forked from extern/whisper.cpp
Try to improve the token sampling strategy (#193)
* whisper : try to improve the token sampling strategy - Add the "max_initial_timestaamp" token logic from OpenAI - Disallow sampling timestamps that are in the past * whisper : fix the max initial timestamp logic + fallback decoding
This commit is contained in:
parent
9b7df68753
commit
78d13257be
97
whisper.cpp
97
whisper.cpp
@ -1846,7 +1846,9 @@ static bool whisper_decode(
|
||||
// the most basic sampling scheme - select the top token
|
||||
static whisper_token_data whisper_sample_best(
|
||||
const whisper_vocab & vocab,
|
||||
const float * probs) {
|
||||
const float * probs,
|
||||
bool force_timestamp,
|
||||
bool is_initial) {
|
||||
whisper_token_data result = {
|
||||
0, 0, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
|
||||
};
|
||||
@ -1869,7 +1871,18 @@ static whisper_token_data whisper_sample_best(
|
||||
max_tx = std::max(max_tx, probs_id[i].first);
|
||||
}
|
||||
|
||||
for (int i = vocab.token_beg; i < n_logits; i++) {
|
||||
const auto i0 = is_initial ? vocab.token_beg + 101 : vocab.token_beg;
|
||||
const auto i1 = is_initial ? vocab.token_beg + 101 : n_logits;
|
||||
|
||||
// the initial timestamp cannot be larger than 100
|
||||
// ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L426-L429
|
||||
if (is_initial) {
|
||||
for (int i = i0; i < n_logits; ++ i) {
|
||||
probs_id[i].first = -INFINITY;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = vocab.token_beg; i < i1; i++) {
|
||||
sum_ts += probs_id[i].first;
|
||||
if (probs_id[i].first > max_ts) {
|
||||
max_ts = probs_id[i].first;
|
||||
@ -1879,7 +1892,7 @@ static whisper_token_data whisper_sample_best(
|
||||
|
||||
// if the probability sum of all timestamp tokens is higher than the max probability of the text tokens - sample a
|
||||
// timestamp token
|
||||
if (sum_ts > max_tx) {
|
||||
if (sum_ts > max_tx || force_timestamp) {
|
||||
// ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L430-L438
|
||||
for (int i = 0; i < vocab.token_beg; i++) {
|
||||
probs_id[i].first = -INFINITY;
|
||||
@ -1921,39 +1934,6 @@ static whisper_token_data whisper_sample_best(
|
||||
return result;
|
||||
}
|
||||
|
||||
// samples only from the timestamps tokens
|
||||
static whisper_vocab::id whisper_sample_timestamp(
|
||||
const whisper_vocab & vocab,
|
||||
const float * probs) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
|
||||
probs_id.reserve(n_logits);
|
||||
|
||||
for (int i = vocab.token_beg + 1; i < n_logits; i++) {
|
||||
probs_id.push_back(std::make_pair(probs[i], i));
|
||||
}
|
||||
|
||||
const int top_k = 10;
|
||||
|
||||
// find the top K tokens
|
||||
std::partial_sort(
|
||||
probs_id.begin(),
|
||||
probs_id.begin() + top_k, probs_id.end(),
|
||||
[](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
|
||||
return a.first > b.first;
|
||||
});
|
||||
|
||||
probs_id.resize(top_k);
|
||||
|
||||
//printf("\n");
|
||||
//for (int i = 0; i < (int) probs_id.size(); i++) {
|
||||
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
|
||||
//}
|
||||
|
||||
return probs_id[0].second;
|
||||
}
|
||||
|
||||
// 500 -> 00:05.000
|
||||
// 6000 -> 01:00.000
|
||||
static std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
@ -2284,19 +2264,17 @@ int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, i
|
||||
struct whisper_token_data whisper_sample_best(struct whisper_context * ctx) {
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
// TODO: simplify
|
||||
auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab));
|
||||
const auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), false, false);
|
||||
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
whisper_token whisper_sample_timestamp(struct whisper_context * ctx) {
|
||||
struct whisper_token_data whisper_sample_timestamp(struct whisper_context * ctx, bool is_initial) {
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
// TODO: simplify
|
||||
auto res = whisper_sample_timestamp(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab));
|
||||
const auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab), true, is_initial);
|
||||
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
|
||||
@ -2694,7 +2672,6 @@ int whisper_full(
|
||||
|
||||
prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
|
||||
|
||||
bool done = false;
|
||||
int seek_delta = 100*WHISPER_CHUNK_SIZE;
|
||||
|
||||
// print the prompt
|
||||
@ -2708,7 +2685,9 @@ int whisper_full(
|
||||
int result_len = 0;
|
||||
tokens_cur.clear();
|
||||
|
||||
for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) {
|
||||
bool failed = false;
|
||||
|
||||
for (int i = 0, n_max = whisper_n_text_ctx(ctx)/2 - 4; i < n_max; ++i) {
|
||||
if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) {
|
||||
fprintf(stderr, "%s: failed to decode\n", __func__);
|
||||
return 8;
|
||||
@ -2725,15 +2704,19 @@ int whisper_full(
|
||||
// feel free to experiment!
|
||||
//
|
||||
{
|
||||
auto token = whisper_sample_best(ctx);
|
||||
|
||||
if (i == 0) {
|
||||
token.tid = whisper_token_beg(ctx);
|
||||
}
|
||||
const auto token = (i == 0) ? whisper_sample_timestamp(ctx, true) : whisper_sample_best(ctx);
|
||||
|
||||
// timestamp token - update sliding window
|
||||
if (token.id > whisper_token_beg(ctx)) {
|
||||
seek_delta = 2*(token.id - whisper_token_beg(ctx));
|
||||
const int seek_delta_new = 2*(token.id - whisper_token_beg(ctx));
|
||||
|
||||
// do not allow to go back in time
|
||||
if (seek_delta != 100*WHISPER_CHUNK_SIZE &&
|
||||
seek_delta > seek_delta_new && result_len < i) {
|
||||
break;
|
||||
}
|
||||
|
||||
seek_delta = seek_delta_new;
|
||||
result_len = i + 1;
|
||||
}
|
||||
|
||||
@ -2752,8 +2735,8 @@ int whisper_full(
|
||||
if (seek + seek_delta + 100 >= seek_end) {
|
||||
result_len = i + 1;
|
||||
} else {
|
||||
// TODO: figure out how to resolve this
|
||||
fprintf(stderr, "\n%s: failed to generate timestamp token - this should not happen\n\n", __func__);
|
||||
failed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@ -2772,11 +2755,21 @@ int whisper_full(
|
||||
}
|
||||
}
|
||||
|
||||
if (done) {
|
||||
// sometimes, the decoding can get stuck in a repetition loop
|
||||
// this is a simple strategy to avoid such cases - we simply flag the decoding as failed and advance
|
||||
// the sliding window by 1 second
|
||||
if (i == n_max - 1 && (result_len == 0 || seek_delta < 100*WHISPER_CHUNK_SIZE/2)) {
|
||||
failed = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (failed) {
|
||||
fprintf(stderr, "\n%s: failed to generate timestamp token - using fallback strategy\n\n", __func__);
|
||||
seek += 100;
|
||||
continue;
|
||||
}
|
||||
|
||||
// shrink down to result_len
|
||||
tokens_cur.resize(result_len);
|
||||
|
||||
|
@ -137,7 +137,7 @@ extern "C" {
|
||||
// whisper_sample_best() returns the token with the highest probability
|
||||
// whisper_sample_timestamp() returns the most probable timestamp token
|
||||
WHISPER_API whisper_token_data whisper_sample_best(struct whisper_context * ctx);
|
||||
WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx);
|
||||
WHISPER_API whisper_token_data whisper_sample_timestamp(struct whisper_context * ctx, bool is_initial);
|
||||
|
||||
// Return the id of the specified language, returns -1 if not found
|
||||
WHISPER_API int whisper_lang_id(const char * lang);
|
||||
|
Loading…
Reference in New Issue
Block a user