Reduce memory usage even more + better sampling

- The encode/decode memory buffers are now reused
- If the 30-sec segment goes for too long without a timestamp token, we
  force one. Improves transcription for large model
- Stereo support
- Add "micro-machines.wav" sample
This commit is contained in:
Georgi Gerganov
2022-09-30 19:33:09 +03:00
parent 310f4883d1
commit 3bcdbdfc32
3 changed files with 96 additions and 87 deletions

120
main.cpp
View File

@ -158,11 +158,11 @@ const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
};
const std::map<e_model, size_t> MEM_REQ_DECODE = {
{ MODEL_TINY, 190ull*MB },
{ MODEL_BASE, 190ull*MB },
{ MODEL_SMALL, 190ull*MB },
{ MODEL_MEDIUM, 200ull*MB },
{ MODEL_LARGE, 200ull*MB },
{ MODEL_TINY, 94ull*MB },
{ MODEL_BASE, 96ull*MB },
{ MODEL_SMALL, 98ull*MB },
{ MODEL_MEDIUM, 100ull*MB },
{ MODEL_LARGE, 102ull*MB },
};
const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
@ -173,6 +173,11 @@ const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
{ MODEL_LARGE, 110ull*MB },
};
// the memory buffers used to store the model in memory and perform the inference computations
std::vector<uint8_t> g_buf_model;
std::vector<uint8_t> g_buf_compute;
std::vector<uint8_t> g_buf_compute_layer;
const int SAMPLE_RATE = 16000;
const int N_FFT = 400;
const int N_MEL = 80;
@ -542,13 +547,15 @@ bool whisper_model_load(const std::string & fname, whisper_model & model, whispe
printf("%s: f16 = %d\n", __func__, hparams.f16);
printf("%s: type = %d\n", __func__, model.type);
g_buf_model.resize(MEM_REQ_MODEL.at(model.type));
g_buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
g_buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
// this is the total memory required to run the inference
const size_t mem_required =
MEM_REQ_MODEL.at(model.type) +
MEM_REQ_ENCODE.at(model.type) +
MEM_REQ_ENCODE_LAYER.at(model.type) +
MEM_REQ_DECODE.at(model.type) +
MEM_REQ_DECODE_LAYER.at(model.type);
g_buf_model.size() +
g_buf_compute.size() +
g_buf_compute_layer.size();
printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
}
@ -752,8 +759,8 @@ bool whisper_model_load(const std::string & fname, whisper_model & model, whispe
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.mem_size = g_buf_model.size(),
.mem_buffer = g_buf_model.data(),
};
model.ctx = ggml_init(params);
@ -1089,17 +1096,10 @@ bool whisper_encode(
const int n_mels = hparams.n_mels;
assert(mel_inp.n_mel == n_mels);
struct ggml_init_params params;
{
static size_t buf_size = MEM_REQ_ENCODE.at(model.type);
static void * buf = malloc(buf_size);
params = {
.mem_size = buf_size,
.mem_buffer = buf,
};
}
struct ggml_init_params params = {
.mem_size = g_buf_compute.size(),
.mem_buffer = g_buf_compute.data(),
};
struct ggml_context * ctx0 = ggml_init(params);
@ -1151,16 +1151,10 @@ bool whisper_encode(
// create separate context for each layer to reduce memory usage
struct ggml_init_params paramsL;
{
static size_t buf_size = MEM_REQ_ENCODE_LAYER.at(model.type);
static void * buf = malloc(buf_size);
paramsL = {
.mem_size = buf_size,
.mem_buffer = buf,
};
}
struct ggml_init_params paramsL = {
.mem_size = g_buf_compute_layer.size(),
.mem_buffer = g_buf_compute_layer.data(),
};
struct ggml_context * ctxL = ggml_init(paramsL);
@ -1492,17 +1486,10 @@ bool whisper_decode(
const int N = prompt.size();
const int M = hparams.n_audio_ctx;
struct ggml_init_params params;
{
static size_t buf_size = MEM_REQ_DECODE.at(model.type);
static void * buf = malloc(buf_size);
params = {
.mem_size = buf_size,
.mem_buffer = buf,
struct ggml_init_params params = {
.mem_size = g_buf_compute.size(),
.mem_buffer = g_buf_compute.data(),
};
}
struct ggml_context * ctx0 = ggml_init(params);
@ -1525,17 +1512,10 @@ bool whisper_decode(
for (int il = 0; il < n_layer; ++il) {
const auto & layer = model.layers_decoder[il];
struct ggml_init_params paramsL;
{
static size_t buf_size = MEM_REQ_DECODE_LAYER.at(model.type);
static void * buf = malloc(buf_size);
paramsL = {
.mem_size = buf_size,
.mem_buffer = buf,
};
}
struct ggml_init_params paramsL = {
.mem_size = g_buf_compute_layer.size(),
.mem_buffer = g_buf_compute_layer.data(),
};
struct ggml_context * ctxL = ggml_init(paramsL);
struct ggml_cgraph gf = { .n_threads = n_threads };
@ -1849,7 +1829,7 @@ bool whisper_decode(
// TODO: temperature
whisper_vocab::id whisper_sample_best(
const whisper_vocab & vocab,
const float * probs) {
const float * probs, bool need_timestamp) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
@ -1859,7 +1839,7 @@ whisper_vocab::id whisper_sample_best(
probs_id.push_back(std::make_pair(probs[i], i));
}
const int top_k = 10;
const int top_k = 4;
// find the top K tokens
std::partial_sort(
@ -1876,6 +1856,15 @@ whisper_vocab::id whisper_sample_best(
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
//}
if (need_timestamp) {
// at the end of the 30-second audio segment, we start giving preference to time tokens
for (int i = 0; i < top_k; i++) {
if (probs_id[i].second > vocab.token_beg + 1300 && probs_id[i].first > probs_id[0].first*0.1) {
return probs_id[i].second;
}
}
}
int res = 0;
while ((probs_id[res].second == vocab.token_sot ||
probs_id[res].second == vocab.token_solm ||
@ -2136,8 +2125,8 @@ int main(int argc, char ** argv) {
return 2;
}
if (wav.channels != 1) {
fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str());
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "%s: WAV file '%s' must be mono or stereo\n", argv[0], params.fname_inp.c_str());
return 3;
}
@ -2158,8 +2147,14 @@ int main(int argc, char ** argv) {
// convert to float
pcmf32.resize(pcm16.size());
for (size_t i = 0; i < pcm16.size(); i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
if (wav.channels == 1) {
for (size_t i = 0; i < pcm16.size(); i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (size_t i = 0; i < pcm16.size(); i++) {
pcmf32[i] = float(pcm16[i*2 + 0] + pcm16[i*2 + 1])/32768.0f/2.0f;
}
}
}
@ -2252,6 +2247,7 @@ int main(int argc, char ** argv) {
int seek_delta = 100*CHUNK_SIZE;
whisper_vocab::id last_id = 0;
// print the prompt
//printf("\n\n");
//for (int i = 0; i < prompt.size(); i++) {
// printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str());
@ -2294,7 +2290,7 @@ int main(int argc, char ** argv) {
{
const int64_t t_start_sample_us = ggml_time_us();
id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab));
id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), result_len == 0);
if (i > 0) {
tid = whisper_sample_timestamp(vocab, probs.data() + (probs.size() - n_vocab));
}
@ -2313,6 +2309,8 @@ int main(int argc, char ** argv) {
prompt.push_back(id);
result_cur.push_back({ id, seek + 2*(tid - vocab.token_beg) });
//printf("%s: %s\n", __func__, vocab.id_to_token[id].c_str());
// end of text token
if (id == vocab.token_eot) {
break;