forked from extern/nushell
be5d71ea47
Signed-off-by: Alex Saveau <saveau.alexandre@gmail.com> Signed-off-by: Alex Saveau <saveau.alexandre@gmail.com>
760 lines
25 KiB
Rust
760 lines
25 KiB
Rust
// Thanks to https://github.com/ogham/rust-term-grid for making this available
|
||
|
||
//! This library arranges textual data in a grid format suitable for
|
||
//! fixed-width fonts, using an algorithm to minimise the amount of space
|
||
//! needed. For example:
|
||
//!
|
||
//! ```rust
|
||
//! use nu_term_grid::grid::{Grid, GridOptions, Direction, Filling, Cell};
|
||
//!
|
||
//! let mut grid = Grid::new(GridOptions {
|
||
//! filling: Filling::Spaces(1),
|
||
//! direction: Direction::LeftToRight,
|
||
//! });
|
||
//!
|
||
//! for s in &["one", "two", "three", "four", "five", "six", "seven",
|
||
//! "eight", "nine", "ten", "eleven", "twelve"]
|
||
//! {
|
||
//! grid.add(Cell::from(*s));
|
||
//! }
|
||
//!
|
||
//! println!("{}", grid.fit_into_width(24).unwrap());
|
||
//! ```
|
||
//!
|
||
//! Produces the following tabular result:
|
||
//!
|
||
//! ```text
|
||
//! one two three four
|
||
//! five six seven eight
|
||
//! nine ten eleven twelve
|
||
//! ```
|
||
//!
|
||
//!
|
||
//! ## Creating a grid
|
||
//!
|
||
//! To add data to a grid, first create a new [`Grid`] value, and then add
|
||
//! cells to them with the `add` function.
|
||
//!
|
||
//! There are two options that must be specified in the [`GridOptions`] value
|
||
//! that dictate how the grid is formatted:
|
||
//!
|
||
//! - `filling`: what to put in between two columns — either a number of
|
||
//! spaces, or a text string;
|
||
//! - `direction`, which specifies whether the cells should go along
|
||
//! rows, or columns:
|
||
//! - `Direction::LeftToRight` starts them in the top left and
|
||
//! moves *rightwards*, going to the start of a new row after reaching the
|
||
//! final column;
|
||
//! - `Direction::TopToBottom` starts them in the top left and moves
|
||
//! *downwards*, going to the top of a new column after reaching the final
|
||
//! row.
|
||
//!
|
||
//!
|
||
//! ## Displaying a grid
|
||
//!
|
||
//! When display a grid, you can either specify the number of columns in advance,
|
||
//! or try to find the maximum number of columns that can fit in an area of a
|
||
//! given width.
|
||
//!
|
||
//! Splitting a series of cells into columns — or, in other words, starting a new
|
||
//! row every <var>n</var> cells — is achieved with the [`fit_into_columns`] function
|
||
//! on a `Grid` value. It takes as its argument the number of columns.
|
||
//!
|
||
//! Trying to fit as much data onto one screen as possible is the main use case
|
||
//! for specifying a maximum width instead. This is achieved with the
|
||
//! [`fit_into_width`] function. It takes the maximum allowed width, including
|
||
//! separators, as its argument. However, it returns an *optional* [`Display`]
|
||
//! value, depending on whether any of the cells actually had a width greater than
|
||
//! the maximum width! If this is the case, your best bet is to just output the
|
||
//! cells with one per line.
|
||
//!
|
||
//!
|
||
//! ## Cells and data
|
||
//!
|
||
//! Grids to not take `String`s or `&str`s — they take [`Cell`] values.
|
||
//!
|
||
//! A **Cell** is a struct containing an individual cell’s contents, as a string,
|
||
//! and its pre-computed length, which gets used when calculating a grid’s final
|
||
//! dimensions. Usually, you want the *Unicode width* of the string to be used for
|
||
//! this, so you can turn a `String` into a `Cell` with the `.into()` function.
|
||
//!
|
||
//! However, you may also want to supply your own width: when you already know the
|
||
//! width in advance, or when you want to change the measurement, such as skipping
|
||
//! over terminal control characters. For cases like these, the fields on the
|
||
//! `Cell` values are public, meaning you can construct your own instances as
|
||
//! necessary.
|
||
//!
|
||
//! [`Cell`]: ./struct.Cell.html
|
||
//! [`Display`]: ./struct.Display.html
|
||
//! [`Grid`]: ./struct.Grid.html
|
||
//! [`fit_into_columns`]: ./struct.Grid.html#method.fit_into_columns
|
||
//! [`fit_into_width`]: ./struct.Grid.html#method.fit_into_width
|
||
//! [`GridOptions`]: ./struct.GridOptions.html
|
||
|
||
use std::cmp::max;
|
||
use std::fmt;
|
||
use std::iter::repeat;
|
||
use unicode_width::UnicodeWidthStr;
|
||
|
||
fn unicode_width_strip_ansi(astring: &str) -> usize {
|
||
nu_utils::strip_ansi_unlikely(astring).width()
|
||
}
|
||
|
||
/// Alignment indicate on which side the content should stick if some filling
|
||
/// is required.
|
||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||
pub enum Alignment {
|
||
/// The content will stick to the left.
|
||
Left,
|
||
|
||
/// The content will stick to the right.
|
||
Right,
|
||
}
|
||
|
||
/// A **Cell** is the combination of a string and its pre-computed length.
|
||
///
|
||
/// The easiest way to create a Cell is just by using `string.into()`, which
|
||
/// uses the **unicode width** of the string (see the `unicode_width` crate).
|
||
/// However, the fields are public, if you wish to provide your own length.
|
||
#[derive(PartialEq, Eq, Debug, Clone)]
|
||
pub struct Cell {
|
||
/// The string to display when this cell gets rendered.
|
||
pub contents: String,
|
||
|
||
/// The pre-computed length of the string.
|
||
pub width: Width,
|
||
|
||
/// The side (left/right) to align the content if some filling is required.
|
||
pub alignment: Alignment,
|
||
}
|
||
|
||
impl From<String> for Cell {
|
||
fn from(string: String) -> Self {
|
||
Self {
|
||
width: unicode_width_strip_ansi(&string),
|
||
contents: string,
|
||
alignment: Alignment::Left,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a> From<&'a str> for Cell {
|
||
fn from(string: &'a str) -> Self {
|
||
Self {
|
||
width: unicode_width_strip_ansi(string),
|
||
contents: string.into(),
|
||
alignment: Alignment::Left,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Direction cells should be written in — either across, or downwards.
|
||
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
|
||
pub enum Direction {
|
||
/// Starts at the top left and moves rightwards, going back to the first
|
||
/// column for a new row, like a typewriter.
|
||
LeftToRight,
|
||
|
||
/// Starts at the top left and moves downwards, going back to the first
|
||
/// row for a new column, like how `ls` lists files by default.
|
||
TopToBottom,
|
||
}
|
||
|
||
/// The width of a cell, in columns.
|
||
pub type Width = usize;
|
||
|
||
/// The text to put in between each pair of columns.
|
||
/// This does not include any spaces used when aligning cells.
|
||
#[derive(PartialEq, Eq, Debug)]
|
||
pub enum Filling {
|
||
/// A certain number of spaces should be used as the separator.
|
||
Spaces(Width),
|
||
|
||
/// An arbitrary string.
|
||
/// `"|"` is a common choice.
|
||
Text(String),
|
||
}
|
||
|
||
impl Filling {
|
||
fn width(&self) -> Width {
|
||
match *self {
|
||
Filling::Spaces(w) => w,
|
||
Filling::Text(ref t) => unicode_width_strip_ansi(&t[..]),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// The user-assignable options for a grid view that should be passed to
|
||
/// [`Grid::new()`](struct.Grid.html#method.new).
|
||
#[derive(PartialEq, Eq, Debug)]
|
||
pub struct GridOptions {
|
||
/// The direction that the cells should be written in — either
|
||
/// across, or downwards.
|
||
pub direction: Direction,
|
||
|
||
/// The number of spaces to put in between each column of cells.
|
||
pub filling: Filling,
|
||
}
|
||
|
||
#[derive(PartialEq, Eq, Debug)]
|
||
struct Dimensions {
|
||
/// The number of lines in the grid.
|
||
num_lines: Width,
|
||
|
||
/// The width of each column in the grid. The length of this vector serves
|
||
/// as the number of columns.
|
||
widths: Vec<Width>,
|
||
}
|
||
|
||
impl Dimensions {
|
||
fn total_width(&self, separator_width: Width) -> Width {
|
||
if self.widths.is_empty() {
|
||
0
|
||
} else {
|
||
let values = self.widths.iter().sum::<Width>();
|
||
let separators = separator_width * (self.widths.len() - 1);
|
||
values + separators
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Everything needed to format the cells with the grid options.
|
||
///
|
||
/// For more information, see the [`grid` crate documentation](index.html).
|
||
#[derive(Eq, PartialEq, Debug)]
|
||
pub struct Grid {
|
||
options: GridOptions,
|
||
cells: Vec<Cell>,
|
||
widest_cell_length: Width,
|
||
width_sum: Width,
|
||
cell_count: usize,
|
||
}
|
||
|
||
impl Grid {
|
||
/// Creates a new grid view with the given options.
|
||
pub fn new(options: GridOptions) -> Self {
|
||
let cells = Vec::new();
|
||
Self {
|
||
options,
|
||
cells,
|
||
widest_cell_length: 0,
|
||
width_sum: 0,
|
||
cell_count: 0,
|
||
}
|
||
}
|
||
|
||
/// Reserves space in the vector for the given number of additional cells
|
||
/// to be added. (See the `Vec::reserve` function.)
|
||
pub fn reserve(&mut self, additional: usize) {
|
||
self.cells.reserve(additional)
|
||
}
|
||
|
||
/// Adds another cell onto the vector.
|
||
pub fn add(&mut self, cell: Cell) {
|
||
if cell.width > self.widest_cell_length {
|
||
self.widest_cell_length = cell.width;
|
||
}
|
||
self.width_sum += cell.width;
|
||
self.cell_count += 1;
|
||
self.cells.push(cell)
|
||
}
|
||
|
||
/// Returns a displayable grid that’s been packed to fit into the given
|
||
/// width in the fewest number of rows.
|
||
///
|
||
/// Returns `None` if any of the cells has a width greater than the
|
||
/// maximum width.
|
||
pub fn fit_into_width(&self, maximum_width: Width) -> Option<Display<'_>> {
|
||
self.width_dimensions(maximum_width).map(|dims| Display {
|
||
grid: self,
|
||
dimensions: dims,
|
||
})
|
||
}
|
||
|
||
/// Returns a displayable grid with the given number of columns, and no
|
||
/// maximum width.
|
||
pub fn fit_into_columns(&self, num_columns: usize) -> Display<'_> {
|
||
Display {
|
||
grid: self,
|
||
dimensions: self.columns_dimensions(num_columns),
|
||
}
|
||
}
|
||
|
||
fn columns_dimensions(&self, num_columns: usize) -> Dimensions {
|
||
let mut num_lines = self.cells.len() / num_columns;
|
||
if self.cells.len() % num_columns != 0 {
|
||
num_lines += 1;
|
||
}
|
||
|
||
self.column_widths(num_lines, num_columns)
|
||
}
|
||
|
||
fn column_widths(&self, num_lines: usize, num_columns: usize) -> Dimensions {
|
||
let mut widths: Vec<Width> = repeat(0).take(num_columns).collect();
|
||
for (index, cell) in self.cells.iter().enumerate() {
|
||
let index = match self.options.direction {
|
||
Direction::LeftToRight => index % num_columns,
|
||
Direction::TopToBottom => index / num_lines,
|
||
};
|
||
widths[index] = max(widths[index], cell.width);
|
||
}
|
||
|
||
Dimensions { num_lines, widths }
|
||
}
|
||
|
||
fn theoretical_max_num_lines(&self, maximum_width: usize) -> usize {
|
||
let mut theoretical_min_num_cols = 0;
|
||
let mut col_total_width_so_far = 0;
|
||
|
||
let mut cells = self.cells.clone();
|
||
cells.sort_unstable_by(|a, b| b.width.cmp(&a.width)); // Sort in reverse order
|
||
|
||
for cell in &cells {
|
||
if cell.width + col_total_width_so_far <= maximum_width {
|
||
theoretical_min_num_cols += 1;
|
||
col_total_width_so_far += cell.width;
|
||
} else {
|
||
let mut theoretical_max_num_lines = self.cell_count / theoretical_min_num_cols;
|
||
if self.cell_count % theoretical_min_num_cols != 0 {
|
||
theoretical_max_num_lines += 1;
|
||
}
|
||
return theoretical_max_num_lines;
|
||
}
|
||
col_total_width_so_far += self.options.filling.width()
|
||
}
|
||
|
||
// If we make it to this point, we have exhausted all cells before
|
||
// reaching the maximum width; the theoretical max number of lines
|
||
// needed to display all cells is 1.
|
||
1
|
||
}
|
||
|
||
fn width_dimensions(&self, maximum_width: Width) -> Option<Dimensions> {
|
||
if self.widest_cell_length > maximum_width {
|
||
// Largest cell is wider than maximum width; it is impossible to fit.
|
||
return None;
|
||
}
|
||
|
||
if self.cell_count == 0 {
|
||
return Some(Dimensions {
|
||
num_lines: 0,
|
||
widths: Vec::new(),
|
||
});
|
||
}
|
||
|
||
if self.cell_count == 1 {
|
||
let the_cell = &self.cells[0];
|
||
return Some(Dimensions {
|
||
num_lines: 1,
|
||
widths: vec![the_cell.width],
|
||
});
|
||
}
|
||
|
||
let theoretical_max_num_lines = self.theoretical_max_num_lines(maximum_width);
|
||
if theoretical_max_num_lines == 1 {
|
||
// This if—statement is neccesary for the function to work correctly
|
||
// for small inputs.
|
||
return Some(Dimensions {
|
||
num_lines: 1,
|
||
// I clone self.cells twice. Once here, and once in
|
||
// self.theoretical_max_num_lines. Perhaps not the best for
|
||
// performance?
|
||
widths: self
|
||
.cells
|
||
.clone()
|
||
.into_iter()
|
||
.map(|cell| cell.width)
|
||
.collect(),
|
||
});
|
||
}
|
||
// Instead of numbers of columns, try to find the fewest number of *lines*
|
||
// that the output will fit in.
|
||
let mut smallest_dimensions_yet = None;
|
||
for num_lines in (1..=theoretical_max_num_lines).rev() {
|
||
// The number of columns is the number of cells divided by the number
|
||
// of lines, *rounded up*.
|
||
let mut num_columns = self.cell_count / num_lines;
|
||
if self.cell_count % num_lines != 0 {
|
||
num_columns += 1;
|
||
}
|
||
// Early abort: if there are so many columns that the width of the
|
||
// *column separators* is bigger than the width of the screen, then
|
||
// don’t even try to tabulate it.
|
||
// This is actually a necessary check, because the width is stored as
|
||
// a usize, and making it go negative makes it huge instead, but it
|
||
// also serves as a speed-up.
|
||
let total_separator_width = (num_columns - 1) * self.options.filling.width();
|
||
if maximum_width < total_separator_width {
|
||
continue;
|
||
}
|
||
|
||
// Remove the separator width from the available space.
|
||
let adjusted_width = maximum_width - total_separator_width;
|
||
let potential_dimensions = self.column_widths(num_lines, num_columns);
|
||
if potential_dimensions.widths.iter().sum::<Width>() < adjusted_width {
|
||
smallest_dimensions_yet = Some(potential_dimensions);
|
||
} else {
|
||
return smallest_dimensions_yet;
|
||
}
|
||
}
|
||
|
||
None
|
||
}
|
||
}
|
||
|
||
/// A displayable representation of a [`Grid`](struct.Grid.html).
|
||
///
|
||
/// This type implements `Display`, so you can get the textual version
|
||
/// of the grid by calling `.to_string()`.
|
||
#[derive(Eq, PartialEq, Debug)]
|
||
pub struct Display<'grid> {
|
||
/// The grid to display.
|
||
grid: &'grid Grid,
|
||
|
||
/// The pre-computed column widths for this grid.
|
||
dimensions: Dimensions,
|
||
}
|
||
|
||
impl Display<'_> {
|
||
/// Returns how many columns this display takes up, based on the separator
|
||
/// width and the number and width of the columns.
|
||
pub fn width(&self) -> Width {
|
||
self.dimensions
|
||
.total_width(self.grid.options.filling.width())
|
||
}
|
||
|
||
/// Returns how many rows this display takes up.
|
||
pub fn row_count(&self) -> usize {
|
||
self.dimensions.num_lines
|
||
}
|
||
|
||
/// Returns whether this display takes up as many columns as were allotted
|
||
/// to it.
|
||
///
|
||
/// It’s possible to construct tables that don’t actually use up all the
|
||
/// columns that they could, such as when there are more columns than
|
||
/// cells! In this case, a column would have a width of zero. This just
|
||
/// checks for that.
|
||
pub fn is_complete(&self) -> bool {
|
||
self.dimensions.widths.iter().all(|&x| x > 0)
|
||
}
|
||
}
|
||
|
||
impl fmt::Display for Display<'_> {
|
||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
|
||
for y in 0..self.dimensions.num_lines {
|
||
for x in 0..self.dimensions.widths.len() {
|
||
let num = match self.grid.options.direction {
|
||
Direction::LeftToRight => y * self.dimensions.widths.len() + x,
|
||
Direction::TopToBottom => y + self.dimensions.num_lines * x,
|
||
};
|
||
|
||
// Abandon a line mid-way through if that’s where the cells end
|
||
if num >= self.grid.cells.len() {
|
||
continue;
|
||
}
|
||
|
||
let cell = &self.grid.cells[num];
|
||
if x == self.dimensions.widths.len() - 1 {
|
||
match cell.alignment {
|
||
Alignment::Left => {
|
||
// The final column doesn’t need to have trailing spaces,
|
||
// as long as it’s left-aligned.
|
||
write!(f, "{}", cell.contents)?;
|
||
}
|
||
Alignment::Right => {
|
||
let extra_spaces = self.dimensions.widths[x] - cell.width;
|
||
write!(
|
||
f,
|
||
"{}",
|
||
pad_string(&cell.contents, extra_spaces, Alignment::Right)
|
||
)?;
|
||
}
|
||
}
|
||
} else {
|
||
assert!(self.dimensions.widths[x] >= cell.width);
|
||
match (&self.grid.options.filling, cell.alignment) {
|
||
(Filling::Spaces(n), Alignment::Left) => {
|
||
let extra_spaces = self.dimensions.widths[x] - cell.width + n;
|
||
write!(
|
||
f,
|
||
"{}",
|
||
pad_string(&cell.contents, extra_spaces, cell.alignment)
|
||
)?;
|
||
}
|
||
(Filling::Spaces(n), Alignment::Right) => {
|
||
let s = spaces(*n);
|
||
let extra_spaces = self.dimensions.widths[x] - cell.width;
|
||
write!(
|
||
f,
|
||
"{}{}",
|
||
pad_string(&cell.contents, extra_spaces, cell.alignment),
|
||
s
|
||
)?;
|
||
}
|
||
(Filling::Text(ref t), _) => {
|
||
let extra_spaces = self.dimensions.widths[x] - cell.width;
|
||
write!(
|
||
f,
|
||
"{}{}",
|
||
pad_string(&cell.contents, extra_spaces, cell.alignment),
|
||
t
|
||
)?;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
writeln!(f)?;
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
}
|
||
|
||
/// Pad a string with the given number of spaces.
|
||
fn spaces(length: usize) -> String {
|
||
" ".repeat(length)
|
||
}
|
||
|
||
/// Pad a string with the given alignment and number of spaces.
|
||
///
|
||
/// This doesn’t take the width the string *should* be, rather the number
|
||
/// of spaces to add.
|
||
fn pad_string(string: &str, padding: usize, alignment: Alignment) -> String {
|
||
if alignment == Alignment::Left {
|
||
format!("{}{}", string, spaces(padding))
|
||
} else {
|
||
format!("{}{}", spaces(padding), string)
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod test {
|
||
use super::*;
|
||
|
||
#[test]
|
||
fn no_items() {
|
||
let grid = Grid::new(GridOptions {
|
||
direction: Direction::TopToBottom,
|
||
filling: Filling::Spaces(2),
|
||
});
|
||
|
||
let display = grid.fit_into_width(40).unwrap();
|
||
|
||
assert_eq!(display.dimensions.num_lines, 0);
|
||
assert!(display.dimensions.widths.is_empty());
|
||
|
||
assert_eq!(display.width(), 0);
|
||
}
|
||
|
||
#[test]
|
||
fn one_item() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
direction: Direction::TopToBottom,
|
||
filling: Filling::Spaces(2),
|
||
});
|
||
|
||
grid.add(Cell::from("1"));
|
||
|
||
let display = grid.fit_into_width(40).unwrap();
|
||
|
||
assert_eq!(display.dimensions.num_lines, 1);
|
||
assert_eq!(display.dimensions.widths, vec![1]);
|
||
|
||
assert_eq!(display.width(), 1);
|
||
}
|
||
|
||
#[test]
|
||
fn one_item_exact_width() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
direction: Direction::TopToBottom,
|
||
filling: Filling::Spaces(2),
|
||
});
|
||
|
||
grid.add(Cell::from("1234567890"));
|
||
|
||
let display = grid.fit_into_width(10).unwrap();
|
||
|
||
assert_eq!(display.dimensions.num_lines, 1);
|
||
assert_eq!(display.dimensions.widths, vec![10]);
|
||
|
||
assert_eq!(display.width(), 10);
|
||
}
|
||
|
||
#[test]
|
||
fn one_item_just_over() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
direction: Direction::TopToBottom,
|
||
filling: Filling::Spaces(2),
|
||
});
|
||
|
||
grid.add(Cell::from("1234567890!"));
|
||
|
||
assert_eq!(grid.fit_into_width(10), None);
|
||
}
|
||
|
||
#[test]
|
||
fn two_small_items() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
direction: Direction::TopToBottom,
|
||
filling: Filling::Spaces(2),
|
||
});
|
||
|
||
grid.add(Cell::from("1"));
|
||
grid.add(Cell::from("2"));
|
||
|
||
let display = grid.fit_into_width(40).unwrap();
|
||
|
||
assert_eq!(display.dimensions.num_lines, 1);
|
||
assert_eq!(display.dimensions.widths, vec![1, 1]);
|
||
|
||
assert_eq!(display.width(), 1 + 2 + 1);
|
||
}
|
||
|
||
#[test]
|
||
fn two_medium_size_items() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
direction: Direction::TopToBottom,
|
||
filling: Filling::Spaces(2),
|
||
});
|
||
|
||
grid.add(Cell::from("hello there"));
|
||
grid.add(Cell::from("how are you today?"));
|
||
|
||
let display = grid.fit_into_width(40).unwrap();
|
||
|
||
assert_eq!(display.dimensions.num_lines, 1);
|
||
assert_eq!(display.dimensions.widths, vec![11, 18]);
|
||
|
||
assert_eq!(display.width(), 11 + 2 + 18);
|
||
}
|
||
|
||
#[test]
|
||
fn two_big_items() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
direction: Direction::TopToBottom,
|
||
filling: Filling::Spaces(2),
|
||
});
|
||
|
||
grid.add(Cell::from(
|
||
"nuihuneihsoenhisenouiuteinhdauisdonhuisudoiosadiuohnteihaosdinhteuieudi",
|
||
));
|
||
grid.add(Cell::from(
|
||
"oudisnuthasuouneohbueobaugceoduhbsauglcobeuhnaeouosbubaoecgueoubeohubeo",
|
||
));
|
||
|
||
assert_eq!(grid.fit_into_width(40), None);
|
||
}
|
||
|
||
#[test]
|
||
fn that_example_from_earlier() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
filling: Filling::Spaces(1),
|
||
direction: Direction::LeftToRight,
|
||
});
|
||
|
||
for s in &[
|
||
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
|
||
"eleven", "twelve",
|
||
] {
|
||
grid.add(Cell::from(*s));
|
||
}
|
||
|
||
let bits = "one two three four\nfive six seven eight\nnine ten eleven twelve\n";
|
||
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
|
||
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn number_grid_with_pipe() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
filling: Filling::Text("|".into()),
|
||
direction: Direction::LeftToRight,
|
||
});
|
||
|
||
for s in &[
|
||
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
|
||
"eleven", "twelve",
|
||
] {
|
||
grid.add(Cell::from(*s));
|
||
}
|
||
|
||
let bits = "one |two|three |four\nfive|six|seven |eight\nnine|ten|eleven|twelve\n";
|
||
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
|
||
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn numbers_right() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
filling: Filling::Spaces(1),
|
||
direction: Direction::LeftToRight,
|
||
});
|
||
|
||
for s in &[
|
||
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
|
||
"eleven", "twelve",
|
||
] {
|
||
let mut cell = Cell::from(*s);
|
||
cell.alignment = Alignment::Right;
|
||
grid.add(cell);
|
||
}
|
||
|
||
let bits = " one two three four\nfive six seven eight\nnine ten eleven twelve\n";
|
||
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
|
||
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn numbers_right_pipe() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
filling: Filling::Text("|".into()),
|
||
direction: Direction::LeftToRight,
|
||
});
|
||
|
||
for s in &[
|
||
"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten",
|
||
"eleven", "twelve",
|
||
] {
|
||
let mut cell = Cell::from(*s);
|
||
cell.alignment = Alignment::Right;
|
||
grid.add(cell);
|
||
}
|
||
|
||
let bits = " one|two| three| four\nfive|six| seven| eight\nnine|ten|eleven|twelve\n";
|
||
assert_eq!(grid.fit_into_width(24).unwrap().to_string(), bits);
|
||
assert_eq!(grid.fit_into_width(24).unwrap().row_count(), 3);
|
||
}
|
||
|
||
#[test]
|
||
fn huge_separator() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
filling: Filling::Spaces(100),
|
||
direction: Direction::LeftToRight,
|
||
});
|
||
|
||
grid.add("a".into());
|
||
grid.add("b".into());
|
||
|
||
assert_eq!(grid.fit_into_width(99), None);
|
||
}
|
||
|
||
#[test]
|
||
fn huge_yet_unused_separator() {
|
||
let mut grid = Grid::new(GridOptions {
|
||
filling: Filling::Spaces(100),
|
||
direction: Direction::LeftToRight,
|
||
});
|
||
|
||
grid.add("abcd".into());
|
||
|
||
let display = grid.fit_into_width(99).unwrap();
|
||
|
||
assert_eq!(display.dimensions.num_lines, 1);
|
||
assert_eq!(display.dimensions.widths, vec![4]);
|
||
|
||
assert_eq!(display.width(), 4);
|
||
}
|
||
}
|