forked from extern/nushell
# Description - Use inline format strings in dataframe code - Fix manual `.is_ascii_digit()` check - Remove unnecessary `.into_iter()` calls
515 lines
15 KiB
Rust
515 lines
15 KiB
Rust
mod between_values;
|
|
mod conversion;
|
|
mod custom_value;
|
|
mod operations;
|
|
|
|
pub use conversion::{Column, ColumnMap};
|
|
pub use operations::Axis;
|
|
|
|
use indexmap::map::IndexMap;
|
|
use nu_protocol::{did_you_mean, PipelineData, ShellError, Span, Value};
|
|
use polars::prelude::{DataFrame, DataType, IntoLazy, LazyFrame, PolarsObject, Series};
|
|
use serde::{Deserialize, Serialize};
|
|
use std::{cmp::Ordering, fmt::Display, hash::Hasher};
|
|
|
|
use super::{utils::DEFAULT_ROWS, NuLazyFrame};
|
|
|
|
// DataFrameValue is an encapsulation of Nushell Value that can be used
|
|
// to define the PolarsObject Trait. The polars object trait allows to
|
|
// create dataframes with mixed datatypes
|
|
#[derive(Clone, Debug)]
|
|
pub struct DataFrameValue(Value);
|
|
|
|
impl DataFrameValue {
|
|
fn new(value: Value) -> Self {
|
|
Self(value)
|
|
}
|
|
|
|
fn get_value(&self) -> Value {
|
|
self.0.clone()
|
|
}
|
|
}
|
|
|
|
impl Display for DataFrameValue {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "{}", self.0.get_type())
|
|
}
|
|
}
|
|
|
|
impl Default for DataFrameValue {
|
|
fn default() -> Self {
|
|
Self(Value::Nothing {
|
|
span: Span::unknown(),
|
|
})
|
|
}
|
|
}
|
|
|
|
impl PartialEq for DataFrameValue {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.0.partial_cmp(&other.0).map_or(false, Ordering::is_eq)
|
|
}
|
|
}
|
|
impl Eq for DataFrameValue {}
|
|
|
|
impl std::hash::Hash for DataFrameValue {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
match &self.0 {
|
|
Value::Nothing { .. } => 0.hash(state),
|
|
Value::Int { val, .. } => val.hash(state),
|
|
Value::String { val, .. } => val.hash(state),
|
|
// TODO. Define hash for the rest of types
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PolarsObject for DataFrameValue {
|
|
fn type_name() -> &'static str {
|
|
"object"
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Serialize, Deserialize)]
|
|
pub struct NuDataFrame {
|
|
pub df: DataFrame,
|
|
pub from_lazy: bool,
|
|
}
|
|
|
|
impl AsRef<DataFrame> for NuDataFrame {
|
|
fn as_ref(&self) -> &polars::prelude::DataFrame {
|
|
&self.df
|
|
}
|
|
}
|
|
|
|
impl AsMut<DataFrame> for NuDataFrame {
|
|
fn as_mut(&mut self) -> &mut polars::prelude::DataFrame {
|
|
&mut self.df
|
|
}
|
|
}
|
|
|
|
impl From<DataFrame> for NuDataFrame {
|
|
fn from(df: DataFrame) -> Self {
|
|
Self {
|
|
df,
|
|
from_lazy: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl NuDataFrame {
|
|
pub fn new(from_lazy: bool, df: DataFrame) -> Self {
|
|
Self { df, from_lazy }
|
|
}
|
|
|
|
pub fn lazy(&self) -> LazyFrame {
|
|
self.df.clone().lazy()
|
|
}
|
|
|
|
fn default_value(span: Span) -> Value {
|
|
let dataframe = DataFrame::default();
|
|
NuDataFrame::dataframe_into_value(dataframe, span)
|
|
}
|
|
|
|
pub fn dataframe_into_value(dataframe: DataFrame, span: Span) -> Value {
|
|
Value::CustomValue {
|
|
val: Box::new(Self::new(false, dataframe)),
|
|
span,
|
|
}
|
|
}
|
|
|
|
pub fn into_value(self, span: Span) -> Value {
|
|
if self.from_lazy {
|
|
let lazy = NuLazyFrame::from_dataframe(self);
|
|
Value::CustomValue {
|
|
val: Box::new(lazy),
|
|
span,
|
|
}
|
|
} else {
|
|
Value::CustomValue {
|
|
val: Box::new(self),
|
|
span,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn series_to_value(series: Series, span: Span) -> Result<Value, ShellError> {
|
|
match DataFrame::new(vec![series]) {
|
|
Ok(dataframe) => Ok(NuDataFrame::dataframe_into_value(dataframe, span)),
|
|
Err(e) => Err(ShellError::GenericError(
|
|
"Error creating dataframe".into(),
|
|
e.to_string(),
|
|
Some(span),
|
|
None,
|
|
Vec::new(),
|
|
)),
|
|
}
|
|
}
|
|
|
|
pub fn try_from_iter<T>(iter: T) -> Result<Self, ShellError>
|
|
where
|
|
T: Iterator<Item = Value>,
|
|
{
|
|
// Dictionary to store the columnar data extracted from
|
|
// the input. During the iteration we check if the values
|
|
// have different type
|
|
let mut column_values: ColumnMap = IndexMap::new();
|
|
|
|
for value in iter {
|
|
match value {
|
|
Value::CustomValue { .. } => return Self::try_from_value(value),
|
|
Value::List { vals, .. } => {
|
|
let cols = (0..vals.len())
|
|
.map(|i| format!("{i}"))
|
|
.collect::<Vec<String>>();
|
|
|
|
conversion::insert_record(&mut column_values, &cols, &vals)?
|
|
}
|
|
Value::Record { cols, vals, .. } => {
|
|
conversion::insert_record(&mut column_values, &cols, &vals)?
|
|
}
|
|
_ => {
|
|
let key = "0".to_string();
|
|
conversion::insert_value(value, key, &mut column_values)?
|
|
}
|
|
}
|
|
}
|
|
|
|
conversion::from_parsed_columns(column_values)
|
|
}
|
|
|
|
pub fn try_from_series(columns: Vec<Series>, span: Span) -> Result<Self, ShellError> {
|
|
let dataframe = DataFrame::new(columns).map_err(|e| {
|
|
ShellError::GenericError(
|
|
"Error creating dataframe".into(),
|
|
format!("Unable to create DataFrame: {e}"),
|
|
Some(span),
|
|
None,
|
|
Vec::new(),
|
|
)
|
|
})?;
|
|
|
|
Ok(Self::new(false, dataframe))
|
|
}
|
|
|
|
pub fn try_from_columns(columns: Vec<Column>) -> Result<Self, ShellError> {
|
|
let mut column_values: ColumnMap = IndexMap::new();
|
|
|
|
for column in columns {
|
|
let name = column.name().to_string();
|
|
for value in column {
|
|
conversion::insert_value(value, name.clone(), &mut column_values)?;
|
|
}
|
|
}
|
|
|
|
conversion::from_parsed_columns(column_values)
|
|
}
|
|
|
|
pub fn fill_list_nan(list: Vec<Value>, list_span: Span, fill: Value) -> Value {
|
|
let newlist = list
|
|
.into_iter()
|
|
.map(|value| match value {
|
|
Value::Float { val, .. } => {
|
|
if val.is_nan() {
|
|
fill.clone()
|
|
} else {
|
|
value
|
|
}
|
|
}
|
|
Value::List { vals, span } => Self::fill_list_nan(vals, span, fill.clone()),
|
|
_ => value,
|
|
})
|
|
.collect::<Vec<Value>>();
|
|
Value::list(newlist, list_span)
|
|
}
|
|
|
|
pub fn columns(&self, span: Span) -> Result<Vec<Column>, ShellError> {
|
|
let height = self.df.height();
|
|
self.df
|
|
.get_columns()
|
|
.iter()
|
|
.map(|col| conversion::create_column(col, 0, height, span))
|
|
.collect::<Result<Vec<Column>, ShellError>>()
|
|
}
|
|
|
|
pub fn try_from_value(value: Value) -> Result<Self, ShellError> {
|
|
if Self::can_downcast(&value) {
|
|
Ok(Self::get_df(value)?)
|
|
} else if NuLazyFrame::can_downcast(&value) {
|
|
let span = value.span()?;
|
|
let lazy = NuLazyFrame::try_from_value(value)?;
|
|
let df = lazy.collect(span)?;
|
|
Ok(df)
|
|
} else {
|
|
Err(ShellError::CantConvert(
|
|
"lazy or eager dataframe".into(),
|
|
value.get_type().to_string(),
|
|
value.span()?,
|
|
None,
|
|
))
|
|
}
|
|
}
|
|
|
|
pub fn get_df(value: Value) -> Result<Self, ShellError> {
|
|
match value {
|
|
Value::CustomValue { val, span } => match val.as_any().downcast_ref::<Self>() {
|
|
Some(df) => Ok(NuDataFrame {
|
|
df: df.df.clone(),
|
|
from_lazy: false,
|
|
}),
|
|
None => Err(ShellError::CantConvert(
|
|
"dataframe".into(),
|
|
"non-dataframe".into(),
|
|
span,
|
|
None,
|
|
)),
|
|
},
|
|
x => Err(ShellError::CantConvert(
|
|
"dataframe".into(),
|
|
x.get_type().to_string(),
|
|
x.span()?,
|
|
None,
|
|
)),
|
|
}
|
|
}
|
|
|
|
pub fn try_from_pipeline(input: PipelineData, span: Span) -> Result<Self, ShellError> {
|
|
let value = input.into_value(span);
|
|
Self::try_from_value(value)
|
|
}
|
|
|
|
pub fn can_downcast(value: &Value) -> bool {
|
|
if let Value::CustomValue { val, .. } = value {
|
|
val.as_any().downcast_ref::<Self>().is_some()
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
pub fn column(&self, column: &str, span: Span) -> Result<Self, ShellError> {
|
|
let s = self.df.column(column).map_err(|_| {
|
|
let possibilities = self
|
|
.df
|
|
.get_column_names()
|
|
.iter()
|
|
.map(|name| name.to_string())
|
|
.collect::<Vec<String>>();
|
|
|
|
let option = did_you_mean(&possibilities, column).unwrap_or_else(|| column.to_string());
|
|
ShellError::DidYouMean(option, span)
|
|
})?;
|
|
|
|
let df = DataFrame::new(vec![s.clone()]).map_err(|e| {
|
|
ShellError::GenericError(
|
|
"Error creating dataframe".into(),
|
|
e.to_string(),
|
|
Some(span),
|
|
None,
|
|
Vec::new(),
|
|
)
|
|
})?;
|
|
|
|
Ok(Self {
|
|
df,
|
|
from_lazy: false,
|
|
})
|
|
}
|
|
|
|
pub fn is_series(&self) -> bool {
|
|
self.df.width() == 1
|
|
}
|
|
|
|
pub fn as_series(&self, span: Span) -> Result<Series, ShellError> {
|
|
if !self.is_series() {
|
|
return Err(ShellError::GenericError(
|
|
"Error using as series".into(),
|
|
"dataframe has more than one column".into(),
|
|
Some(span),
|
|
None,
|
|
Vec::new(),
|
|
));
|
|
}
|
|
|
|
let series = self
|
|
.df
|
|
.get_columns()
|
|
.get(0)
|
|
.expect("We have already checked that the width is 1");
|
|
|
|
Ok(series.clone())
|
|
}
|
|
|
|
pub fn get_value(&self, row: usize, span: Span) -> Result<Value, ShellError> {
|
|
let series = self.as_series(span)?;
|
|
let column = conversion::create_column(&series, row, row + 1, span)?;
|
|
|
|
if column.len() == 0 {
|
|
Err(ShellError::AccessEmptyContent(span))
|
|
} else {
|
|
let value = column
|
|
.into_iter()
|
|
.next()
|
|
.expect("already checked there is a value");
|
|
Ok(value)
|
|
}
|
|
}
|
|
|
|
// Print is made out a head and if the dataframe is too large, then a tail
|
|
pub fn print(&self, span: Span) -> Result<Vec<Value>, ShellError> {
|
|
let df = &self.df;
|
|
let size: usize = 20;
|
|
|
|
if df.height() > size {
|
|
let sample_size = size / 2;
|
|
let mut values = self.head(Some(sample_size), span)?;
|
|
conversion::add_separator(&mut values, df, span);
|
|
let remaining = df.height() - sample_size;
|
|
let tail_size = remaining.min(sample_size);
|
|
let mut tail_values = self.tail(Some(tail_size), span)?;
|
|
values.append(&mut tail_values);
|
|
|
|
Ok(values)
|
|
} else {
|
|
Ok(self.head(Some(size), span)?)
|
|
}
|
|
}
|
|
|
|
pub fn height(&self) -> usize {
|
|
self.df.height()
|
|
}
|
|
|
|
pub fn head(&self, rows: Option<usize>, span: Span) -> Result<Vec<Value>, ShellError> {
|
|
let to_row = rows.unwrap_or(5);
|
|
let values = self.to_rows(0, to_row, span)?;
|
|
|
|
Ok(values)
|
|
}
|
|
|
|
pub fn tail(&self, rows: Option<usize>, span: Span) -> Result<Vec<Value>, ShellError> {
|
|
let df = &self.df;
|
|
let to_row = df.height();
|
|
let size = rows.unwrap_or(DEFAULT_ROWS);
|
|
let from_row = to_row.saturating_sub(size);
|
|
|
|
let values = self.to_rows(from_row, to_row, span)?;
|
|
|
|
Ok(values)
|
|
}
|
|
|
|
pub fn to_rows(
|
|
&self,
|
|
from_row: usize,
|
|
to_row: usize,
|
|
span: Span,
|
|
) -> Result<Vec<Value>, ShellError> {
|
|
let df = &self.df;
|
|
let upper_row = to_row.min(df.height());
|
|
|
|
let mut size: usize = 0;
|
|
let columns = self
|
|
.df
|
|
.get_columns()
|
|
.iter()
|
|
.map(
|
|
|col| match conversion::create_column(col, from_row, upper_row, span) {
|
|
Ok(col) => {
|
|
size = col.len();
|
|
Ok(col)
|
|
}
|
|
Err(e) => Err(e),
|
|
},
|
|
)
|
|
.collect::<Result<Vec<Column>, ShellError>>()?;
|
|
|
|
let mut iterators = columns
|
|
.into_iter()
|
|
.map(|col| (col.name().to_string(), col.into_iter()))
|
|
.collect::<Vec<(String, std::vec::IntoIter<Value>)>>();
|
|
|
|
let values = (0..size)
|
|
.map(|i| {
|
|
let mut cols = vec![];
|
|
let mut vals = vec![];
|
|
|
|
cols.push("index".into());
|
|
vals.push(Value::Int {
|
|
val: (i + from_row) as i64,
|
|
span,
|
|
});
|
|
|
|
for (name, col) in &mut iterators {
|
|
cols.push(name.clone());
|
|
|
|
match col.next() {
|
|
Some(v) => vals.push(v),
|
|
None => vals.push(Value::Nothing { span }),
|
|
};
|
|
}
|
|
|
|
Value::Record { cols, vals, span }
|
|
})
|
|
.collect::<Vec<Value>>();
|
|
|
|
Ok(values)
|
|
}
|
|
|
|
// Dataframes are considered equal if they have the same shape, column name and values
|
|
pub fn is_equal(&self, other: &Self) -> Option<Ordering> {
|
|
if self.as_ref().width() == 0 {
|
|
// checking for empty dataframe
|
|
return None;
|
|
}
|
|
|
|
if self.as_ref().get_column_names() != other.as_ref().get_column_names() {
|
|
// checking both dataframes share the same names
|
|
return None;
|
|
}
|
|
|
|
if self.as_ref().height() != other.as_ref().height() {
|
|
// checking both dataframes have the same row size
|
|
return None;
|
|
}
|
|
|
|
// sorting dataframe by the first column
|
|
let column_names = self.as_ref().get_column_names();
|
|
let first_col = column_names
|
|
.first()
|
|
.expect("already checked that dataframe is different than 0");
|
|
|
|
// if unable to sort, then unable to compare
|
|
let lhs = match self.as_ref().sort(vec![*first_col], false) {
|
|
Ok(df) => df,
|
|
Err(_) => return None,
|
|
};
|
|
|
|
let rhs = match other.as_ref().sort(vec![*first_col], false) {
|
|
Ok(df) => df,
|
|
Err(_) => return None,
|
|
};
|
|
|
|
for name in self.as_ref().get_column_names() {
|
|
let self_series = lhs.column(name).expect("name from dataframe names");
|
|
|
|
let other_series = rhs
|
|
.column(name)
|
|
.expect("already checked that name in other");
|
|
|
|
let self_series = match self_series.dtype() {
|
|
// Casting needed to compare other numeric types with nushell numeric type.
|
|
// In nushell we only have i64 integer numeric types and any array created
|
|
// with nushell untagged primitives will be of type i64
|
|
DataType::UInt32 | DataType::Int32 => match self_series.cast(&DataType::Int64) {
|
|
Ok(series) => series,
|
|
Err(_) => return None,
|
|
},
|
|
_ => self_series.clone(),
|
|
};
|
|
|
|
if !self_series.series_equal(other_series) {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
Some(Ordering::Equal)
|
|
}
|
|
}
|