forked from extern/nushell
# Description There are times where explicitly specifying a schema for a dataframe is needed such as: - Opening CSV and JSON lines files and needing provide more information to polars to keep it from failing or in a desire to override default type conversion - When converting a nushell value to a dataframe and wanting to override the default conversion behaviors. This pull requests provides: - A flag to allow specifying a schema when using dfr into-df - A flag to allow specifying a schema when using dfr open that works for CSV and JSON types - A new command `dfr schema` which displays schema information and will allow display support schema dtypes Schema is specified creating a record that has the key value and the dtype. Examples usages: ``` {a:1, b:{a:2}} | dfr into-df -s {a: u8, b: {a: i32}} | dfr schema {a: 1, b: {a: [1 2 3]}, c: [a b c]} | dfr into-df -s {a: u8, b: {a: list<u64>}, c: list<str>} | dfr schema dfr open -s {pid: i32, ppid: i32, name: str, status: str, cpu: f64, mem: i64, virtual: i64} /tmp/ps.jsonl | dfr schema ``` Supported dtypes: null bool u8 u16 u32 u64 i8 i16 i32 i64 f32 f64 str binary date datetime[time_unit: (ms, us, ns) timezone (optional)] duration[time_unit: (ms, us, ns)] time object unknown list[dtype] structs are also supported but are specified via another record: {a: u8, b: {d: str}} Another feature with the dfr schema command is that it returns the data back in a format that can be passed to provide a valid schema that can be passed in as schema argument: <img width="638" alt="Screenshot 2024-01-29 at 10 23 58" src="https://github.com/nushell/nushell/assets/56345/b49c3bff-5cda-4c86-975a-dfd91d991373"> --------- Co-authored-by: Jack Wright <jack.wright@disqo.com>
63 lines
1.8 KiB
Rust
63 lines
1.8 KiB
Rust
use crate::dataframe::values::NuSchema;
|
|
|
|
use super::super::values::{NuDataFrame, NuLazyFrame};
|
|
|
|
use nu_engine::CallExt;
|
|
use nu_protocol::{
|
|
ast::Call,
|
|
engine::{Command, EngineState, Stack},
|
|
Category, Example, PipelineData, ShellError, Signature, SyntaxShape, Type, Value,
|
|
};
|
|
|
|
#[derive(Clone)]
|
|
pub struct ToLazyFrame;
|
|
|
|
impl Command for ToLazyFrame {
|
|
fn name(&self) -> &str {
|
|
"dfr into-lazy"
|
|
}
|
|
|
|
fn usage(&self) -> &str {
|
|
"Converts a dataframe into a lazy dataframe."
|
|
}
|
|
|
|
fn signature(&self) -> Signature {
|
|
Signature::build(self.name())
|
|
.named(
|
|
"schema",
|
|
SyntaxShape::Record(vec![]),
|
|
r#"Polars Schema in format [{name: str}]. CSV, JSON, and JSONL files"#,
|
|
Some('s'),
|
|
)
|
|
.input_output_type(Type::Any, Type::Custom("dataframe".into()))
|
|
.category(Category::Custom("lazyframe".into()))
|
|
}
|
|
|
|
fn examples(&self) -> Vec<Example> {
|
|
vec![Example {
|
|
description: "Takes a dictionary and creates a lazy dataframe",
|
|
example: "[[a b];[1 2] [3 4]] | dfr into-lazy",
|
|
result: None,
|
|
}]
|
|
}
|
|
|
|
fn run(
|
|
&self,
|
|
engine_state: &EngineState,
|
|
stack: &mut Stack,
|
|
call: &Call,
|
|
input: PipelineData,
|
|
) -> Result<PipelineData, ShellError> {
|
|
let maybe_schema = call
|
|
.get_flag(engine_state, stack, "schema")?
|
|
.map(|schema| NuSchema::try_from(&schema))
|
|
.transpose()?;
|
|
|
|
let df = NuDataFrame::try_from_iter(input.into_iter(), maybe_schema)?;
|
|
let lazy = NuLazyFrame::from_dataframe(df);
|
|
let value = Value::custom_value(Box::new(lazy), call.head);
|
|
|
|
Ok(PipelineData::Value(value, None))
|
|
}
|
|
}
|