Compare commits

...

2 Commits

Author SHA1 Message Date
Georgi Gerganov
fa9621e5e9
mtl : update Makefile to support Metal 2022-11-12 08:32:03 +02:00
Georgi Gerganov
b5d3521626
mtl : matrix multiplication support
Seems to be only marginally faster compared to pure AMX
2022-11-09 18:29:38 +02:00
7 changed files with 369 additions and 11 deletions

View File

@ -94,6 +94,17 @@ if (APPLE AND NOT WHISPER_NO_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
endif()
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
${METALPERFORMANCE_FRAMEWORK})
endif()
if (WHISPER_SUPPORT_OPENBLAS)
@ -168,6 +179,7 @@ set(TARGET whisper)
add_library(${TARGET}
ggml.c
ggml-mtl.m
whisper.cpp
)

View File

@ -58,8 +58,8 @@ endif
ifndef WHISPER_NO_ACCELERATE
# Mac M1 - include Accelerate framework
ifeq ($(UNAME_S),Darwin)
CFLAGS += -DGGML_USE_ACCELERATE
LDFLAGS += -framework Accelerate
CFLAGS += -DGGML_USE_ACCELERATE -DGGML_PERF
LDFLAGS += -framework Foundation -framework Accelerate -framework Metal -framework MetalKit -framework MetalPerformanceShaders
endif
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
@ -81,18 +81,21 @@ endif
# Build library + main
#
main: examples/main/main.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp whisper.o ggml.o -o main $(LDFLAGS)
main: examples/main/main.cpp ggml.o ggml-mtl.o whisper.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp whisper.o ggml.o ggml-mtl.o -o main $(LDFLAGS)
./main -h
ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
ggml-mtl.o: ggml-mtl.m ggml-mtl.h
$(CC) $(CFLAGS) -c ggml-mtl.m -o ggml-mtl.o
whisper.o: whisper.cpp whisper.h
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
libwhisper.a: ggml.o whisper.o
$(AR) rcs libwhisper.a ggml.o whisper.o
libwhisper.a: ggml.o ggml-mtl.o whisper.o
$(AR) rcs libwhisper.a ggml.o ggml-mtl.o whisper.o
clean:
rm -f *.o main stream bench libwhisper.a

38
ggml-mtl.h Normal file
View File

@ -0,0 +1,38 @@
#pragma once
#include <stdint.h>
#include <stddef.h>
// TODO: this will hold dynamic context data in the future
// currently unused
struct ggml_mtl_context {
void * dummy;
};
struct ggml_mtl_object {
int32_t id;
void * data;
};
struct ggml_mtl_context * ggml_mtl_init(void);
struct ggml_mtl_object ggml_mtl_alloc(size_t size);
// multiply matrix by vector
void ggml_mtl_mul_mat_vec_f16(
struct ggml_mtl_context * ctx,
struct ggml_mtl_object src0, // matrix f16
const __fp16 * src1, // vector f16
float * dst, // vector f32
int nrows,
int ncols);
// multiply matrix by matrix
void ggml_mtl_mul_mat_f16(
struct ggml_mtl_context * ctx,
struct ggml_mtl_object src0, // matrix f16
const __fp16 * src1, // matrix f16
float * dst, // matrix f32
int nrows0,
int nrows1,
int ncols);

162
ggml-mtl.m Normal file
View File

@ -0,0 +1,162 @@
#import "ggml-mtl.h"
#import <Foundation/Foundation.h>
#import <Metal/Metal.h>
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
#define GGML_MTL_MAX_BUFFERS 256
// global static storage for Metal buffers
// TODO: move this into a dynamic context
static id<MTLBuffer> g_buffers[GGML_MTL_MAX_BUFFERS];
// global MTL context
// TODO: move this into a dynamic context
static id<MTLDevice> g_device;
static id<MTLCommandQueue> g_command_queue;
struct ggml_mtl_context * ggml_mtl_init() {
// TODO: implement properly
// for now, init the global MTL context and MTL buffers
g_device = MTLCreateSystemDefaultDevice();
g_command_queue = [g_device newCommandQueue];
if (g_command_queue == nil)
{
NSLog(@"Failed to find the command queue.");
return nil;
}
return nil;
}
// search for unallocated buffer slot and use it
struct ggml_mtl_object ggml_mtl_alloc(size_t size) {
// TODO: temporarily making sure that the buffers are nil at the start
static bool first = true;
if (first) {
for (int i = 0; i < GGML_MTL_MAX_BUFFERS; ++i) {
assert(g_buffers[i] == nil);
}
first = false;
}
struct ggml_mtl_object obj = { -1, nil };
for (int i = 0; i < GGML_MTL_MAX_BUFFERS; i++) {
if (g_buffers[i] == nil) {
g_buffers[i] = [g_device newBufferWithLength:size options:MTLResourceStorageModeManaged];
// lunk the MTL buffer to the ggml object
obj.id = i;
obj.data = [g_buffers[i] contents];
break;
}
}
return obj;
}
struct params_mul_mat_vec {
int N; // rows
int M; // cols
};
// multiply matrix with a vector using MPSMatrixVectorMultiplication
void ggml_mtl_mul_mat_vec_f16(
struct ggml_mtl_context * ctx,
struct ggml_mtl_object src0,
const __fp16 * src1,
float * dst,
int nrows,
int ncols) {
(void) ctx; // unused
// Create a command buffer to hold commands.
id<MTLCommandBuffer> commandBuffer = [g_command_queue commandBuffer];
assert(commandBuffer != nil);
// make managed device buffer to store src1
id<MTLBuffer> src1_buffer = [g_device newBufferWithBytes:src1 length:ncols*sizeof(__fp16) options:MTLResourceStorageModeManaged];
id<MTLBuffer> dst_buffer = [g_device newBufferWithLength:nrows*sizeof(float) options:MTLResourceStorageModeManaged];
// MPSMatrixDescriptor
MPSMatrixDescriptor *src0_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows columns:ncols rowBytes:ncols*sizeof(__fp16) dataType:MPSDataTypeFloat16];
MPSVectorDescriptor *src1_desc = [MPSVectorDescriptor vectorDescriptorWithLength:ncols dataType:MPSDataTypeFloat16];
MPSVectorDescriptor *dst_desc = [MPSVectorDescriptor vectorDescriptorWithLength:nrows dataType:MPSDataTypeFloat32];
// MPSMatrix
MPSMatrix *src0_mat = [[MPSMatrix alloc] initWithBuffer:g_buffers[src0.id] descriptor:src0_desc];
MPSVector *src1_vec = [[MPSVector alloc] initWithBuffer:src1_buffer descriptor:src1_desc];
MPSVector *dst_vec = [[MPSVector alloc] initWithBuffer:dst_buffer descriptor:dst_desc];
// MPSMatrixVectorMultiplication
MPSMatrixVectorMultiplication *mul_mat_vec = [[MPSMatrixVectorMultiplication alloc] initWithDevice:g_device transpose:NO rows:nrows columns:ncols alpha:1.0 beta:0.0];
// encode
[mul_mat_vec encodeToCommandBuffer:commandBuffer
inputMatrix:src0_mat
inputVector:src1_vec
resultVector:dst_vec];
[commandBuffer commit];
[commandBuffer waitUntilCompleted];
// copy GPU result to CPU
memcpy(dst, [dst_buffer contents], nrows*sizeof(float));
}
// multiply matrix with a matrix using MPSMatrixMultiplication
void ggml_mtl_mul_mat_f16(
struct ggml_mtl_context * ctx,
struct ggml_mtl_object src0,
const __fp16 * src1,
float * dst,
int nrows0,
int nrows1,
int ncols) {
(void) ctx; // unused
// Create a command buffer to hold commands.
id<MTLCommandBuffer> commandBuffer = [g_command_queue commandBuffer];
assert(commandBuffer != nil);
// make managed device buffer to store src1
id<MTLBuffer> src1_buffer = [g_device newBufferWithBytes:src1 length:ncols*nrows1*sizeof(__fp16) options:MTLResourceStorageModeManaged];
id<MTLBuffer> dst_buffer = [g_device newBufferWithLength:nrows0*nrows1*sizeof(float) options:MTLResourceStorageModeManaged];
// MPSMatrixDescriptor
MPSMatrixDescriptor *src0_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows0 columns:ncols rowBytes:ncols*sizeof(__fp16) dataType:MPSDataTypeFloat16];
MPSMatrixDescriptor *src1_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows1 columns:ncols rowBytes:ncols*sizeof(__fp16) dataType:MPSDataTypeFloat16];
MPSMatrixDescriptor *dst_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows1 columns:nrows0 rowBytes:nrows0*sizeof(float) dataType:MPSDataTypeFloat32];
// MPSMatrix
MPSMatrix *src0_mat = [[MPSMatrix alloc] initWithBuffer:g_buffers[src0.id] descriptor:src0_desc];
MPSMatrix *src1_mat = [[MPSMatrix alloc] initWithBuffer:src1_buffer descriptor:src1_desc];
MPSMatrix *dst_mat = [[MPSMatrix alloc] initWithBuffer:dst_buffer descriptor:dst_desc];
//// MPSMatrixMultiplication z = x * yT
//MPSMatrixMultiplication *mul_mat = [[MPSMatrixMultiplication alloc] initWithDevice:g_device transposeLeft:NO transposeRight:YES resultRows:nrows resultColumns:nrows interiorColumns:ncols alpha:1.0 beta:0.0];
//// encode
//[mul_mat encodeToCommandBuffer:commandBuffer
// leftMatrix:src0_mat
// rightMatrix:src1_mat
// resultMatrix:dst_mat];
// MPSMatrixMultiplication zT = xT * y
MPSMatrixMultiplication *mul_mat = [[MPSMatrixMultiplication alloc] initWithDevice:g_device transposeLeft:NO transposeRight:YES resultRows:nrows1 resultColumns:nrows0 interiorColumns:ncols alpha:1.0 beta:0.0];
// encode
[mul_mat encodeToCommandBuffer:commandBuffer
leftMatrix:src1_mat
rightMatrix:src0_mat
resultMatrix:dst_mat];
[commandBuffer commit];
[commandBuffer waitUntilCompleted];
// copy GPU result to CPU
memcpy(dst, [dst_buffer contents], nrows0*nrows1*sizeof(float));
}

138
ggml.c
View File

@ -1,5 +1,7 @@
#include "ggml.h"
#include "ggml-mtl.h"
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__)
@ -1307,6 +1309,8 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
static bool first_time = true;
if (first_time) {
ggml_mtl_init(); // TODO: fix this
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
g_state.contexts[i].used = false;
}
@ -1462,6 +1466,104 @@ struct ggml_tensor * ggml_new_tensor_impl(
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.data =*/ data == NULL ? (void *)(result + 1) : data,
/*.id =*/ -1,
/*.pad =*/ { 0 },
};
ggml_assert_aligned(result->data);
for (int i = 0; i < n_dims; i++) {
result->ne[i] = ne[i];
}
result->nb[0] = GGML_TYPE_SIZE[type];
for (int i = 1; i < GGML_MAX_DIMS; i++) {
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
}
ctx->n_objects++;
return result;
}
struct ggml_tensor * ggml_new_tensor_mtl_impl(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int* ne,
void* data) {
// always insert objects at the end of the context's memory pool
struct ggml_object * obj_cur = ctx->objects_end;
const size_t cur_offset = obj_cur == NULL ? 0 : obj_cur->offset;
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
const size_t cur_end = cur_offset + cur_size;
struct ggml_mtl_object obj_mtl;
{
assert(data == NULL); // TODO: in-place metal buffer, need page aligned memory
size_t size_needed_mtl = 0;
if (data == NULL) {
size_needed_mtl += GGML_TYPE_SIZE[type];
for (int i = 0; i < n_dims; i++) {
size_needed_mtl *= ne[i];
}
}
obj_mtl = ggml_mtl_alloc(size_needed_mtl);
}
size_t size_needed = 0;
size_needed += sizeof(struct ggml_tensor);
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_PRINT("%s: not enough space in the context's memory pool\n", __func__);
assert(false);
return NULL;
}
char * const mem_buffer = ctx->mem_buffer;
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
*obj_new = (struct ggml_object) {
.offset = cur_end + GGML_OBJECT_SIZE,
.size = size_needed,
.next = NULL,
};
if (obj_cur != NULL) {
obj_cur->next = obj_new;
} else {
// this is the first object in this context
ctx->objects_begin = obj_new;
}
ctx->objects_end = obj_new;
//GGML_PRINT_DEBUG("%s: inserted new object at %zu\n", __func__, cur_end);
struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offset);
ggml_assert_aligned(result);
*result = (struct ggml_tensor) {
/*.type =*/ type,
/*.n_dims =*/ n_dims,
/*.ne =*/ { 1, 1, 1, 1 },
/*.nb =*/ { 0, 0, 0, 0 },
/*.op =*/ GGML_OP_NONE,
/*.is_param =*/ false,
/*.grad =*/ NULL,
/*.src0 =*/ NULL,
/*.src1 =*/ NULL,
/*.opt =*/ { NULL },
/*.n_tasks =*/ 0,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.data =*/ obj_mtl.data,
/*.id =*/ obj_mtl.id,
/*.pad =*/ { 0 },
};
@ -1489,6 +1591,14 @@ struct ggml_tensor * ggml_new_tensor(
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
}
struct ggml_tensor * ggml_new_tensor_mtl(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int* ne) {
return ggml_new_tensor_mtl_impl(ctx, type, n_dims, ne, NULL);
}
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
@ -1505,6 +1615,15 @@ struct ggml_tensor * ggml_new_tensor_2d(
return ggml_new_tensor(ctx, type, 2, ne);
}
struct ggml_tensor * ggml_new_tensor_2d_mtl(
struct ggml_context * ctx,
enum ggml_type type,
int ne0,
int ne1) {
const int ne[2] = { ne0, ne1 };
return ggml_new_tensor_mtl(ctx, type, 2, ne);
}
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
@ -4343,8 +4462,11 @@ void ggml_compute_forward_mul_mat_f16_f32(
// nb00 < nb01 - src0 is transposed
// compute by src0 columns
// are we using Metal?
const bool is_mtl = src0->id >= 0;
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst) && !is_mtl) {
GGML_ASSERT(nb10 == sizeof(float));
if (params->ith != 0) return;
@ -4472,6 +4594,20 @@ void ggml_compute_forward_mul_mat_f16_f32(
// parallelize by src0 rows using ggml_vec_dot_f32
if (is_mtl) {
assert(ne02 == 1);
assert(ne03 == 1);
if (params->ith == 0) {
printf("XXXXXXXXXXX src0->ne[0] = %d, src0->ne[1] = %d\n", src0->ne[0], src0->ne[1]);
printf("XXXXXXXXXXX src1->ne[0] = %d, src1->ne[1] = %d\n", src1->ne[0], src1->ne[1]);
struct ggml_mtl_object src0_mtl = { src0->id, src0->data };
ggml_fp16_t * src1_fp16 = params->wdata;
ggml_mtl_mul_mat_f16(NULL, src0_mtl, src1_fp16, dst->data, ne01, ne11, ne00);
}
return;
}
// total rows in src0
const int nr = ne01*ne02*ne03;

9
ggml.h
View File

@ -108,7 +108,8 @@ struct ggml_tensor {
int64_t perf_time_us;
void * data;
char padding[8];
int32_t id; // TODO: mtl buffer id
char pad[4];
};
// computation graph
@ -173,6 +174,12 @@ struct ggml_tensor * ggml_new_tensor_2d(
int ne0,
int ne1);
struct ggml_tensor * ggml_new_tensor_2d_mtl(
struct ggml_context * ctx,
enum ggml_type type,
int ne0,
int ne1);
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,

View File

@ -788,10 +788,10 @@ static bool whisper_model_load(const std::string & fname, whisper_context & wctx
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
layer.mlp_0_w = ggml_new_tensor_2d_mtl(ctx, wtype, n_audio_state, 4*n_audio_state); // offload to GPU
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
layer.mlp_1_w = ggml_new_tensor_2d_mtl(ctx, wtype, 4*n_audio_state, n_audio_state); // offload to GPU
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
@ -1342,7 +1342,7 @@ static bool whisper_encode(
ggml_build_forward_expand(&gf, inpO);
ggml_graph_compute (ctxL, &gf);
//ggml_graph_print(&gf);
ggml_graph_print(&gf);
}
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better