nushell/crates/nu-command/src/commands/dataframe/describe.rs
2021-08-08 05:48:54 +12:00

233 lines
8.0 KiB
Rust

use crate::prelude::*;
use nu_engine::WholeStreamCommand;
use nu_errors::ShellError;
use nu_protocol::{
dataframe::{Column, NuDataFrame},
Signature, UntaggedValue,
};
use polars::{
chunked_array::ChunkedArray,
prelude::{
AnyValue, DataFrame as PolarsDF, DataType, Float64Type, IntoSeries, NewChunkedArray,
Series, Utf8Type,
},
};
use super::utils::parse_polars_error;
pub struct DataFrame;
impl WholeStreamCommand for DataFrame {
fn name(&self) -> &str {
"dataframe describe"
}
fn usage(&self) -> &str {
"[DataFrame] Describes dataframes numeric columns"
}
fn signature(&self) -> Signature {
Signature::build("dataframe describe")
}
fn run(&self, args: CommandArgs) -> Result<OutputStream, ShellError> {
command(args)
}
fn examples(&self) -> Vec<Example> {
vec![Example {
description: "Describes dataframe",
example: "[[a b]; [1 1] [1 1]] | dataframe to-df | dataframe describe",
result: Some(vec![NuDataFrame::try_from_columns(
vec![
Column::new(
"descriptor".to_string(),
vec![
UntaggedValue::string("count").into(),
UntaggedValue::string("sum").into(),
UntaggedValue::string("mean").into(),
UntaggedValue::string("median").into(),
UntaggedValue::string("std").into(),
UntaggedValue::string("min").into(),
UntaggedValue::string("25%").into(),
UntaggedValue::string("50%").into(),
UntaggedValue::string("75%").into(),
UntaggedValue::string("max").into(),
],
),
Column::new(
"a (i64)".to_string(),
vec![
UntaggedValue::decimal_from_float(2.0, Span::default()).into(),
UntaggedValue::decimal_from_float(2.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(0.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
],
),
Column::new(
"b (i64)".to_string(),
vec![
UntaggedValue::decimal_from_float(2.0, Span::default()).into(),
UntaggedValue::decimal_from_float(2.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(0.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
UntaggedValue::decimal_from_float(1.0, Span::default()).into(),
],
),
],
&Span::default(),
)
.expect("simple df for test should not fail")
.into_value(Tag::default())]),
}]
}
}
fn command(mut args: CommandArgs) -> Result<OutputStream, ShellError> {
let tag = args.call_info.name_tag.clone();
let (df, _) = NuDataFrame::try_from_stream(&mut args.input, &tag.span)?;
let names = ChunkedArray::<Utf8Type>::new_from_opt_slice(
"descriptor",
&[
Some("count"),
Some("sum"),
Some("mean"),
Some("median"),
Some("std"),
Some("min"),
Some("25%"),
Some("50%"),
Some("75%"),
Some("max"),
],
)
.into_series();
let head = std::iter::once(names);
let tail = df.as_ref().get_columns().iter().map(|col| {
let count = col.len() as f64;
let sum = match col.sum_as_series().cast_with_dtype(&DataType::Float64) {
Ok(ca) => match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
},
Err(_) => None,
};
let mean = match col.mean_as_series().get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
};
let median = match col.median_as_series().get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
};
let std = match col.std_as_series().get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
};
let min = match col.min_as_series().cast_with_dtype(&DataType::Float64) {
Ok(ca) => match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
},
Err(_) => None,
};
let q_25 = match col.quantile_as_series(0.25) {
Ok(ca) => match ca.cast_with_dtype(&DataType::Float64) {
Ok(ca) => match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
},
Err(_) => None,
},
Err(_) => None,
};
let q_50 = match col.quantile_as_series(0.50) {
Ok(ca) => match ca.cast_with_dtype(&DataType::Float64) {
Ok(ca) => match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
},
Err(_) => None,
},
Err(_) => None,
};
let q_75 = match col.quantile_as_series(0.75) {
Ok(ca) => match ca.cast_with_dtype(&DataType::Float64) {
Ok(ca) => match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
},
Err(_) => None,
},
Err(_) => None,
};
let max = match col.max_as_series().cast_with_dtype(&DataType::Float64) {
Ok(ca) => match ca.get(0) {
AnyValue::Float64(v) => Some(v),
_ => None,
},
Err(_) => None,
};
let name = format!("{} ({})", col.name(), col.dtype());
ChunkedArray::<Float64Type>::new_from_opt_slice(
name.as_str(),
&[
Some(count),
sum,
mean,
median,
std,
min,
q_25,
q_50,
q_75,
max,
],
)
.into_series()
});
let res = head.chain(tail).collect::<Vec<Series>>();
let df = PolarsDF::new(res).map_err(|e| parse_polars_error::<&str>(&e, &tag.span, None))?;
let df = NuDataFrame::dataframe_to_value(df, tag);
Ok(OutputStream::one(df))
}
#[cfg(test)]
mod tests {
use super::DataFrame;
use super::ShellError;
#[test]
fn examples_work_as_expected() -> Result<(), ShellError> {
use crate::examples::test_dataframe as test_examples;
test_examples(DataFrame {})
}
}