whisper.cpp/examples/bench/bench.cpp

245 lines
7.3 KiB
C++
Raw Normal View History

#include "ggml.h"
#include "whisper.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
#include <vector>
// command-line parameters
struct whisper_params {
2022-11-25 18:08:51 +01:00
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
2022-11-25 18:08:51 +01:00
std::string model = "models/ggml-base.en.bin";
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
2022-11-25 18:08:51 +01:00
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params);
exit(0);
2022-11-25 18:08:51 +01:00
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
2022-11-25 18:08:51 +01:00
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
2022-11-25 18:08:51 +01:00
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
fprintf(stderr, "\n");
}
int bench_whisper_encoder(const whisper_params & params) {
// whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
2022-10-27 16:22:10 +02:00
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
}
if (ctx == nullptr) {
fprintf(stderr, "error: failed to initialize whisper context\n");
return 2;
}
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
fprintf(stderr, "error: failed to set mel: %d\n", ret);
return 3;
}
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
whisper_print_timings(ctx);
whisper_free(ctx);
2022-10-25 19:18:26 +02:00
fprintf(stderr, "\n");
fprintf(stderr, "If you wish, you can submit these results here:\n");
fprintf(stderr, "\n");
fprintf(stderr, " https://github.com/ggerganov/whisper.cpp/issues/89\n");
fprintf(stderr, "\n");
fprintf(stderr, "Please include the following information:\n");
fprintf(stderr, "\n");
fprintf(stderr, " - CPU model\n");
fprintf(stderr, " - Operating system\n");
fprintf(stderr, " - Compiler\n");
fprintf(stderr, "\n");
return 0;
}
int bench_memcpy(const whisper_params & params) {
size_t n = 50;
size_t arr = params.what > 0 ? 1024 : params.what; // trick to avoid compiler optimizations
// 1 GB array
const size_t size = arr*1024llu*1024llu;
char * src = (char *) malloc(size);
char * dst = (char *) malloc(size);
for (size_t i = 0; i < size; i++) src[i] = i;
memcpy(dst, src, size); // heat-up
double tsum = 0.0;
for (size_t i = 0; i < n; i++) {
const int64_t t0 = ggml_time_us();
memcpy(dst, src, size);
const int64_t t1 = ggml_time_us();
tsum += (t1 - t0)*1e-6;
src[0] = rand();
}
fprintf(stderr, "memcpy: %.2f GB/s\n", (double) (n*size)/(tsum*1024llu*1024llu*1024llu));
// needed to prevent the compile from optimizing the memcpy away
{
double sum = 0.0;
for (size_t i = 0; i < size; i++) sum += dst[i];
fprintf(stderr, "sum: %s\n", sum == -536870910.00 ? "ok" : "error");
}
free(src);
free(dst);
return 0;
}
int bench_ggml_mul_mat(const whisper_params & params) {
const int n_max = 128;
const std::vector<size_t> sizes = {
64, 128, 256, 512, 1024, 2048, 4096,
};
const size_t N_max = sizes.back();
// a: N*N*sizeof(float)
// b: N*N*sizeof(float)
// c: N*N*sizeof(float)
// when F16 is used, there is an extra work buffer of size N*N*sizeof(float)
std::vector<char> buf(4llu*N_max*N_max*sizeof(float) + 4*256);
for (size_t i = 0; i < buf.size(); i++) buf[i] = i;
for (int j = 0; j < (int) sizes.size(); j++) {
int n_fp16 = 0;
int n_fp32 = 0;
// GFLOPS/s
double s_fp16 = 0.0;
double s_fp32 = 0.0;
const size_t N = sizes[j];
for (int k = 0; k < 2; ++k) {
const ggml_type wtype = k == 0 ? GGML_TYPE_F16 : GGML_TYPE_F32;
double & s = k == 0 ? s_fp16 : s_fp32;
int & n = k == 0 ? n_fp16 : n_fp32;
struct ggml_init_params gparams = {
/*.mem_size =*/ buf.size(),
/*.mem_buffer =*/ buf.data(),
};
struct ggml_context * ctx0 = ggml_init(gparams);
struct ggml_tensor * a = ggml_new_tensor_2d(ctx0, wtype, N, N);
struct ggml_tensor * b = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, N);
struct ggml_tensor * c = ggml_mul_mat(ctx0, a, b);
struct ggml_cgraph gf = ggml_build_forward(c);
gf.n_threads = params.n_threads;
double tsum = 0.0;
// heat-up
ggml_graph_compute(ctx0, &gf);
for (int i = 0; i < n_max; ++i) {
const int64_t t0 = ggml_time_us();
ggml_graph_compute(ctx0, &gf);
const int64_t t1 = ggml_time_us();
tsum += (t1 - t0)*1e-6;
n++;
if (tsum > 1.0 && n >= 3) {
break;
}
}
ggml_free(ctx0);
s = ((2.0*N*N*N*n)/tsum)*1e-9;
}
fprintf(stderr, "ggml_mul_mat: %5zu x %5zu: F16 %8.1f GFLOPS (%3d runs) / F32 %8.1f GFLOPS (%3d runs)\n",
N, N, s_fp16, n_fp16, s_fp32, n_fp32);
}
return 0;
}
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
ggml_time_init();
int ret = -1;
switch (params.what) {
case 0: ret = bench_whisper_encoder(params); break;
case 1: ret = bench_memcpy(params); break;
case 2: ret = bench_ggml_mul_mat(params); break;
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
}
return ret;
}