Files
nushell/crates/nu_plugin_polars/src/dataframe/eager/unpivot.rs
Stefan Holderbach 95b78eee25 Change the usage misnomer to "description" (#13598)
# Description
    
The meaning of the word usage is specific to describing how a command
function is *used* and not a synonym for general description. Usage can
be used to describe the SYNOPSIS or EXAMPLES sections of a man page
where the permitted argument combinations are shown or example *uses*
are given.
Let's not confuse people and call it what it is a description.

Our `help` command already creates its own *Usage* section based on the
available arguments and doesn't refer to the description with usage.

# User-Facing Changes

`help commands` and `scope commands` will now use `description` or
`extra_description`
`usage`-> `description`
`extra_usage` -> `extra_description`

Breaking change in the plugin protocol:

In the signature record communicated with the engine.
`usage`-> `description`
`extra_usage` -> `extra_description`

The same rename also takes place for the methods on
`SimplePluginCommand` and `PluginCommand`

# Tests + Formatting
- Updated plugin protocol specific changes
# After Submitting
- [ ] update plugin protocol doc
2024-08-22 12:02:08 +02:00

347 lines
12 KiB
Rust

use nu_plugin::{EngineInterface, EvaluatedCall, PluginCommand};
use nu_protocol::{
Category, Example, LabeledError, PipelineData, ShellError, Signature, Span, Spanned,
SyntaxShape, Type, Value,
};
use polars::frame::explode::UnpivotArgs;
use crate::{
dataframe::values::utils::convert_columns_string,
values::{CustomValueSupport, NuLazyFrame, PolarsPluginObject},
PolarsPlugin,
};
use super::super::values::{Column, NuDataFrame};
#[derive(Clone)]
pub struct UnpivotDF;
impl PluginCommand for UnpivotDF {
type Plugin = PolarsPlugin;
fn name(&self) -> &str {
"polars unpivot"
}
fn description(&self) -> &str {
"Unpivot a DataFrame from wide to long format."
}
fn signature(&self) -> Signature {
Signature::build(self.name())
.required_named(
"index",
SyntaxShape::Table(vec![]),
"column names for unpivoting",
Some('i'),
)
.required_named(
"on",
SyntaxShape::Table(vec![]),
"column names used as value columns",
Some('o'),
)
.named(
"variable-name",
SyntaxShape::String,
"optional name for variable column",
Some('r'),
)
.named(
"value-name",
SyntaxShape::String,
"optional name for value column",
Some('l'),
)
.input_output_type(
Type::Custom("dataframe".into()),
Type::Custom("dataframe".into()),
)
.switch(
"streamable",
"Whether or not to use the polars streaming engine. Only valid for lazy dataframes",
Some('t'),
)
.category(Category::Custom("dataframe".into()))
}
fn examples(&self) -> Vec<Example> {
vec![
Example {
description: "unpivot on an eager dataframe",
example:
"[[a b c d]; [x 1 4 a] [y 2 5 b] [z 3 6 c]] | polars into-df | polars unpivot -i [b c] -o [a d]",
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"b".to_string(),
vec![
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
],
),
Column::new(
"c".to_string(),
vec![
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
],
),
Column::new(
"variable".to_string(),
vec![
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("d"),
Value::test_string("d"),
Value::test_string("d"),
],
),
Column::new(
"value".to_string(),
vec![
Value::test_string("x"),
Value::test_string("y"),
Value::test_string("z"),
Value::test_string("a"),
Value::test_string("b"),
Value::test_string("c"),
],
),
], None)
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
},
Example {
description: "unpivot on a lazy dataframe",
example:
"[[a b c d]; [x 1 4 a] [y 2 5 b] [z 3 6 c]] | polars into-lazy | polars unpivot -i [b c] -o [a d] | polars collect",
result: Some(
NuDataFrame::try_from_columns(vec![
Column::new(
"b".to_string(),
vec![
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
Value::test_int(1),
Value::test_int(2),
Value::test_int(3),
],
),
Column::new(
"c".to_string(),
vec![
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
Value::test_int(4),
Value::test_int(5),
Value::test_int(6),
],
),
Column::new(
"variable".to_string(),
vec![
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("a"),
Value::test_string("d"),
Value::test_string("d"),
Value::test_string("d"),
],
),
Column::new(
"value".to_string(),
vec![
Value::test_string("x"),
Value::test_string("y"),
Value::test_string("z"),
Value::test_string("a"),
Value::test_string("b"),
Value::test_string("c"),
],
),
], None)
.expect("simple df for test should not fail")
.into_value(Span::test_data()),
),
}
]
}
fn run(
&self,
plugin: &Self::Plugin,
engine: &EngineInterface,
call: &EvaluatedCall,
input: PipelineData,
) -> Result<PipelineData, LabeledError> {
match PolarsPluginObject::try_from_pipeline(plugin, input, call.head)? {
PolarsPluginObject::NuDataFrame(df) => command_eager(plugin, engine, call, df),
PolarsPluginObject::NuLazyFrame(lazy) => command_lazy(plugin, engine, call, lazy),
_ => Err(ShellError::GenericError {
error: "Must be a dataframe or lazy dataframe".into(),
msg: "".into(),
span: Some(call.head),
help: None,
inner: vec![],
}),
}
.map_err(LabeledError::from)
}
}
fn command_eager(
plugin: &PolarsPlugin,
engine: &EngineInterface,
call: &EvaluatedCall,
df: NuDataFrame,
) -> Result<PipelineData, ShellError> {
let index_col: Vec<Value> = call.get_flag("index")?.expect("required value");
let on_col: Vec<Value> = call.get_flag("on")?.expect("required value");
let value_name: Option<Spanned<String>> = call.get_flag("value-name")?;
let variable_name: Option<Spanned<String>> = call.get_flag("variable-name")?;
let (index_col_string, index_col_span) = convert_columns_string(index_col, call.head)?;
let (on_col_string, on_col_span) = convert_columns_string(on_col, call.head)?;
check_column_datatypes(df.as_ref(), &index_col_string, index_col_span)?;
check_column_datatypes(df.as_ref(), &on_col_string, on_col_span)?;
let streamable = call.has_flag("streamable")?;
let args = UnpivotArgs {
on: on_col_string.iter().map(Into::into).collect(),
index: index_col_string.iter().map(Into::into).collect(),
variable_name: variable_name.map(|s| s.item.into()),
value_name: value_name.map(|s| s.item.into()),
streamable,
};
let res = df
.as_ref()
.unpivot2(args)
.map_err(|e| ShellError::GenericError {
error: "Error calculating unpivot".into(),
msg: e.to_string(),
span: Some(call.head),
help: None,
inner: vec![],
})?;
let res = NuDataFrame::new(false, res);
res.to_pipeline_data(plugin, engine, call.head)
}
fn command_lazy(
plugin: &PolarsPlugin,
engine: &EngineInterface,
call: &EvaluatedCall,
df: NuLazyFrame,
) -> Result<PipelineData, ShellError> {
let index_col: Vec<Value> = call.get_flag("index")?.expect("required value");
let on_col: Vec<Value> = call.get_flag("on")?.expect("required value");
let (index_col_string, _index_col_span) = convert_columns_string(index_col, call.head)?;
let (on_col_string, _on_col_span) = convert_columns_string(on_col, call.head)?;
let value_name: Option<String> = call.get_flag("value-name")?;
let variable_name: Option<String> = call.get_flag("variable-name")?;
let streamable = call.has_flag("streamable")?;
let unpivot_args = UnpivotArgs {
on: on_col_string.iter().map(Into::into).collect(),
index: index_col_string.iter().map(Into::into).collect(),
value_name: value_name.map(Into::into),
variable_name: variable_name.map(Into::into),
streamable,
};
let polars_df = df.to_polars().unpivot(unpivot_args);
let res = NuLazyFrame::new(false, polars_df);
res.to_pipeline_data(plugin, engine, call.head)
}
fn check_column_datatypes<T: AsRef<str>>(
df: &polars::prelude::DataFrame,
cols: &[T],
col_span: Span,
) -> Result<(), ShellError> {
if cols.is_empty() {
return Err(ShellError::GenericError {
error: "Merge error".into(),
msg: "empty column list".into(),
span: Some(col_span),
help: None,
inner: vec![],
});
}
// Checking if they are same type
if cols.len() > 1 {
for w in cols.windows(2) {
let l_series = df
.column(w[0].as_ref())
.map_err(|e| ShellError::GenericError {
error: "Error selecting columns".into(),
msg: e.to_string(),
span: Some(col_span),
help: None,
inner: vec![],
})?;
let r_series = df
.column(w[1].as_ref())
.map_err(|e| ShellError::GenericError {
error: "Error selecting columns".into(),
msg: e.to_string(),
span: Some(col_span),
help: None,
inner: vec![],
})?;
if l_series.dtype() != r_series.dtype() {
return Err(ShellError::GenericError {
error: "Merge error".into(),
msg: "found different column types in list".into(),
span: Some(col_span),
help: Some(format!(
"datatypes {} and {} are incompatible",
l_series.dtype(),
r_series.dtype()
)),
inner: vec![],
});
}
}
}
Ok(())
}
#[cfg(test)]
mod test {
use crate::test::test_polars_plugin_command;
use super::*;
#[test]
fn test_examples() -> Result<(), ShellError> {
test_polars_plugin_command(&UnpivotDF)
}
}