String::from_utf8_lossy(contents).to_string(); contents = contents.trim().into(); if let Some(last) = args.last_mut() { match last { Arg::Flag(flag) => { if !flag.desc.is_empty() { flag.desc.push('\n'); } flag.desc.push_str(&contents); } Arg::Positional(positional, ..) => { if !positional.desc.is_empty() { positional.desc.push('\n'); } positional.desc.push_str(&contents); } } } } _ => {} } } let mut sig = Signature::new(String::new()); if let Some(Arg::Positional(positional, ..)) = rest_arg { if positional.name.is_empty() { error = error.or(Some(ParseError::RestNeedsName(span))) } else if sig.rest_positional.is_none() { sig.rest_positional = Some(PositionalArg { name: positional.name, ..positional }) } else { // Too many rest params error = error.or(Some(ParseError::MultipleRestParams(span))) } } for arg in args { match arg { Arg::Positional(positional, required) => { if required { sig.required_positional.push(positional) } else { sig.optional_positional.push(positional) } } Arg::Flag(flag) => sig.named.push(flag), } } (Box::new(sig), error) } pub fn parse_list_expression( working_set: &mut StateWorkingSet, span: Span, element_shape: &SyntaxShape, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = working_set.get_span_contents(span); let (output, err) = lex(source, span.start, &[b'\n', b','], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let mut args = vec![]; let mut contained_type: Option = None; if !output.block.is_empty() { for arg in &output.block[0].commands { let mut spans_idx = 0; while spans_idx < arg.parts.len() { let (arg, err) = parse_multispan_value(working_set, &arg.parts, &mut spans_idx, element_shape); error = error.or(err); if let Some(ref ctype) = contained_type { if *ctype != arg.ty { contained_type = Some(Type::Unknown); } } else { contained_type = Some(arg.ty.clone()); } args.push(arg); spans_idx += 1; } } } ( Expression { expr: Expr::List(args), span, ty: Type::List(Box::new(if let Some(ty) = contained_type { ty } else { Type::Unknown })), custom_completion: None, }, error, ) } pub fn parse_table_expression( working_set: &mut StateWorkingSet, original_span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(original_span); let mut error = None; let mut start = original_span.start; let mut end = original_span.end; if bytes.starts_with(b"[") { start += 1; } if bytes.ends_with(b"]") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "]".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = working_set.get_span_contents(span); let (output, err) = lex(source, start, &[b'\n', b','], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); match output.block.len() { 0 => ( Expression { expr: Expr::List(vec![]), span, ty: Type::List(Box::new(Type::Unknown)), custom_completion: None, }, None, ), 1 => { // List parse_list_expression(working_set, original_span, &SyntaxShape::Any) } _ => { let mut table_headers = vec![]; let (headers, err) = parse_value( working_set, output.block[0].commands[0].parts[0], &SyntaxShape::List(Box::new(SyntaxShape::Any)), ); error = error.or(err); if let Expression { expr: Expr::List(headers), .. } = headers { table_headers = headers; } let mut rows = vec![]; for part in &output.block[1].commands[0].parts { let (values, err) = parse_value( working_set, *part, &SyntaxShape::List(Box::new(SyntaxShape::Any)), ); error = error.or(err); if let Expression { expr: Expr::List(values), span, .. } = values { match values.len().cmp(&table_headers.len()) { std::cmp::Ordering::Less => { error = error.or_else(|| { Some(ParseError::MissingColumns(table_headers.len(), span)) }) } std::cmp::Ordering::Equal => {} std::cmp::Ordering::Greater => { error = error.or_else(|| { Some(ParseError::ExtraColumns( table_headers.len(), values[table_headers.len()].span, )) }) } } rows.push(values); } } ( Expression { expr: Expr::Table(table_headers, rows), span, ty: Type::Table, custom_completion: None, }, error, ) } } } pub fn parse_block_expression( working_set: &mut StateWorkingSet, shape: &SyntaxShape, span: Span, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); let mut error = None; let mut start = span.start; let mut end = span.end; if bytes.starts_with(b"{") { start += 1; } else { return ( garbage(span), Some(ParseError::Expected("block".into(), span)), ); } if bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "}".into(), Span { start: end, end: end + 1, }, )) }); } let span = Span { start, end }; let source = working_set.get_span_contents(span); let (output, err) = lex(source, start, &[], &[]); error = error.or(err); working_set.enter_scope(); // Check to see if we have parameters let (mut signature, amt_to_skip): (Option>, usize) = match output.first() { Some(Token { contents: TokenContents::Pipe, span, }) => { // We've found a parameter list let start_point = span.start; let mut token_iter = output.iter().enumerate().skip(1); let mut end_span = None; let mut amt_to_skip = 1; for token in &mut token_iter { if let Token { contents: TokenContents::Pipe, span, } = token.1 { end_span = Some(span); amt_to_skip = token.0; break; } } let end_point = if let Some(span) = end_span { span.end } else { end }; let (signature, err) = parse_signature_helper( working_set, Span { start: start_point, end: end_point, }, ); error = error.or(err); (Some(signature), amt_to_skip) } _ => (None, 0), }; let (output, err) = lite_parse(&output[amt_to_skip..]); error = error.or(err); if let SyntaxShape::Block(Some(v)) = shape { if signature.is_none() && v.len() == 1 { // We'll assume there's an `$it` present let var_id = working_set.add_variable(b"$it".to_vec(), Type::Unknown); let mut new_sigature = Signature::new(""); new_sigature.required_positional.push(PositionalArg { var_id: Some(var_id), name: "$it".into(), desc: String::new(), shape: SyntaxShape::Any, }); signature = Some(Box::new(new_sigature)); } } let (mut output, err) = parse_block(working_set, &output, false); error = error.or(err); if let Some(signature) = signature { output.signature = signature; } else if let Some(last) = working_set.delta.scope.last() { // FIXME: this only supports the top $it. Instead, we should look for a free $it in the expression. if let Some(var_id) = last.get_var(b"$it") { let mut signature = Signature::new(""); signature.required_positional.push(PositionalArg { var_id: Some(*var_id), name: "$it".into(), desc: String::new(), shape: SyntaxShape::Any, }); output.signature = Box::new(signature); } } working_set.exit_scope(); let block_id = working_set.add_block(output); ( Expression { expr: Expr::Block(block_id), span, ty: Type::Block, custom_completion: None, }, error, ) } pub fn parse_value( working_set: &mut StateWorkingSet, span: Span, shape: &SyntaxShape, ) -> (Expression, Option) { let bytes = working_set.get_span_contents(span); // First, check the special-cases. These will likely represent specific values as expressions // and may fit a variety of shapes. // // We check variable first because immediately following we check for variables with cell paths // which might result in a value that fits other shapes (and require the variable to already be // declared) if shape == &SyntaxShape::Variable { return parse_variable_expr(working_set, span); } else if bytes.starts_with(b"$") { return parse_dollar_expr(working_set, span); } else if bytes.starts_with(b"(") { if let (expr, None) = parse_range(working_set, span) { return (expr, None); } else { return parse_full_column_path(working_set, None, span); } } else if bytes.starts_with(b"{") { if matches!(shape, SyntaxShape::Block(_)) || matches!(shape, SyntaxShape::Any) { return parse_block_expression(working_set, shape, span); } else { return ( Expression::garbage(span), Some(ParseError::Expected("non-block value".into(), span)), ); } } else if bytes.starts_with(b"[") { match shape { SyntaxShape::Any | SyntaxShape::List(_) | SyntaxShape::Table | SyntaxShape::Signature => {} _ => { return ( Expression::garbage(span), Some(ParseError::Expected("non-[] value".into(), span)), ); } } } match shape { SyntaxShape::Custom(shape, custom_completion) => { let (mut expression, err) = parse_value(working_set, span, shape); expression.custom_completion = Some(custom_completion.clone()); (expression, err) } SyntaxShape::Number => parse_number(bytes, span), SyntaxShape::Int => parse_int(bytes, span), SyntaxShape::Range => parse_range(working_set, span), SyntaxShape::String | SyntaxShape::GlobPattern | SyntaxShape::FilePath => { parse_string(working_set, span) } SyntaxShape::Block(_) => { if bytes.starts_with(b"{") { parse_block_expression(working_set, shape, span) } else { ( Expression::garbage(span), Some(ParseError::Expected("block".into(), span)), ) } } SyntaxShape::Signature => { if bytes.starts_with(b"[") { parse_signature(working_set, span) } else { ( Expression::garbage(span), Some(ParseError::Expected("signature".into(), span)), ) } } SyntaxShape::List(elem) => { if bytes.starts_with(b"[") { parse_list_expression(working_set, span, elem) } else { ( Expression::garbage(span), Some(ParseError::Expected("list".into(), span)), ) } } SyntaxShape::Table => { if bytes.starts_with(b"[") { parse_table_expression(working_set, span) } else { ( Expression::garbage(span), Some(ParseError::Expected("table".into(), span)), ) } } SyntaxShape::Any => { if bytes.starts_with(b"[") { parse_value(working_set, span, &SyntaxShape::Table) } else { let shapes = [ SyntaxShape::Int, SyntaxShape::Number, SyntaxShape::Range, SyntaxShape::Filesize, SyntaxShape::Duration, SyntaxShape::Block(None), SyntaxShape::String, ]; for shape in shapes.iter() { if let (s, None) = parse_value(working_set, span, shape) { return (s, None); } } ( garbage(span), Some(ParseError::Expected("any shape".into(), span)), ) } } _ => (garbage(span), Some(ParseError::IncompleteParser(span))), } } pub fn parse_operator( working_set: &mut StateWorkingSet, span: Span, ) -> (Expression, Option) { let contents = working_set.get_span_contents(span); let operator = match contents { b"==" => Operator::Equal, b"!=" => Operator::NotEqual, b"<" => Operator::LessThan, b"<=" => Operator::LessThanOrEqual, b">" => Operator::GreaterThan, b">=" => Operator::GreaterThanOrEqual, b"=~" => Operator::Contains, b"!~" => Operator::NotContains, b"+" => Operator::Plus, b"-" => Operator::Minus, b"*" => Operator::Multiply, b"/" => Operator::Divide, b"in" => Operator::In, b"not-in" => Operator::NotIn, b"mod" => Operator::Modulo, b"&&" => Operator::And, b"||" => Operator::Or, b"**" => Operator::Pow, _ => { return ( garbage(span), Some(ParseError::Expected("operator".into(), span)), ); } }; ( Expression { expr: Expr::Operator(operator), span, ty: Type::Unknown, custom_completion: None, }, None, ) } pub fn parse_math_expression( working_set: &mut StateWorkingSet, spans: &[Span], lhs_row_var_id: Option, ) -> (Expression, Option) { // As the expr_stack grows, we increase the required precedence to grow larger // If, at any time, the operator we're looking at is the same or lower precedence // of what is in the expression stack, we collapse the expression stack. // // This leads to an expression stack that grows under increasing precedence and collapses // under decreasing/sustained precedence // // The end result is a stack that we can fold into binary operations as right associations // safely. let mut expr_stack: Vec = vec![]; let mut idx = 0; let mut last_prec = 1000000; let mut error = None; let (lhs, err) = parse_value(working_set, spans[0], &SyntaxShape::Any); error = error.or(err); idx += 1; expr_stack.push(lhs); while idx < spans.len() { let (op, err) = parse_operator(working_set, spans[idx]); error = error.or(err); let op_prec = op.precedence(); idx += 1; if idx == spans.len() { // Handle broken math expr `1 +` etc error = error.or(Some(ParseError::IncompleteMathExpression(spans[idx - 1]))); expr_stack.push(Expression::garbage(spans[idx - 1])); expr_stack.push(Expression::garbage(spans[idx - 1])); break; } let (rhs, err) = parse_value(working_set, spans[idx], &SyntaxShape::Any); error = error.or(err); if op_prec <= last_prec { while expr_stack.len() > 1 { // Collapse the right associated operations first // so that we can get back to a stack with a lower precedence let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); if let Some(row_var_id) = lhs_row_var_id { expand_to_cell_path(working_set, &mut lhs, row_var_id); } let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs); error = error.or(err); let op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: op_span, ty: result_ty, custom_completion: None, }); } } expr_stack.push(op); expr_stack.push(rhs); last_prec = op_prec; idx += 1; } while expr_stack.len() != 1 { let mut rhs = expr_stack .pop() .expect("internal error: expression stack empty"); let mut op = expr_stack .pop() .expect("internal error: expression stack empty"); let mut lhs = expr_stack .pop() .expect("internal error: expression stack empty"); if let Some(row_var_id) = lhs_row_var_id { expand_to_cell_path(working_set, &mut lhs, row_var_id); } let (result_ty, err) = math_result_type(working_set, &mut lhs, &mut op, &mut rhs); error = error.or(err); let binary_op_span = span(&[lhs.span, rhs.span]); expr_stack.push(Expression { expr: Expr::BinaryOp(Box::new(lhs), Box::new(op), Box::new(rhs)), span: binary_op_span, ty: result_ty, custom_completion: None, }); } let output = expr_stack .pop() .expect("internal error: expression stack empty"); (output, error) } pub fn parse_expression( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Expression, Option) { let bytes = working_set.get_span_contents(spans[0]); match bytes[0] { b'0' | b'1' | b'2' | b'3' | b'4' | b'5' | b'6' | b'7' | b'8' | b'9' | b'(' | b'{' | b'[' | b'$' | b'"' | b'\'' | b'-' => parse_math_expression(working_set, spans, None), _ => parse_call(working_set, spans, true), } } pub fn parse_variable( working_set: &mut StateWorkingSet, span: Span, ) -> (Option, Option) { let bytes = working_set.get_span_contents(span); if is_variable(bytes) { if let Some(var_id) = working_set.find_variable(bytes) { (Some(var_id), None) } else { (None, None) } } else { (None, Some(ParseError::Expected("variable".into(), span))) } } pub fn parse_def_predecl(working_set: &mut StateWorkingSet, spans: &[Span]) { let name = working_set.get_span_contents(spans[0]); if name == b"def" && spans.len() >= 4 { let (name_expr, ..) = parse_string(working_set, spans[1]); let name = name_expr.as_string(); working_set.enter_scope(); // FIXME: because parse_signature will update the scope with the variables it sees // we end up parsing the signature twice per def. The first time is during the predecl // so that we can see the types that are part of the signature, which we need for parsing. // The second time is when we actually parse the body itworking_set. // We can't reuse the first time because the variables that are created during parse_signature // are lost when we exit the scope below. let (sig, ..) = parse_signature(working_set, spans[2]); let signature = sig.as_signature(); working_set.exit_scope(); if let (Some(name), Some(mut signature)) = (name, signature) { signature.name = name; let decl = signature.predeclare(); working_set.add_decl(decl); } } } pub fn parse_def( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Statement, Option) { let mut error = None; let name = working_set.get_span_contents(spans[0]); if name == b"def" && spans.len() >= 4 { //FIXME: don't use expect here let (name_expr, err) = parse_string(working_set, spans[1]); error = error.or(err); working_set.enter_scope(); let (sig, err) = parse_signature(working_set, spans[2]); error = error.or(err); let (block, err) = parse_block_expression(working_set, &SyntaxShape::Block(Some(vec![])), spans[3]); error = error.or(err); working_set.exit_scope(); if error.is_some() { return ( Statement::Pipeline(Pipeline::from_vec(vec![garbage(span(spans))])), error, ); } let name = name_expr.as_string(); let signature = sig.as_signature(); let block_id = block.as_block(); match (name, signature, block_id) { (Some(name), Some(mut signature), Some(block_id)) => { let decl_id = working_set .find_decl(name.as_bytes()) .expect("internal error: predeclaration failed to add definition"); let declaration = working_set.get_decl_mut(decl_id); signature.name = name; *declaration = signature.into_block_command(block_id); let def_decl_id = working_set .find_decl(b"def") .expect("internal error: missing def command"); let call = Box::new(Call { head: spans[0], decl_id: def_decl_id, positional: vec![name_expr, sig, block], named: vec![], }); ( Statement::Pipeline(Pipeline::from_vec(vec![Expression { expr: Expr::Call(call), span: span(spans), ty: Type::Unknown, custom_completion: None, }])), error, ) } _ => ( Statement::Pipeline(Pipeline::from_vec(vec![garbage(span(spans))])), error, ), } } else { ( garbage_statement(spans), Some(ParseError::UnknownState( "Expected structure: def [] {}".into(), span(spans), )), ) } } pub fn parse_alias( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Statement, Option) { let name = working_set.get_span_contents(spans[0]); if name == b"alias" { if let Some((span, err)) = check_name(working_set, spans) { return ( Statement::Pipeline(Pipeline::from_vec(vec![garbage(*span)])), Some(err), ); } if let Some(decl_id) = working_set.find_decl(b"alias") { let (call, call_span, _) = parse_internal_call(working_set, spans[0], &spans[1..], decl_id); if spans.len() >= 4 { let alias_name = working_set.get_span_contents(spans[1]); let alias_name = if alias_name.starts_with(b"\"") && alias_name.ends_with(b"\"") && alias_name.len() > 1 { alias_name[1..(alias_name.len() - 1)].to_vec() } else { alias_name.to_vec() }; let _equals = working_set.get_span_contents(spans[2]); let replacement = spans[3..].to_vec(); //println!("{:?} {:?}", alias_name, replacement); working_set.add_alias(alias_name, replacement); } return ( Statement::Pipeline(Pipeline::from_vec(vec![Expression { expr: Expr::Call(call), span: call_span, ty: Type::Unknown, custom_completion: None, }])), None, ); } } ( garbage_statement(spans), Some(ParseError::UnknownState( "internal error: alias statement unparseable".into(), span(spans), )), ) } pub fn parse_module( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Statement, Option) { // TODO: Currently, module is closing over its parent scope (i.e., defs in the parent scope are // visible and usable in this module's scope). We might want to disable that. How? let mut error = None; let bytes = working_set.get_span_contents(spans[0]); // parse_def() equivalent if bytes == b"module" && spans.len() >= 3 { let (module_name_expr, err) = parse_string(working_set, spans[1]); error = error.or(err); let module_name = module_name_expr .as_string() .expect("internal error: module name is not a string"); // parse_block_expression() equivalent let block_span = spans[2]; let block_bytes = working_set.get_span_contents(block_span); let mut start = block_span.start; let mut end = block_span.end; if block_bytes.starts_with(b"{") { start += 1; } else { return ( garbage_statement(spans), Some(ParseError::Expected("block".into(), block_span)), ); } if block_bytes.ends_with(b"}") { end -= 1; } else { error = error.or_else(|| { Some(ParseError::Unclosed( "}".into(), Span { start: end, end: end + 1, }, )) }); } let block_span = Span { start, end }; let source = working_set.get_span_contents(block_span); let (output, err) = lex(source, start, &[], &[]); error = error.or(err); working_set.enter_scope(); // Do we need block parameters? let (output, err) = lite_parse(&output); error = error.or(err); // We probably don't need $it // we're doing parse_block() equivalent // let (mut output, err) = parse_block(working_set, &output, false); for pipeline in &output.block { if pipeline.commands.len() == 1 { parse_def_predecl(working_set, &pipeline.commands[0].parts); } } let mut exports: Vec<(Vec, DeclId)> = vec![]; let block: Block = output .block .iter() .map(|pipeline| { if pipeline.commands.len() == 1 { // this one here is doing parse_statement() equivalent // let (stmt, err) = parse_statement(working_set, &pipeline.commands[0].parts); let name = working_set.get_span_contents(pipeline.commands[0].parts[0]); let (stmt, err) = match name { // TODO: Here we can add other stuff that's alowed for modules b"def" => { let (stmt, err) = parse_def(working_set, &pipeline.commands[0].parts); if err.is_none() { let decl_name = working_set.get_span_contents(pipeline.commands[0].parts[1]); let decl_id = working_set .find_decl(decl_name) .expect("internal error: failed to find added declaration"); // TODO: Later, we want to put this behind 'export' exports.push((decl_name.into(), decl_id)); } (stmt, err) } _ => ( garbage_statement(&pipeline.commands[0].parts), Some(ParseError::Expected("def".into(), block_span)), ), }; if error.is_none() { error = err; } stmt } else { error = Some(ParseError::Expected("not a pipeline".into(), block_span)); garbage_statement(spans) } }) .into(); let block = block.with_exports(exports); working_set.exit_scope(); let block_id = working_set.add_module(&module_name, block); let block_expr = Expression { expr: Expr::Block(block_id), span: block_span, ty: Type::Block, custom_completion: None, }; let module_decl_id = working_set .find_decl(b"module") .expect("internal error: missing module command"); let call = Box::new(Call { head: spans[0], decl_id: module_decl_id, positional: vec![module_name_expr, block_expr], named: vec![], }); ( Statement::Pipeline(Pipeline::from_vec(vec![Expression { expr: Expr::Call(call), span: span(spans), ty: Type::Unknown, custom_completion: None, }])), error, ) } else { ( garbage_statement(spans), Some(ParseError::UnknownState( "Expected structure: module {}".into(), span(spans), )), ) } } pub fn parse_use( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Statement, Option) { let mut error = None; let bytes = working_set.get_span_contents(spans[0]); // TODO: Currently, this directly imports the module's definitions into the current scope. // Later, we want to put them behind the module's name and add selective importing if bytes == b"use" && spans.len() >= 2 { let (module_name_expr, err) = parse_string(working_set, spans[1]); error = error.or(err); let module_name = module_name_expr .as_string() .expect("internal error: module name is not a string"); let module_name_bytes = module_name.as_bytes().to_vec(); let exports = if let Some(block_id) = working_set.find_module(&module_name_bytes) { // TODO: Since we don't use the Block at all, we might just as well create a separate // Module that holds only the exports, without having Blocks in the way. working_set.get_block(block_id).exports.clone() } else { return ( garbage_statement(spans), Some(ParseError::ModuleNotFound(spans[1])), ); }; // Extend the current scope with the module's exports working_set.activate_overlay(exports); // Create the Use command call let use_decl_id = working_set .find_decl(b"use") .expect("internal error: missing use command"); let call = Box::new(Call { head: spans[0], decl_id: use_decl_id, positional: vec![module_name_expr], named: vec![], }); ( Statement::Pipeline(Pipeline::from_vec(vec![Expression { expr: Expr::Call(call), span: span(spans), ty: Type::Unknown, custom_completion: None, }])), error, ) } else { ( garbage_statement(spans), Some(ParseError::UnknownState( "Expected structure: use ".into(), span(spans), )), ) } } pub fn parse_let( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Statement, Option) { let name = working_set.get_span_contents(spans[0]); if name == b"let" { if let Some((span, err)) = check_name(working_set, spans) { return ( Statement::Pipeline(Pipeline::from_vec(vec![garbage(*span)])), Some(err), ); } if let Some(decl_id) = working_set.find_decl(b"let") { let (call, call_span, err) = parse_internal_call(working_set, spans[0], &spans[1..], decl_id); // Update the variable to the known type if we can. if err.is_none() { let var_id = call.positional[0] .as_var() .expect("internal error: expected variable"); let rhs_type = call.positional[1].ty.clone(); working_set.set_variable_type(var_id, rhs_type); } return ( Statement::Pipeline(Pipeline::from_vec(vec![Expression { expr: Expr::Call(call), span: call_span, ty: Type::Unknown, custom_completion: None, }])), err, ); } } ( garbage_statement(spans), Some(ParseError::UnknownState( "internal error: let statement unparseable".into(), span(spans), )), ) } pub fn parse_statement( working_set: &mut StateWorkingSet, spans: &[Span], ) -> (Statement, Option) { let name = working_set.get_span_contents(spans[0]); match name { b"def" => parse_def(working_set, spans), b"let" => parse_let(working_set, spans), b"alias" => parse_alias(working_set, spans), b"module" => parse_module(working_set, spans), b"use" => parse_use(working_set, spans), _ => { let (expr, err) = parse_expression(working_set, spans); (Statement::Pipeline(Pipeline::from_vec(vec![expr])), err) } } } pub fn parse_block( working_set: &mut StateWorkingSet, lite_block: &LiteBlock, scoped: bool, ) -> (Block, Option) { if scoped { working_set.enter_scope(); } // Pre-declare any definition so that definitions // that share the same block can see each other for pipeline in &lite_block.block { if pipeline.commands.len() == 1 { parse_def_predecl(working_set, &pipeline.commands[0].parts); } } let mut error = None; let block: Block = lite_block .block .iter() .map(|pipeline| { if pipeline.commands.len() > 1 { let output = pipeline .commands .iter() .map(|command| { let (expr, err) = parse_expression(working_set, &command.parts); if error.is_none() { error = err; } expr }) .collect::>(); Statement::Pipeline(Pipeline { expressions: output, }) } else { let (stmt, err) = parse_statement(working_set, &pipeline.commands[0].parts); if error.is_none() { error = err; } stmt } }) .into(); if scoped { working_set.exit_scope(); } (block, error) } // Parses a vector of u8 to create an AST Block. If a file name is given, then // the name is stored in the working set. When parsing a source without a file // name, the source of bytes is stored as "source" pub fn parse( working_set: &mut StateWorkingSet, fname: Option<&str>, contents: &[u8], scoped: bool, ) -> (Block, Option) { let mut error = None; let span_offset = working_set.next_span_start(); let name = match fname { Some(fname) => fname.to_string(), None => "source".to_string(), }; working_set.add_file(name, contents); let (output, err) = lex(contents, span_offset, &[], &[]); error = error.or(err); let (output, err) = lite_parse(&output); error = error.or(err); let (output, err) = parse_block(working_set, &output, scoped); error = error.or(err); (output, error) }