nushell/crates/nu-parser/src/flatten.rs
Daniel Buch Hansen 850ecf648a
Protocol: debug_assert!() Span to reflect a valid slice (#6806)
Also enforce this by #[non_exhaustive] span such that going forward we
cannot, in debug builds (1), construct invalid spans.

The motivation for this stems from #6431 where I've seen crashes due to
invalid slice indexing.

My hope is this will mitigate such senarios

1. https://github.com/nushell/nushell/pull/6431#issuecomment-1278147241

# Description

(description of your pull request here)

# Tests

Make sure you've done the following:

- [ ] Add tests that cover your changes, either in the command examples,
the crate/tests folder, or in the /tests folder.
- [ ] Try to think about corner cases and various ways how your changes
could break. Cover them with tests.
- [ ] If adding tests is not possible, please document in the PR body a
minimal example with steps on how to reproduce so one can verify your
change works.

Make sure you've run and fixed any issues with these commands:

- [x] `cargo fmt --all -- --check` to check standard code formatting
(`cargo fmt --all` applies these changes)
- [ ] `cargo clippy --workspace --features=extra -- -D warnings -D
clippy::unwrap_used -A clippy::needless_collect` to check that you're
using the standard code style
- [ ] `cargo test --workspace --features=extra` to check that all the
tests pass

# Documentation

- [ ] If your PR touches a user-facing nushell feature then make sure
that there is an entry in the documentation
(https://github.com/nushell/nushell.github.io) for the feature, and
update it if necessary.
2022-12-03 11:44:12 +02:00

481 lines
16 KiB
Rust

use nu_protocol::ast::{
Block, Expr, Expression, ImportPatternMember, PathMember, Pipeline, PipelineElement,
};
use nu_protocol::DeclId;
use nu_protocol::{engine::StateWorkingSet, Span};
use std::fmt::{Display, Formatter, Result};
#[derive(Debug, Eq, PartialEq, Ord, Clone, PartialOrd)]
pub enum FlatShape {
Garbage,
Nothing,
Bool,
Binary,
Int,
Float,
Range,
InternalCall,
External,
ExternalArg,
Literal,
Operator,
Signature,
String,
StringInterpolation,
List,
Table,
Record,
Block,
Filepath,
Directory,
DateTime,
GlobPattern,
Variable,
Flag,
Pipe,
And,
Or,
Redirection,
Custom(DeclId),
}
impl Display for FlatShape {
fn fmt(&self, f: &mut Formatter) -> Result {
match self {
FlatShape::Garbage => write!(f, "shape_garbage"),
FlatShape::Nothing => write!(f, "shape_nothing"),
FlatShape::Binary => write!(f, "shape_binary"),
FlatShape::Bool => write!(f, "shape_bool"),
FlatShape::Int => write!(f, "shape_int"),
FlatShape::Float => write!(f, "shape_float"),
FlatShape::Range => write!(f, "shape_range"),
FlatShape::InternalCall => write!(f, "shape_internalcall"),
FlatShape::External => write!(f, "shape_external"),
FlatShape::ExternalArg => write!(f, "shape_externalarg"),
FlatShape::Literal => write!(f, "shape_literal"),
FlatShape::Operator => write!(f, "shape_operator"),
FlatShape::Signature => write!(f, "shape_signature"),
FlatShape::String => write!(f, "shape_string"),
FlatShape::DateTime => write!(f, "shape_datetime"),
FlatShape::StringInterpolation => write!(f, "shape_string_interpolation"),
FlatShape::List => write!(f, "shape_list"),
FlatShape::Table => write!(f, "shape_table"),
FlatShape::Record => write!(f, "shape_record"),
FlatShape::Block => write!(f, "shape_block"),
FlatShape::Filepath => write!(f, "shape_filepath"),
FlatShape::Directory => write!(f, "shape_directory"),
FlatShape::GlobPattern => write!(f, "shape_globpattern"),
FlatShape::Variable => write!(f, "shape_variable"),
FlatShape::Flag => write!(f, "shape_flag"),
FlatShape::Pipe => write!(f, "shape_pipe"),
FlatShape::And => write!(f, "shape_and"),
FlatShape::Or => write!(f, "shape_or"),
FlatShape::Redirection => write!(f, "shape_redirection"),
FlatShape::Custom(_) => write!(f, "shape_custom"),
}
}
}
pub fn flatten_block(working_set: &StateWorkingSet, block: &Block) -> Vec<(Span, FlatShape)> {
let mut output = vec![];
for pipeline in &block.pipelines {
output.extend(flatten_pipeline(working_set, pipeline));
}
output
}
pub fn flatten_expression(
working_set: &StateWorkingSet,
expr: &Expression,
) -> Vec<(Span, FlatShape)> {
if let Some(custom_completion) = &expr.custom_completion {
return vec![(expr.span, FlatShape::Custom(*custom_completion))];
}
match &expr.expr {
Expr::BinaryOp(lhs, op, rhs) => {
let mut output = vec![];
output.extend(flatten_expression(working_set, lhs));
output.extend(flatten_expression(working_set, op));
output.extend(flatten_expression(working_set, rhs));
output
}
Expr::UnaryNot(inner_expr) => {
let mut output = vec![(
Span::new(expr.span.start, expr.span.start + 3),
FlatShape::Operator,
)];
output.extend(flatten_expression(working_set, inner_expr));
output
}
Expr::Block(block_id)
| Expr::Closure(block_id)
| Expr::RowCondition(block_id)
| Expr::Subexpression(block_id) => {
let outer_span = expr.span;
let mut output = vec![];
let flattened = flatten_block(working_set, working_set.get_block(*block_id));
if let Some(first) = flattened.first() {
if first.0.start > outer_span.start {
output.push((Span::new(outer_span.start, first.0.start), FlatShape::Block));
}
}
let last = if let Some(last) = flattened.last() {
if last.0.end < outer_span.end {
Some((Span::new(last.0.end, outer_span.end), FlatShape::Block))
} else {
None
}
} else {
None
};
output.extend(flattened);
if let Some(last) = last {
output.push(last)
}
output
}
Expr::Call(call) => {
let mut output = vec![(call.head, FlatShape::InternalCall)];
let mut args = vec![];
for positional in call.positional_iter() {
args.extend(flatten_expression(working_set, positional));
}
for named in call.named_iter() {
args.push((named.0.span, FlatShape::Flag));
if let Some(expr) = &named.2 {
args.extend(flatten_expression(working_set, expr));
}
}
// sort these since flags and positional args can be intermixed
args.sort();
output.extend(args);
output
}
Expr::ExternalCall(head, args, _) => {
let mut output = vec![];
match **head {
Expression {
expr: Expr::String(..),
span,
..
} => {
output.push((span, FlatShape::External));
}
_ => {
output.extend(flatten_expression(working_set, head));
}
}
for arg in args {
//output.push((*arg, FlatShape::ExternalArg));
match arg {
Expression {
expr: Expr::String(..),
span,
..
} => {
output.push((*span, FlatShape::ExternalArg));
}
_ => {
output.extend(flatten_expression(working_set, arg));
}
}
}
output
}
Expr::Garbage => {
vec![(expr.span, FlatShape::Garbage)]
}
Expr::Nothing => {
vec![(expr.span, FlatShape::Nothing)]
}
Expr::DateTime(_) => {
vec![(expr.span, FlatShape::DateTime)]
}
Expr::Binary(_) => {
vec![(expr.span, FlatShape::Binary)]
}
Expr::Int(_) => {
vec![(expr.span, FlatShape::Int)]
}
Expr::Float(_) => {
vec![(expr.span, FlatShape::Float)]
}
Expr::ValueWithUnit(x, unit) => {
let mut output = flatten_expression(working_set, x);
output.push((unit.span, FlatShape::String));
output
}
Expr::CellPath(cell_path) => {
let mut output = vec![];
for path_element in &cell_path.members {
match path_element {
PathMember::String { span, .. } => output.push((*span, FlatShape::String)),
PathMember::Int { span, .. } => output.push((*span, FlatShape::Int)),
}
}
output
}
Expr::FullCellPath(cell_path) => {
let mut output = vec![];
output.extend(flatten_expression(working_set, &cell_path.head));
for path_element in &cell_path.tail {
match path_element {
PathMember::String { span, .. } => output.push((*span, FlatShape::String)),
PathMember::Int { span, .. } => output.push((*span, FlatShape::Int)),
}
}
output
}
Expr::ImportPattern(import_pattern) => {
let mut output = vec![(import_pattern.head.span, FlatShape::String)];
for member in &import_pattern.members {
match member {
ImportPatternMember::Glob { span } => output.push((*span, FlatShape::String)),
ImportPatternMember::Name { span, .. } => {
output.push((*span, FlatShape::String))
}
ImportPatternMember::List { names } => {
for (_, span) in names {
output.push((*span, FlatShape::String));
}
}
}
}
output
}
Expr::Overlay(_) => {
vec![(expr.span, FlatShape::String)]
}
Expr::Range(from, next, to, op) => {
let mut output = vec![];
if let Some(f) = from {
output.extend(flatten_expression(working_set, f));
}
if let Some(s) = next {
output.extend(vec![(op.next_op_span, FlatShape::Operator)]);
output.extend(flatten_expression(working_set, s));
}
output.extend(vec![(op.span, FlatShape::Operator)]);
if let Some(t) = to {
output.extend(flatten_expression(working_set, t));
}
output
}
Expr::Bool(_) => {
vec![(expr.span, FlatShape::Bool)]
}
Expr::Filepath(_) => {
vec![(expr.span, FlatShape::Filepath)]
}
Expr::Directory(_) => {
vec![(expr.span, FlatShape::Directory)]
}
Expr::GlobPattern(_) => {
vec![(expr.span, FlatShape::GlobPattern)]
}
Expr::List(list) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
let mut output = vec![];
for l in list {
let flattened = flatten_expression(working_set, l);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::List));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::List));
}
output
}
Expr::StringInterpolation(exprs) => {
let mut output = vec![];
for expr in exprs {
output.extend(flatten_expression(working_set, expr));
}
if let Some(first) = output.first() {
if first.0.start != expr.span.start {
// If we aren't a bare word interpolation, also highlight the outer quotes
output.insert(
0,
(
Span::new(expr.span.start, expr.span.start + 2),
FlatShape::StringInterpolation,
),
);
output.push((
Span::new(expr.span.end - 1, expr.span.end),
FlatShape::StringInterpolation,
));
}
}
output
}
Expr::Record(list) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
let mut output = vec![];
for l in list {
let flattened_lhs = flatten_expression(working_set, &l.0);
let flattened_rhs = flatten_expression(working_set, &l.1);
if let Some(first) = flattened_lhs.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened_lhs.last() {
last_end = last.0.end;
}
output.extend(flattened_lhs);
if let Some(first) = flattened_rhs.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Record));
}
}
if let Some(last) = flattened_rhs.last() {
last_end = last.0.end;
}
output.extend(flattened_rhs);
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Record));
}
output
}
Expr::Keyword(_, span, expr) => {
let mut output = vec![(*span, FlatShape::InternalCall)];
output.extend(flatten_expression(working_set, expr));
output
}
Expr::Operator(_) => {
vec![(expr.span, FlatShape::Operator)]
}
Expr::Signature(_) => {
vec![(expr.span, FlatShape::Signature)]
}
Expr::String(_) => {
vec![(expr.span, FlatShape::String)]
}
Expr::Table(headers, cells) => {
let outer_span = expr.span;
let mut last_end = outer_span.start;
let mut output = vec![];
for e in headers {
let flattened = flatten_expression(working_set, e);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Table));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
for row in cells {
for expr in row {
let flattened = flatten_expression(working_set, expr);
if let Some(first) = flattened.first() {
if first.0.start > last_end {
output.push((Span::new(last_end, first.0.start), FlatShape::Table));
}
}
if let Some(last) = flattened.last() {
last_end = last.0.end;
}
output.extend(flattened);
}
}
if last_end < outer_span.end {
output.push((Span::new(last_end, outer_span.end), FlatShape::Table));
}
output
}
Expr::Var(_) | Expr::VarDecl(_) => {
vec![(expr.span, FlatShape::Variable)]
}
}
}
pub fn flatten_pipeline_element(
working_set: &StateWorkingSet,
pipeline_element: &PipelineElement,
) -> Vec<(Span, FlatShape)> {
match pipeline_element {
PipelineElement::Expression(span, expr) => {
if let Some(span) = span {
let mut output = vec![(*span, FlatShape::Pipe)];
output.append(&mut flatten_expression(working_set, expr));
output
} else {
flatten_expression(working_set, expr)
}
}
PipelineElement::Redirection(span, _, expr) => {
let mut output = vec![(*span, FlatShape::Redirection)];
output.append(&mut flatten_expression(working_set, expr));
output
}
PipelineElement::And(span, expr) => {
let mut output = vec![(*span, FlatShape::And)];
output.append(&mut flatten_expression(working_set, expr));
output
}
PipelineElement::Or(span, expr) => {
let mut output = vec![(*span, FlatShape::Or)];
output.append(&mut flatten_expression(working_set, expr));
output
}
}
}
pub fn flatten_pipeline(
working_set: &StateWorkingSet,
pipeline: &Pipeline,
) -> Vec<(Span, FlatShape)> {
let mut output = vec![];
for expr in &pipeline.elements {
output.extend(flatten_pipeline_element(working_set, expr))
}
output
}