2022-09-25 21:35:26 +02:00
|
|
|
# whisper.cpp
|
|
|
|
|
|
|
|
C/C++ port of [OpenAI's Whisper](https://github.com/openai/whisper) speech-to-text model
|
|
|
|
|
|
|
|
- Plain C/C++ implementation without dependencies
|
|
|
|
- ARM_NEON and AVX intrinsics support
|
2022-09-28 19:46:05 +02:00
|
|
|
- Mixed F16 / F32 support
|
|
|
|
- Low memory usage (Flash Attention + Flash Forward)
|
2022-09-28 20:13:32 +02:00
|
|
|
- Zero memory allocations at runtime
|
2022-09-25 21:35:26 +02:00
|
|
|
|
|
|
|
## Usage
|
|
|
|
|
2022-09-28 20:13:32 +02:00
|
|
|
To build the main program, run `make`. You can then transcribe a `.wav` file like this:
|
2022-09-26 08:36:51 +02:00
|
|
|
|
|
|
|
```bash
|
|
|
|
$ ./main -f input.wav
|
|
|
|
```
|
|
|
|
|
|
|
|
Before running the program, make sure to download one of the ggml Whisper models. For example:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
bash ./download-ggml-model.sh base.en
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2022-09-25 21:35:26 +02:00
|
|
|
For a quick demo, simply run `make base.en`:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
$ make base.en
|
|
|
|
|
2022-09-28 19:46:05 +02:00
|
|
|
gcc -pthread -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c
|
|
|
|
g++ -pthread -O3 -std=c++11 -c main.cpp
|
|
|
|
g++ -o main ggml.o main.o
|
|
|
|
./main -h
|
|
|
|
|
|
|
|
usage: ./main [options]
|
|
|
|
|
|
|
|
options:
|
|
|
|
-h, --help show this help message and exit
|
|
|
|
-s SEED, --seed SEED RNG seed (default: -1)
|
|
|
|
-t N, --threads N number of threads to use during computation (default: 4)
|
|
|
|
-T N, --tokens N maximum number of tokens to generate per iteration (default: 64)
|
|
|
|
-v, --verbose verbose output
|
|
|
|
--translate translate from source language to english
|
|
|
|
-ps, --print_special print special tokens
|
|
|
|
-l LANG, --language LANG spoken language (default: en)
|
|
|
|
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
|
|
|
|
-f FNAME, --file FNAME input WAV file path (default: samples/jfk.wav)
|
|
|
|
|
|
|
|
bash ./download-ggml-model.sh base.en
|
|
|
|
Downloading ggml model base.en ...
|
|
|
|
models/ggml-base.en.bin 100%[=====================================>] 141.11M 7.84MB/s in 18s
|
|
|
|
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
|
|
|
You can now use it like this:
|
|
|
|
|
|
|
|
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
|
|
|
|
2022-09-25 21:35:26 +02:00
|
|
|
|
|
|
|
===============================================
|
|
|
|
Running base.en on all samples in ./samples ...
|
|
|
|
===============================================
|
|
|
|
|
|
|
|
----------------------------------------------
|
|
|
|
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
|
|
|
|
----------------------------------------------
|
|
|
|
|
|
|
|
whisper_model_load: loading model from 'models/ggml-base.en.bin'
|
|
|
|
whisper_model_load: n_vocab = 51864
|
|
|
|
whisper_model_load: n_audio_ctx = 1500
|
|
|
|
whisper_model_load: n_audio_state = 512
|
|
|
|
whisper_model_load: n_audio_head = 8
|
|
|
|
whisper_model_load: n_audio_layer = 6
|
|
|
|
whisper_model_load: n_text_ctx = 448
|
|
|
|
whisper_model_load: n_text_state = 512
|
|
|
|
whisper_model_load: n_text_head = 8
|
|
|
|
whisper_model_load: n_text_layer = 6
|
|
|
|
whisper_model_load: n_mels = 80
|
|
|
|
whisper_model_load: f16 = 1
|
|
|
|
whisper_model_load: type = 2
|
2022-09-28 19:46:05 +02:00
|
|
|
whisper_model_load: mem_required = 611.00 MB
|
2022-09-25 21:35:26 +02:00
|
|
|
whisper_model_load: adding 1607 extra tokens
|
2022-09-28 19:46:05 +02:00
|
|
|
whisper_model_load: ggml ctx size = 163.43 MB
|
|
|
|
whisper_model_load: memory size = 22.83 MB
|
2022-09-25 21:35:26 +02:00
|
|
|
whisper_model_load: model size = 140.54 MB
|
|
|
|
log_mel_spectrogram: n_sample = 176000, n_len = 1100
|
|
|
|
log_mel_spectrogram: recording length: 11.000000 s
|
|
|
|
|
2022-09-28 19:46:05 +02:00
|
|
|
main: processing 176000 samples (11.0 sec), 4 threads, lang = english, task = transcribe ...
|
2022-09-25 21:35:26 +02:00
|
|
|
|
2022-09-28 19:46:05 +02:00
|
|
|
And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
|
2022-09-25 21:35:26 +02:00
|
|
|
|
2022-09-28 19:46:05 +02:00
|
|
|
main: load time = 71.89 ms
|
|
|
|
main: mel time = 36.95 ms
|
|
|
|
main: sample time = 2.10 ms
|
|
|
|
main: encode time = 700.94 ms / 116.82 ms per layer
|
|
|
|
main: decode time = 86.14 ms
|
|
|
|
main: total time = 898.72 ms
|
2022-09-25 21:35:26 +02:00
|
|
|
```
|
|
|
|
|
|
|
|
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
|
|
|
|
|
|
|
If you want some extra audio samples to play with, simply run:
|
|
|
|
|
|
|
|
```
|
|
|
|
make samples
|
|
|
|
```
|
|
|
|
|
|
|
|
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
|
|
|
|
|
2022-09-28 19:46:05 +02:00
|
|
|
You can download and run the other models as follows:
|
2022-09-25 21:35:26 +02:00
|
|
|
|
|
|
|
```
|
|
|
|
make tiny.en
|
2022-09-28 19:46:05 +02:00
|
|
|
make tiny
|
2022-09-25 21:35:26 +02:00
|
|
|
make base.en
|
2022-09-28 19:46:05 +02:00
|
|
|
make base
|
2022-09-25 21:35:26 +02:00
|
|
|
make small.en
|
2022-09-28 19:46:05 +02:00
|
|
|
make small
|
2022-09-25 21:35:26 +02:00
|
|
|
make medium.en
|
2022-09-28 19:46:05 +02:00
|
|
|
make medium
|
|
|
|
make large
|
2022-09-25 21:35:26 +02:00
|
|
|
```
|
|
|
|
|
|
|
|
For detailed usage instructions, run: `./main -h`
|
|
|
|
|
|
|
|
Note that `whisper.cpp` runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
|
|
|
|
For example, you can use `ffmpeg` like this:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
|
|
|
|
```
|
|
|
|
|
|
|
|
## Limitations
|
|
|
|
|
|
|
|
- Very basic greedy sampling scheme - always pick up the top token
|
|
|
|
- No timestamps
|
|
|
|
- Inference only
|
|
|
|
- Runs on the CPU
|
|
|
|
- Only mono-channel 16-bit WAV is supported
|
|
|
|
|
|
|
|
## Memory usage
|
|
|
|
|
2022-09-26 08:36:51 +02:00
|
|
|
| Model | Disk | Mem |
|
|
|
|
| --- | --- | --- |
|
2022-09-28 19:46:05 +02:00
|
|
|
| tiny | 75 MB | ~460 MB |
|
|
|
|
| base | 142 MB | ~620 MB |
|
|
|
|
| small | 466 MB | ~1.3 GB |
|
|
|
|
| medium | 1.5 GB | ~2.8 GB |
|
|
|
|
| large | 2.9 GB | ~4.9 GB |
|
2022-09-25 21:35:26 +02:00
|
|
|
|
|
|
|
## ggml format
|
|
|
|
|
|
|
|
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
|
|
|
|
|
|
|
|
- model parameters
|
|
|
|
- mel filters
|
|
|
|
- vocabulary
|
|
|
|
- weights
|
|
|
|
|
2022-09-26 08:36:51 +02:00
|
|
|
You can download the converted models using the [download-ggml-model.sh](download-ggml-model.sh) script.
|
|
|
|
|
2022-09-25 21:35:26 +02:00
|
|
|
For more details, see the conversion script [convert-pt-to-ggml.py](convert-pt-to-ggml.py)
|