nushell/crates/nu-protocol/src/dataframe/nu_dataframe.rs
Fernando Herrera c80a9585b0
Complete Dataframe MVP ()
* Dataframe MVP

* Removed test csv file

* Dataframe MVP

* Removed test csv file

* New revision polars

* New revision polars

* csv file reader

* argument parser for file reader

* Parser from Row primitive

* Column conversion

* Added as f32 and f64

* Parsing row to dataframe

* Removed repeated push to vector

* Accept table values to create dataframe

* Removed default serde

* Dataframe to rows to show data

* Save name of file with dataframe

* Usage example

* Upgrade polars version

* Clippy changes

* Added print function with head and tail

* Move dataframe struct to folder

* Lock file after running tests and merge

* Optional feature for dataframe

* Removed dataframe from plugins

* Update primitive.rs

Co-authored-by: JT <jonathandturner@users.noreply.github.com>
2021-05-12 13:01:31 +12:00

433 lines
14 KiB
Rust

use std::hash::{Hash, Hasher};
use std::{cmp::Ordering, collections::hash_map::Entry, collections::HashMap};
use bigdecimal::FromPrimitive;
use chrono::{DateTime, FixedOffset, NaiveDateTime};
use nu_errors::ShellError;
use nu_source::Tag;
use num_bigint::BigInt;
use polars::prelude::{AnyValue, DataFrame, NamedFrom, Series, TimeUnit};
use serde::de::{Deserialize, Deserializer, Visitor};
use serde::Serialize;
use std::fmt;
use crate::{Dictionary, Primitive, UntaggedValue, Value};
const SECS_PER_DAY: i64 = 86_400;
#[derive(Debug)]
enum InputValue {
Integer,
Decimal,
String,
}
#[derive(Debug)]
struct ColumnValues {
pub value_type: InputValue,
pub values: Vec<Value>,
}
impl Default for ColumnValues {
fn default() -> Self {
Self {
value_type: InputValue::Integer,
values: Vec::new(),
}
}
}
type ColumnMap = HashMap<String, ColumnValues>;
// TODO. Using Option to help with deserialization. It will be better to find
// a way to use serde with dataframes
#[derive(Debug, Clone, Serialize)]
pub struct NuDataFrame {
#[serde(skip_serializing)]
pub dataframe: Option<DataFrame>,
pub name: String,
}
impl Default for NuDataFrame {
fn default() -> Self {
NuDataFrame {
dataframe: None,
name: String::from("From Stream"),
}
}
}
impl NuDataFrame {
fn new() -> Self {
Self::default()
}
}
// TODO. Better definition of equality and comparison for a dataframe.
// Probably it make sense to have a name field and use it for comparisons
impl PartialEq for NuDataFrame {
fn eq(&self, _: &Self) -> bool {
false
}
}
impl Eq for NuDataFrame {}
impl PartialOrd for NuDataFrame {
fn partial_cmp(&self, _: &Self) -> Option<Ordering> {
Some(Ordering::Equal)
}
}
impl Ord for NuDataFrame {
fn cmp(&self, _: &Self) -> Ordering {
Ordering::Equal
}
}
impl Hash for NuDataFrame {
fn hash<H: Hasher>(&self, _: &mut H) {}
}
impl<'de> Visitor<'de> for NuDataFrame {
type Value = Self;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("an integer between -2^31 and 2^31")
}
}
impl<'de> Deserialize<'de> for NuDataFrame {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_i32(NuDataFrame::new())
}
}
impl NuDataFrame {
pub fn try_from_iter<T>(iter: T, tag: &Tag) -> Result<Self, ShellError>
where
T: Iterator<Item = Value>,
{
// Dictionary to store the columnar data extracted from
// the input. During the iteration we will sort if the values
// have different type
let mut column_values: ColumnMap = HashMap::new();
for value in iter {
match value.value {
UntaggedValue::Row(dictionary) => insert_row(&mut column_values, dictionary)?,
UntaggedValue::Table(table) => insert_table(&mut column_values, table)?,
_ => {
return Err(ShellError::labeled_error(
"Format not supported",
"Value not supported for conversion",
&value.tag,
));
}
}
}
from_parsed_columns(column_values, tag)
}
// Print is made out a head and if the dataframe is too large, then a tail
pub fn print(&self) -> Result<Vec<Value>, ShellError> {
if let Some(df) = &self.dataframe {
let size: usize = 5;
let mut values = self.head(Some(size))?;
if df.height() > size {
add_separator(&mut values, df);
let remaining = df.height() - size;
let tail_size = remaining.min(size);
let mut tail_values = self.tail(Some(tail_size))?;
values.append(&mut tail_values);
}
Ok(values)
} else {
unreachable!()
}
}
pub fn head(&self, rows: Option<usize>) -> Result<Vec<Value>, ShellError> {
let to_row = rows.unwrap_or(5);
let values = self.to_rows(0, to_row)?;
Ok(values)
}
pub fn tail(&self, rows: Option<usize>) -> Result<Vec<Value>, ShellError> {
if let Some(df) = &self.dataframe {
let to_row = df.height();
let size = rows.unwrap_or(5);
let from_row = to_row.saturating_sub(size);
let values = self.to_rows(from_row, to_row)?;
Ok(values)
} else {
unreachable!()
}
}
pub fn to_rows(&self, from_row: usize, to_row: usize) -> Result<Vec<Value>, ShellError> {
if let Some(df) = &self.dataframe {
let column_names = df.get_column_names();
let mut values: Vec<Value> = Vec::new();
let upper_row = to_row.min(df.height());
for i in from_row..upper_row {
let row = df.get_row(i);
let mut dictionary_row = Dictionary::default();
for (val, name) in row.0.iter().zip(column_names.iter()) {
let untagged_val = anyvalue_to_untagged(val)?;
let dict_val = Value {
value: untagged_val,
tag: Tag::unknown(),
};
dictionary_row.insert(name.to_string(), dict_val);
}
let value = Value {
value: UntaggedValue::Row(dictionary_row),
tag: Tag::unknown(),
};
values.push(value);
}
Ok(values)
} else {
unreachable!()
}
}
}
// Adds a separator to the vector of values using the column names from the
// dataframe to create the Values Row
fn add_separator(values: &mut Vec<Value>, df: &DataFrame) {
let column_names = df.get_column_names();
let mut dictionary = Dictionary::default();
for name in column_names {
let indicator = Value {
value: UntaggedValue::Primitive(Primitive::String("...".to_string())),
tag: Tag::unknown(),
};
dictionary.insert(name.to_string(), indicator);
}
let extra_column = Value {
value: UntaggedValue::Row(dictionary),
tag: Tag::unknown(),
};
values.push(extra_column);
}
// Converts a polars AnyValue to an UntaggedValue
// This is used when printing values coming for polars dataframes
fn anyvalue_to_untagged(anyvalue: &AnyValue) -> Result<UntaggedValue, ShellError> {
Ok(match anyvalue {
AnyValue::Null => UntaggedValue::Primitive(Primitive::Nothing),
AnyValue::Utf8(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Boolean(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Float32(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Float64(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int32(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int64(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt8(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt16(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int8(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Int16(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt32(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::UInt64(a) => UntaggedValue::Primitive((*a).into()),
AnyValue::Date32(a) => {
// elapsed time in day since 1970-01-01
let seconds = *a as i64 * SECS_PER_DAY;
let naive_datetime = NaiveDateTime::from_timestamp(seconds, 0);
// Zero length offset
let offset = FixedOffset::east(0);
let datetime = DateTime::<FixedOffset>::from_utc(naive_datetime, offset);
UntaggedValue::Primitive(Primitive::Date(datetime))
}
AnyValue::Date64(a) => {
// elapsed time in milliseconds since 1970-01-01
let seconds = *a / 1000;
let naive_datetime = NaiveDateTime::from_timestamp(seconds, 0);
// Zero length offset
let offset = FixedOffset::east(0);
let datetime = DateTime::<FixedOffset>::from_utc(naive_datetime, offset);
UntaggedValue::Primitive(Primitive::Date(datetime))
}
AnyValue::Time64(a, _) => UntaggedValue::Primitive((*a).into()),
AnyValue::Duration(a, unit) => {
let nanoseconds = match unit {
TimeUnit::Second => *a / 1_000_000_000,
TimeUnit::Millisecond => *a / 1_000_000,
TimeUnit::Microsecond => *a / 1_000,
TimeUnit::Nanosecond => *a,
};
if let Some(bigint) = BigInt::from_i64(nanoseconds) {
UntaggedValue::Primitive(Primitive::Duration(bigint))
} else {
unreachable!("Internal error: protocol did not use compatible decimal")
}
}
AnyValue::List(_) => {
return Err(ShellError::labeled_error(
"Format not supported",
"Value not supported for conversion",
Tag::unknown(),
));
}
})
}
// Inserting the values found in a UntaggedValue::Row
// All the entries for the dictionary are checked in order to check if
// the column values have the same type value.
fn insert_row(column_values: &mut ColumnMap, dictionary: Dictionary) -> Result<(), ShellError> {
for (key, value) in dictionary.entries {
insert_value(value, key, column_values)?;
}
Ok(())
}
// Inserting the values found in a UntaggedValue::Table
// All the entries for the table are checked in order to check if
// the column values have the same type value.
// The names for the columns are the enumerated numbers from the values
fn insert_table(column_values: &mut ColumnMap, table: Vec<Value>) -> Result<(), ShellError> {
for (index, value) in table.into_iter().enumerate() {
let key = format!("{}", index);
insert_value(value, key, column_values)?;
}
Ok(())
}
fn insert_value(
value: Value,
key: String,
column_values: &mut ColumnMap,
) -> Result<(), ShellError> {
let col_val = match column_values.entry(key) {
Entry::Vacant(entry) => entry.insert(ColumnValues::default()),
Entry::Occupied(entry) => entry.into_mut(),
};
// Checking that the type for the value is the same
// for the previous value in the column
if col_val.values.is_empty() {
match &value.value {
UntaggedValue::Primitive(Primitive::Int(_)) => {
col_val.value_type = InputValue::Integer;
}
UntaggedValue::Primitive(Primitive::Decimal(_)) => {
col_val.value_type = InputValue::Decimal;
}
UntaggedValue::Primitive(Primitive::String(_)) => {
col_val.value_type = InputValue::String;
}
_ => {
return Err(ShellError::labeled_error(
"Only primitive values accepted",
"Not a primitive value",
&value.tag,
));
}
}
col_val.values.push(value);
} else {
let prev_value = &col_val.values[col_val.values.len() - 1];
match (&prev_value.value, &value.value) {
(
UntaggedValue::Primitive(Primitive::Int(_)),
UntaggedValue::Primitive(Primitive::Int(_)),
)
| (
UntaggedValue::Primitive(Primitive::Decimal(_)),
UntaggedValue::Primitive(Primitive::Decimal(_)),
)
| (
UntaggedValue::Primitive(Primitive::String(_)),
UntaggedValue::Primitive(Primitive::String(_)),
) => col_val.values.push(value),
_ => {
return Err(ShellError::labeled_error(
"Different values in column",
"Value with different type",
&value.tag,
));
}
}
}
Ok(())
}
// The ColumnMap has the parsed data from the StreamInput
// This data can be used to create a Series object that can initialize
// the dataframe based on the type of data that is found
fn from_parsed_columns(column_values: ColumnMap, tag: &Tag) -> Result<NuDataFrame, ShellError> {
let mut df_series: Vec<Series> = Vec::new();
for (name, column) in column_values {
match column.value_type {
InputValue::Decimal => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_f64()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputValue::Integer => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_f32()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
InputValue::String => {
let series_values: Result<Vec<_>, _> =
column.values.iter().map(|v| v.as_string()).collect();
let series = Series::new(&name, series_values?);
df_series.push(series)
}
}
}
let df = DataFrame::new(df_series);
match df {
Ok(df) => Ok(NuDataFrame {
dataframe: Some(df),
name: "From stream".to_string(),
}),
Err(e) => {
return Err(ShellError::labeled_error(
"Error while creating dataframe",
format!("{}", e),
tag,
))
}
}
}