forked from extern/whisper.cpp
Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
17a14593de | |||
b0ac915265 |
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,5 +1,7 @@
|
||||
*.o
|
||||
*.a
|
||||
*.mlmodel
|
||||
*.mlmodelc
|
||||
.cache/
|
||||
.vs/
|
||||
.vscode/
|
||||
|
@ -54,6 +54,8 @@ if (APPLE)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
|
||||
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
@ -86,9 +88,12 @@ endif()
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# on APPLE - include Accelerate framework
|
||||
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
|
||||
# on APPLE
|
||||
if (APPLE)
|
||||
# include Accelerate framework
|
||||
if (NOT WHISPER_NO_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
@ -99,6 +104,20 @@ if (APPLE AND NOT WHISPER_NO_ACCELERATE)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML)
|
||||
find_library(FOUNDATION_FRAMEWORK Foundation)
|
||||
find_library(COREML_FRAMEWORK CoreML)
|
||||
|
||||
if (COREML_FRAMEWORK)
|
||||
message(STATUS "CoreML framework found")
|
||||
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
|
||||
else()
|
||||
message(WARNING "CoreML framework not found")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_SUPPORT_OPENBLAS)
|
||||
find_library(OPENBLAS_LIB
|
||||
NAMES openblas libopenblas
|
||||
@ -181,6 +200,33 @@ if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper.coreml - Core ML support
|
||||
#
|
||||
|
||||
if (WHISPER_COREML)
|
||||
set(TARGET whisper.coreml)
|
||||
|
||||
add_library(${TARGET}
|
||||
coreml/whisper-encoder.h
|
||||
coreml/whisper-encoder.mm
|
||||
coreml/whisper-encoder-impl.h
|
||||
coreml/whisper-encoder-impl.m
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES
|
||||
COMPILE_FLAGS "-fobjc-arc"
|
||||
)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
@ -200,6 +246,10 @@ target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
if (WHISPER_COREML)
|
||||
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
|
44
Makefile
44
Makefile
@ -132,6 +132,10 @@ ifndef WHISPER_NO_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
ifdef WHISPER_COREML
|
||||
CXXFLAGS += -DWHISPER_USE_COREML
|
||||
LDFLAGS += -framework Foundation -framework CoreML
|
||||
endif
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
@ -184,11 +188,23 @@ ggml.o: ggml.c ggml.h
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
libwhisper.a: ggml.o whisper.o
|
||||
$(AR) rcs libwhisper.a ggml.o whisper.o
|
||||
ifndef WHISPER_COREML
|
||||
WHISPER_OBJ = whisper.o
|
||||
else
|
||||
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
|
||||
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
|
||||
|
||||
libwhisper.so: ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
||||
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
|
||||
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
|
||||
|
||||
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
endif
|
||||
|
||||
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
||||
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
|
||||
|
||||
libwhisper.so: ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
||||
@ -202,21 +218,21 @@ CC_SDL=`sdl2-config --cflags --libs`
|
||||
SRC_COMMON = examples/common.cpp
|
||||
SRC_COMMON_SDL = examples/common-sdl.cpp
|
||||
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o -o main $(LDFLAGS)
|
||||
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
|
||||
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
||||
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
|
13
README.md
13
README.md
@ -433,19 +433,6 @@ https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a
|
||||
|
||||
---
|
||||
|
||||
## Video comparison of different models
|
||||
|
||||
Use the [extra/bench-wts.sh](https://github.com/ggerganov/whisper.cpp/blob/master/extra/bench-wts.sh) script to generate a video in the following format:
|
||||
|
||||
```java
|
||||
./extra/bench-wts.sh samples/jfk.wav
|
||||
ffplay ./samples/jfk.wav.all.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/223206245-2d36d903-cf8e-4f09-8c3b-eb9f9c39d6fc.mp4
|
||||
|
||||
---
|
||||
|
||||
## Benchmarks
|
||||
|
||||
In order to have an objective comparison of the performance of the inference across different system configurations,
|
||||
|
@ -94,7 +94,6 @@ func (model *model) NewContext() (Context, error) {
|
||||
params.SetPrintRealtime(false)
|
||||
params.SetPrintTimestamps(false)
|
||||
params.SetThreads(runtime.NumCPU())
|
||||
params.SetNoContext(true)
|
||||
|
||||
// Return new context
|
||||
return newContext(model, params)
|
||||
|
@ -20,7 +20,7 @@ extern bool callEncoderBegin(void* user_data);
|
||||
// Text segment callback
|
||||
// Called on every newly generated text segment
|
||||
// Use the whisper_full_...() functions to obtain the text segments
|
||||
static void whisper_new_segment_cb(struct whisper_context* ctx, struct whisper_state* state, int n_new, void* user_data) {
|
||||
static void whisper_new_segment_cb(struct whisper_context* ctx, int n_new, void* user_data) {
|
||||
if(user_data != NULL && ctx != NULL) {
|
||||
callNewSegment(user_data, n_new);
|
||||
}
|
||||
@ -29,7 +29,7 @@ static void whisper_new_segment_cb(struct whisper_context* ctx, struct whisper_s
|
||||
// Encoder begin callback
|
||||
// If not NULL, called before the encoder starts
|
||||
// If it returns false, the computation is aborted
|
||||
static bool whisper_encoder_begin_cb(struct whisper_context* ctx, struct whisper_state* state, void* user_data) {
|
||||
static bool whisper_encoder_begin_cb(struct whisper_context* ctx, void* user_data) {
|
||||
if(user_data != NULL && ctx != NULL) {
|
||||
return callEncoderBegin(user_data);
|
||||
}
|
||||
|
@ -199,7 +199,7 @@ static VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
|
||||
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
|
142
coreml/whisper-encoder-impl.h
Normal file
142
coreml/whisper-encoder-impl.h
Normal file
@ -0,0 +1,142 @@
|
||||
//
|
||||
// CoremlEncoder.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// melSegment as 1 × 80 × 3000 3-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * melSegment;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoderOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// output as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * output;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(10.15), ios(13.0), watchos(6.0), tvos(13.0)) __attribute__((visibility("hidden")))
|
||||
@interface CoremlEncoder : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) __attribute__((visibility("hidden")));
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of CoremlEncoderInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param melSegment as 1 × 80 × 3000 3-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as CoremlEncoderOutput
|
||||
*/
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of CoremlEncoderInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<CoremlEncoderOutput *>
|
||||
*/
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
197
coreml/whisper-encoder-impl.m
Normal file
197
coreml/whisper-encoder-impl.m
Normal file
@ -0,0 +1,197 @@
|
||||
//
|
||||
// CoremlEncoder.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-encoder-impl.h"
|
||||
|
||||
@implementation CoremlEncoderInput
|
||||
|
||||
- (instancetype)initWithMelSegment:(MLMultiArray *)melSegment {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_melSegment = melSegment;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"melSegment"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"melSegment"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.melSegment];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation CoremlEncoderOutput
|
||||
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_output = output;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"output"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"output"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.output];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation CoremlEncoder
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"CoremlEncoder" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load CoremlEncoder.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of CoremlEncoder.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize CoremlEncoder instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for CoremlEncoder.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct CoremlEncoder instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid CoremlEncoder instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(CoremlEncoder * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
CoremlEncoder *typedModel = [[CoremlEncoder alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromFeatures:(CoremlEncoderInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable CoremlEncoderOutput *)predictionFromMelSegment:(MLMultiArray *)melSegment error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
CoremlEncoderInput *input_ = [[CoremlEncoderInput alloc] initWithMelSegment:melSegment];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<CoremlEncoderOutput *> *)predictionsFromInputs:(NSArray<CoremlEncoderInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<CoremlEncoderOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
CoremlEncoderOutput * result = [[CoremlEncoderOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
22
coreml/whisper-encoder.h
Normal file
22
coreml/whisper-encoder.h
Normal file
@ -0,0 +1,22 @@
|
||||
// Wrapper of the Core ML Whisper Encoder model
|
||||
//
|
||||
// Code is derived from the work of Github user @wangchou
|
||||
// ref: https://github.com/wangchou/callCoreMLFromCpp
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context;
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx);
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
61
coreml/whisper-encoder.mm
Normal file
61
coreml/whisper-encoder.mm
Normal file
@ -0,0 +1,61 @@
|
||||
#import "coreml/whisper-encoder.h"
|
||||
#import "coreml/whisper-encoder-impl.h"
|
||||
|
||||
#import <CoreML/CoreML.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context {
|
||||
const void * data;
|
||||
};
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
const void * data = CFBridgingRetain([[CoremlEncoder alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
whisper_coreml_context * ctx = new whisper_coreml_context;
|
||||
|
||||
ctx->data = data;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
|
||||
CFRelease(ctx->data);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
float * mel,
|
||||
float * out) {
|
||||
MLMultiArray * inMultiArray = [
|
||||
[MLMultiArray alloc] initWithDataPointer: mel
|
||||
shape: @[@1, @80, @3000]
|
||||
dataType: MLMultiArrayDataTypeFloat32
|
||||
strides: @[@(240000), @(3000), @1]
|
||||
deallocator: nil
|
||||
error: nil
|
||||
];
|
||||
|
||||
CoremlEncoderOutput * outCoreML = [(__bridge id) ctx->data predictionFromMelSegment:inMultiArray error:nil];
|
||||
|
||||
MLMultiArray * outMA = outCoreML.output;
|
||||
|
||||
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
|
||||
}
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
@ -72,7 +72,7 @@ int timestamp_to_sample(int64_t t, int n_samples) {
|
||||
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
|
||||
}
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data) {
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
|
||||
const auto & params = *((whisper_print_user_data *) user_data)->params;
|
||||
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
|
||||
|
||||
@ -260,7 +260,7 @@ int run(whisper_params ¶ms, std::vector<std::vector<std::string>> &result) {
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
|
@ -80,7 +80,6 @@ struct whisper_params {
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
std::string font_path = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
std::string model = "models/ggml-base.en.bin";
|
||||
|
||||
std::vector<std::string> fname_inp = {};
|
||||
@ -128,7 +127,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
@ -176,7 +174,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
|
||||
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
|
||||
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
|
||||
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
|
||||
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
|
||||
fprintf(stderr, " -of FNAME, --output-file FNAME [%-7s] output file path (without file extension)\n", "");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
@ -196,7 +193,7 @@ struct whisper_print_user_data {
|
||||
const std::vector<std::vector<float>> * pcmf32s;
|
||||
};
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper_state * /*state*/, int n_new, void * user_data) {
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
|
||||
const auto & params = *((whisper_print_user_data *) user_data)->params;
|
||||
const auto & pcmf32s = *((whisper_print_user_data *) user_data)->pcmf32s;
|
||||
|
||||
@ -371,18 +368,13 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & /*params*/, float t_sec) {
|
||||
std::ofstream fout(fname);
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
static const char * font = params.font_path.c_str();
|
||||
|
||||
std::ifstream fin(font);
|
||||
if (!fin.is_open()) {
|
||||
fprintf(stderr, "%s: font not found at '%s', please specify a monospace font with -fp\n", __func__, font);
|
||||
return false;
|
||||
}
|
||||
// TODO: become parameter
|
||||
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
|
||||
fout << "#!/bin/bash" << "\n";
|
||||
fout << "\n";
|
||||
@ -616,7 +608,7 @@ int main(int argc, char ** argv) {
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
|
||||
wparams.encoder_begin_callback = [](struct whisper_context * /*ctx*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
|
@ -288,6 +288,7 @@ int main(int argc, char ** argv) {
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = !use_vad;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
|
@ -9,4 +9,4 @@ To use:
|
||||
5. Select the "release" active build variant, and use Android Studio to run and deploy to your device.
|
||||
[^1]: I recommend the tiny or base models for running on an Android device.
|
||||
|
||||
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1670775/221613663-a17bf770-27ef-45ab-9a46-a5f99ba65d2a.jpg">
|
||||
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1991296/208154256-82d972dc-221b-48c4-bfcb-36ce68602f93.png">
|
||||
|
@ -2,7 +2,6 @@ package com.whispercppdemo.ui.main
|
||||
|
||||
import androidx.compose.foundation.layout.*
|
||||
import androidx.compose.foundation.rememberScrollState
|
||||
import androidx.compose.foundation.text.selection.SelectionContainer
|
||||
import androidx.compose.foundation.verticalScroll
|
||||
import androidx.compose.material3.*
|
||||
import androidx.compose.runtime.Composable
|
||||
@ -20,7 +19,6 @@ fun MainScreen(viewModel: MainScreenViewModel) {
|
||||
canTranscribe = viewModel.canTranscribe,
|
||||
isRecording = viewModel.isRecording,
|
||||
messageLog = viewModel.dataLog,
|
||||
onBenchmarkTapped = viewModel::benchmark,
|
||||
onTranscribeSampleTapped = viewModel::transcribeSample,
|
||||
onRecordTapped = viewModel::toggleRecord
|
||||
)
|
||||
@ -32,7 +30,6 @@ private fun MainScreen(
|
||||
canTranscribe: Boolean,
|
||||
isRecording: Boolean,
|
||||
messageLog: String,
|
||||
onBenchmarkTapped: () -> Unit,
|
||||
onTranscribeSampleTapped: () -> Unit,
|
||||
onRecordTapped: () -> Unit
|
||||
) {
|
||||
@ -48,11 +45,8 @@ private fun MainScreen(
|
||||
.padding(innerPadding)
|
||||
.padding(16.dp)
|
||||
) {
|
||||
Column(verticalArrangement = Arrangement.SpaceBetween) {
|
||||
Row(horizontalArrangement = Arrangement.SpaceBetween, modifier = Modifier.fillMaxWidth()) {
|
||||
BenchmarkButton(enabled = canTranscribe, onClick = onBenchmarkTapped)
|
||||
Row(horizontalArrangement = Arrangement.SpaceBetween) {
|
||||
TranscribeSampleButton(enabled = canTranscribe, onClick = onTranscribeSampleTapped)
|
||||
}
|
||||
RecordButton(
|
||||
enabled = canTranscribe,
|
||||
isRecording = isRecording,
|
||||
@ -66,17 +60,8 @@ private fun MainScreen(
|
||||
|
||||
@Composable
|
||||
private fun MessageLog(log: String) {
|
||||
SelectionContainer() {
|
||||
Text(modifier = Modifier.verticalScroll(rememberScrollState()), text = log)
|
||||
}
|
||||
}
|
||||
|
||||
@Composable
|
||||
private fun BenchmarkButton(enabled: Boolean, onClick: () -> Unit) {
|
||||
Button(onClick = onClick, enabled = enabled) {
|
||||
Text("Benchmark")
|
||||
}
|
||||
}
|
||||
|
||||
@Composable
|
||||
private fun TranscribeSampleButton(enabled: Boolean, onClick: () -> Unit) {
|
||||
|
@ -41,15 +41,10 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
|
||||
init {
|
||||
viewModelScope.launch {
|
||||
printSystemInfo()
|
||||
loadData()
|
||||
}
|
||||
}
|
||||
|
||||
private suspend fun printSystemInfo() {
|
||||
printMessage(String.format("System Info: %s\n", WhisperContext.getSystemInfo()));
|
||||
}
|
||||
|
||||
private suspend fun loadData() {
|
||||
printMessage("Loading data...\n")
|
||||
try {
|
||||
@ -86,29 +81,10 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
//whisperContext = WhisperContext.createContextFromFile(firstModel.absolutePath)
|
||||
}
|
||||
|
||||
fun benchmark() = viewModelScope.launch {
|
||||
runBenchmark(6)
|
||||
}
|
||||
|
||||
fun transcribeSample() = viewModelScope.launch {
|
||||
transcribeAudio(getFirstSample())
|
||||
}
|
||||
|
||||
private suspend fun runBenchmark(nthreads: Int) {
|
||||
if (!canTranscribe) {
|
||||
return
|
||||
}
|
||||
|
||||
canTranscribe = false
|
||||
|
||||
printMessage("Running benchmark. This will take minutes...\n")
|
||||
whisperContext?.benchMemory(nthreads)?.let{ printMessage(it) }
|
||||
printMessage("\n")
|
||||
whisperContext?.benchGgmlMulMat(nthreads)?.let{ printMessage(it) }
|
||||
|
||||
canTranscribe = true
|
||||
}
|
||||
|
||||
private suspend fun getFirstSample(): File = withContext(Dispatchers.IO) {
|
||||
samplesPath.listFiles()!!.first()
|
||||
}
|
||||
@ -138,14 +114,11 @@ class MainScreenViewModel(private val application: Application) : ViewModel() {
|
||||
canTranscribe = false
|
||||
|
||||
try {
|
||||
printMessage("Reading wave samples... ")
|
||||
printMessage("Reading wave samples...\n")
|
||||
val data = readAudioSamples(file)
|
||||
printMessage("${data.size / (16000 / 1000)} ms\n")
|
||||
printMessage("Transcribing data...\n")
|
||||
val start = System.currentTimeMillis()
|
||||
val text = whisperContext?.transcribeData(data)
|
||||
val elapsed = System.currentTimeMillis() - start
|
||||
printMessage("Done ($elapsed ms): $text\n")
|
||||
printMessage("Done: $text\n")
|
||||
} catch (e: Exception) {
|
||||
Log.w(LOG_TAG, e)
|
||||
printMessage("${e.localizedMessage}\n")
|
||||
|
@ -27,14 +27,6 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
}
|
||||
}
|
||||
|
||||
suspend fun benchMemory(nthreads: Int): String = withContext(scope.coroutineContext) {
|
||||
return@withContext WhisperLib.benchMemcpy(nthreads)
|
||||
}
|
||||
|
||||
suspend fun benchGgmlMulMat(nthreads: Int): String = withContext(scope.coroutineContext) {
|
||||
return@withContext WhisperLib.benchGgmlMulMat(nthreads)
|
||||
}
|
||||
|
||||
suspend fun release() = withContext(scope.coroutineContext) {
|
||||
if (ptr != 0L) {
|
||||
WhisperLib.freeContext(ptr)
|
||||
@ -74,10 +66,6 @@ class WhisperContext private constructor(private var ptr: Long) {
|
||||
}
|
||||
return WhisperContext(ptr)
|
||||
}
|
||||
|
||||
fun getSystemInfo(): String {
|
||||
return WhisperLib.getSystemInfo()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -86,7 +74,6 @@ private class WhisperLib {
|
||||
init {
|
||||
Log.d(LOG_TAG, "Primary ABI: ${Build.SUPPORTED_ABIS[0]}")
|
||||
var loadVfpv4 = false
|
||||
var loadV8fp16 = false
|
||||
if (isArmEabiV7a()) {
|
||||
// armeabi-v7a needs runtime detection support
|
||||
val cpuInfo = cpuInfo()
|
||||
@ -97,24 +84,11 @@ private class WhisperLib {
|
||||
loadVfpv4 = true
|
||||
}
|
||||
}
|
||||
} else if (isArmEabiV8a()) {
|
||||
// ARMv8.2a needs runtime detection support
|
||||
val cpuInfo = cpuInfo()
|
||||
cpuInfo?.let {
|
||||
Log.d(LOG_TAG, "CPU info: $cpuInfo")
|
||||
if (cpuInfo.contains("fphp")) {
|
||||
Log.d(LOG_TAG, "CPU supports fp16 arithmetic")
|
||||
loadV8fp16 = true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (loadVfpv4) {
|
||||
Log.d(LOG_TAG, "Loading libwhisper_vfpv4.so")
|
||||
System.loadLibrary("whisper_vfpv4")
|
||||
} else if (loadV8fp16) {
|
||||
Log.d(LOG_TAG, "Loading libwhisper_v8fp16_va.so")
|
||||
System.loadLibrary("whisper_v8fp16_va")
|
||||
} else {
|
||||
Log.d(LOG_TAG, "Loading libwhisper.so")
|
||||
System.loadLibrary("whisper")
|
||||
@ -129,9 +103,6 @@ private class WhisperLib {
|
||||
external fun fullTranscribe(contextPtr: Long, audioData: FloatArray)
|
||||
external fun getTextSegmentCount(contextPtr: Long): Int
|
||||
external fun getTextSegment(contextPtr: Long, index: Int): String
|
||||
external fun getSystemInfo(): String
|
||||
external fun benchMemcpy(nthread: Int): String
|
||||
external fun benchGgmlMulMat(nthread: Int): String
|
||||
}
|
||||
}
|
||||
|
||||
@ -139,10 +110,6 @@ private fun isArmEabiV7a(): Boolean {
|
||||
return Build.SUPPORTED_ABIS[0].equals("armeabi-v7a")
|
||||
}
|
||||
|
||||
private fun isArmEabiV8a(): Boolean {
|
||||
return Build.SUPPORTED_ABIS[0].equals("arm64-v8a")
|
||||
}
|
||||
|
||||
private fun cpuInfo(): String? {
|
||||
return try {
|
||||
File("/proc/cpuinfo").inputStream().bufferedReader().use {
|
||||
|
@ -13,14 +13,3 @@ ifeq ($(TARGET_ARCH_ABI),armeabi-v7a)
|
||||
LOCAL_CFLAGS += -mfpu=neon-vfpv4
|
||||
include $(BUILD_SHARED_LIBRARY)
|
||||
endif
|
||||
|
||||
ifeq ($(TARGET_ARCH_ABI),arm64-v8a)
|
||||
include $(CLEAR_VARS)
|
||||
LOCAL_MODULE := libwhisper_v8fp16_va
|
||||
include $(LOCAL_PATH)/Whisper.mk
|
||||
# Allow building NEON FMA code.
|
||||
# https://android.googlesource.com/platform/ndk/+/master/sources/android/cpufeatures/cpu-features.h
|
||||
LOCAL_CFLAGS += -march=armv8.2-a+fp16
|
||||
include $(BUILD_SHARED_LIBRARY)
|
||||
endif
|
||||
|
||||
|
@ -6,7 +6,6 @@
|
||||
#include <sys/sysinfo.h>
|
||||
#include <string.h>
|
||||
#include "whisper.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define TAG "JNI"
|
||||
@ -215,29 +214,3 @@ Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_getTextSegment(
|
||||
jstring string = (*env)->NewStringUTF(env, text);
|
||||
return string;
|
||||
}
|
||||
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_getSystemInfo(
|
||||
JNIEnv *env, jobject thiz
|
||||
) {
|
||||
UNUSED(thiz);
|
||||
const char *sysinfo = whisper_print_system_info();
|
||||
jstring string = (*env)->NewStringUTF(env, sysinfo);
|
||||
return string;
|
||||
}
|
||||
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_benchMemcpy(JNIEnv *env, jobject thiz,
|
||||
jint n_threads) {
|
||||
UNUSED(thiz);
|
||||
const char *bench_ggml_memcpy = whisper_bench_memcpy_str(n_threads);
|
||||
jstring string = (*env)->NewStringUTF(env, bench_ggml_memcpy);
|
||||
}
|
||||
|
||||
JNIEXPORT jstring JNICALL
|
||||
Java_com_whispercppdemo_whisper_WhisperLib_00024Companion_benchGgmlMulMat(JNIEnv *env, jobject thiz,
|
||||
jint n_threads) {
|
||||
UNUSED(thiz);
|
||||
const char *bench_ggml_mul_mat = whisper_bench_ggml_mul_mat_str(n_threads);
|
||||
jstring string = (*env)->NewStringUTF(env, bench_ggml_mul_mat);
|
||||
}
|
||||
|
@ -1,70 +0,0 @@
|
||||
# Benchmark word-level timestamps for different models
|
||||
#
|
||||
# This script takes two arguments
|
||||
# - an audio file
|
||||
# - [optional] path to a font file
|
||||
|
||||
# I'm using "/usr/share/fonts/truetype/freefont/FreeMono.ttf" on Ubuntu
|
||||
|
||||
if [ -z "$1" ]; then
|
||||
echo "Usage: $0 <audio file> [font file]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
#TODO: Make this a command line parameter
|
||||
#models="base small large"
|
||||
#models="tiny.en tiny base.en base small.en small medium.en medium large-v1 large"
|
||||
models="tiny.en base.en small.en medium.en large"
|
||||
|
||||
DURATION=$(ffprobe -i $1 -show_entries format=duration -v quiet -of csv="p=0")
|
||||
DURATION=$(printf "%.2f" $DURATION)
|
||||
echo "Input file duration: ${DURATION}s"
|
||||
|
||||
for model in $models; do
|
||||
echo "Running $model"
|
||||
COMMAND="./main -m models/ggml-$model.bin -owts -f $1 -of $1.$model"
|
||||
|
||||
if [ ! -z "$2" ]; then
|
||||
COMMAND="$COMMAND -fp $2"
|
||||
fi
|
||||
#TODO: Surface errors better
|
||||
# TIMEFMT is for zsh, TIMEFORMAT is for bash
|
||||
EXECTIME=$({ TIMEFMT="%E";TIMEFORMAT=%E; time $COMMAND >/dev/null 2>&1; } 2>&1)
|
||||
|
||||
# Slightly different formats between zsh and bash
|
||||
if [ "${EXECTIME: -1}" == "s" ]; then
|
||||
EXECTIME=${EXECTIME::-1}
|
||||
fi
|
||||
|
||||
RATIO=$(echo "$DURATION / $EXECTIME" | bc -l)
|
||||
RATIO=$(printf "%.2f" $RATIO)
|
||||
|
||||
echo "Execution time: ${EXECTIME}s (${RATIO}x realtime)"
|
||||
|
||||
# If the file already exists, delete it
|
||||
if [ -f $1.mp4 ]; then
|
||||
rm $1.mp4
|
||||
fi
|
||||
|
||||
bash $1.$model.wts >/dev/null 2>&1
|
||||
mv $1.mp4 $1.$model.mp4
|
||||
|
||||
ffmpeg -y -f lavfi -i color=c=black:s=1200x50:d=$DURATION -vf "drawtext=fontfile=$2:fontsize=36:x=10:y=(h-text_h)/2:text='ggml-$model - ${EXECTIME}s (${RATIO}x realtime)':fontcolor=lightgrey" $1.$model.info.mp4 >/dev/null 2>&1
|
||||
done
|
||||
|
||||
COMMAND="ffmpeg -y"
|
||||
for model in $models; do
|
||||
COMMAND="$COMMAND -i $1.$model.info.mp4 -i $1.$model.mp4"
|
||||
done
|
||||
COMMAND="$COMMAND -filter_complex \""
|
||||
COUNT=0
|
||||
for model in $models; do
|
||||
COMMAND="$COMMAND[${COUNT}:v][$(($COUNT+1)):v]"
|
||||
COUNT=$((COUNT+2))
|
||||
done
|
||||
COMMAND="$COMMAND vstack=inputs=${COUNT}[v]\" -map \"[v]\" -map 1:a $1.all.mp4 >/dev/null 2>&1"
|
||||
|
||||
echo $COMMAND
|
||||
|
||||
# Run the command
|
||||
eval $COMMAND
|
82
models/download-coreml-model.sh
Executable file
82
models/download-coreml-model.sh
Executable file
@ -0,0 +1,82 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script downloads Whisper model files that have already been converted to Core ML format.
|
||||
# This way you don't have to convert them yourself.
|
||||
|
||||
src="https://huggingface.co/datasets/ggerganov/whisper.cpp-coreml"
|
||||
pfx="resolve/main/ggml"
|
||||
|
||||
# get the path of this script
|
||||
function get_script_path() {
|
||||
if [ -x "$(command -v realpath)" ]; then
|
||||
echo "$(dirname $(realpath $0))"
|
||||
else
|
||||
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
|
||||
echo "$ret"
|
||||
fi
|
||||
}
|
||||
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
printf "\n"
|
||||
printf " Available models:"
|
||||
for model in "${models[@]}"; do
|
||||
printf " $model"
|
||||
done
|
||||
printf "\n\n"
|
||||
}
|
||||
|
||||
if [ "$#" -ne 1 ]; then
|
||||
printf "Usage: $0 <model>\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
model=$1
|
||||
|
||||
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
|
||||
printf "Invalid model: $model\n"
|
||||
list_models
|
||||
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# download Core ML model
|
||||
|
||||
printf "Downloading Core ML model $model from '$src' ...\n"
|
||||
|
||||
cd $models_path
|
||||
|
||||
if [ -f "ggml-$model.mlmodel" ]; then
|
||||
printf "Model $model already exists. Skipping download.\n"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
if [ -x "$(command -v wget)" ]; then
|
||||
wget --quiet --show-progress -O ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
elif [ -x "$(command -v curl)" ]; then
|
||||
curl -L --output ggml-$model.mlmodel $src/$pfx-$model.mlmodel
|
||||
else
|
||||
printf "Either wget or curl is required to download models.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
printf "Failed to download Core ML model $model \n"
|
||||
printf "Please try again later or download the original Whisper model files and convert them yourself.\n"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
printf "Done! Model '$model' saved in 'models/ggml-$model.mlmodel'\n"
|
||||
printf "Run the following command to compile it:\n\n"
|
||||
printf " $ xcrun coremlc compile ./models/ggml-$model.mlmodel ./models\n\n"
|
||||
printf "You can now use it like this:\n\n"
|
||||
printf " $ ./main -m models/ggml-$model.bin -f samples/jfk.wav\n"
|
||||
printf "\n"
|
907
whisper.cpp
907
whisper.cpp
File diff suppressed because it is too large
Load Diff
114
whisper.h
114
whisper.h
@ -66,7 +66,6 @@ extern "C" {
|
||||
//
|
||||
|
||||
struct whisper_context;
|
||||
struct whisper_state;
|
||||
|
||||
typedef int whisper_token;
|
||||
|
||||
@ -102,20 +101,11 @@ extern "C" {
|
||||
WHISPER_API struct whisper_context * whisper_init_from_buffer(void * buffer, size_t buffer_size);
|
||||
WHISPER_API struct whisper_context * whisper_init(struct whisper_model_loader * loader);
|
||||
|
||||
// These are the same as the above, but the internal state of the context is not allocated automatically
|
||||
// It is the responsibility of the caller to allocate the state using whisper_init_state() (#523)
|
||||
WHISPER_API struct whisper_context * whisper_init_from_file_no_state(const char * path_model);
|
||||
WHISPER_API struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t buffer_size);
|
||||
WHISPER_API struct whisper_context * whisper_init_no_state(struct whisper_model_loader * loader);
|
||||
|
||||
WHISPER_API struct whisper_state * whisper_init_state(struct whisper_context * ctx);
|
||||
|
||||
// Frees all allocated memory
|
||||
// Frees all memory allocated by the model.
|
||||
WHISPER_API void whisper_free(struct whisper_context * ctx);
|
||||
WHISPER_API void whisper_free_state(struct whisper_state * state);
|
||||
|
||||
// Convert RAW PCM audio to log mel spectrogram.
|
||||
// The resulting spectrogram is stored inside the default state of the provided whisper context.
|
||||
// The resulting spectrogram is stored inside the provided whisper context.
|
||||
// Returns 0 on success
|
||||
WHISPER_API int whisper_pcm_to_mel(
|
||||
struct whisper_context * ctx,
|
||||
@ -123,15 +113,8 @@ extern "C" {
|
||||
int n_samples,
|
||||
int n_threads);
|
||||
|
||||
WHISPER_API int whisper_pcm_to_mel_with_state(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
const float * samples,
|
||||
int n_samples,
|
||||
int n_threads);
|
||||
|
||||
// Convert RAW PCM audio to log mel spectrogram but applies a Phase Vocoder to speed up the audio x2.
|
||||
// The resulting spectrogram is stored inside the default state of the provided whisper context.
|
||||
// The resulting spectrogram is stored inside the provided whisper context.
|
||||
// Returns 0 on success
|
||||
WHISPER_API int whisper_pcm_to_mel_phase_vocoder(
|
||||
struct whisper_context* ctx,
|
||||
@ -139,14 +122,8 @@ extern "C" {
|
||||
int n_samples,
|
||||
int n_threads);
|
||||
|
||||
WHISPER_API int whisper_pcm_to_mel_phase_vocoder_with_state(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
const float * samples,
|
||||
int n_samples,
|
||||
int n_threads);
|
||||
|
||||
// This can be used to set a custom log mel spectrogram inside the default state of the provided whisper context.
|
||||
// This can be used to set a custom log mel spectrogram inside the provided whisper context.
|
||||
// Use this instead of whisper_pcm_to_mel() if you want to provide your own log mel spectrogram.
|
||||
// n_mel must be 80
|
||||
// Returns 0 on success
|
||||
@ -156,14 +133,7 @@ extern "C" {
|
||||
int n_len,
|
||||
int n_mel);
|
||||
|
||||
WHISPER_API int whisper_set_mel_with_state(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
const float * data,
|
||||
int n_len,
|
||||
int n_mel);
|
||||
|
||||
// Run the Whisper encoder on the log mel spectrogram stored inside the default state in the provided whisper context.
|
||||
// Run the Whisper encoder on the log mel spectrogram stored inside the provided whisper context.
|
||||
// Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first.
|
||||
// offset can be used to specify the offset of the first frame in the spectrogram.
|
||||
// Returns 0 on success
|
||||
@ -172,12 +142,6 @@ extern "C" {
|
||||
int offset,
|
||||
int n_threads);
|
||||
|
||||
WHISPER_API int whisper_encode_with_state(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
int offset,
|
||||
int n_threads);
|
||||
|
||||
// Run the Whisper decoder to obtain the logits and probabilities for the next token.
|
||||
// Make sure to call whisper_encode() first.
|
||||
// tokens + n_tokens is the provided context for the decoder.
|
||||
@ -191,14 +155,6 @@ extern "C" {
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
WHISPER_API int whisper_decode_with_state(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
const whisper_token * tokens,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
@ -234,15 +190,7 @@ extern "C" {
|
||||
int n_threads,
|
||||
float * lang_probs);
|
||||
|
||||
WHISPER_API int whisper_lang_auto_detect_with_state(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
int offset_ms,
|
||||
int n_threads,
|
||||
float * lang_probs);
|
||||
|
||||
WHISPER_API int whisper_n_len (struct whisper_context * ctx); // mel length
|
||||
WHISPER_API int whisper_n_len_from_state(struct whisper_state * state); // mel length
|
||||
WHISPER_API int whisper_n_vocab (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_n_text_ctx (struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_n_audio_ctx (struct whisper_context * ctx);
|
||||
@ -253,7 +201,6 @@ extern "C" {
|
||||
// Rows: n_tokens
|
||||
// Cols: n_vocab
|
||||
WHISPER_API float * whisper_get_logits(struct whisper_context * ctx);
|
||||
WHISPER_API float * whisper_get_logits_from_state(struct whisper_state * state);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
WHISPER_API const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token);
|
||||
@ -271,7 +218,7 @@ extern "C" {
|
||||
WHISPER_API whisper_token whisper_token_translate (void);
|
||||
WHISPER_API whisper_token whisper_token_transcribe(void);
|
||||
|
||||
// Performance information from the default state.
|
||||
// Performance information
|
||||
WHISPER_API void whisper_print_timings(struct whisper_context * ctx);
|
||||
WHISPER_API void whisper_reset_timings(struct whisper_context * ctx);
|
||||
|
||||
@ -289,19 +236,18 @@ extern "C" {
|
||||
// Text segment callback
|
||||
// Called on every newly generated text segment
|
||||
// Use the whisper_full_...() functions to obtain the text segments
|
||||
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, struct whisper_state * state, int n_new, void * user_data);
|
||||
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, int n_new, void * user_data);
|
||||
|
||||
// Encoder begin callback
|
||||
// If not NULL, called before the encoder starts
|
||||
// If it returns false, the computation is aborted
|
||||
typedef bool (*whisper_encoder_begin_callback)(struct whisper_context * ctx, struct whisper_state * state, void * user_data);
|
||||
typedef bool (*whisper_encoder_begin_callback)(struct whisper_context * ctx, void * user_data);
|
||||
|
||||
// Logits filter callback
|
||||
// Can be used to modify the logits before sampling
|
||||
// If not NULL, called after applying temperature to logits
|
||||
typedef void (*whisper_logits_filter_callback)(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
const whisper_token_data * tokens,
|
||||
int n_tokens,
|
||||
float * logits,
|
||||
@ -388,7 +334,6 @@ extern "C" {
|
||||
WHISPER_API struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy);
|
||||
|
||||
// Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
|
||||
// Not thread safe for same context
|
||||
// Uses the specified decoding strategy to obtain the text.
|
||||
WHISPER_API int whisper_full(
|
||||
struct whisper_context * ctx,
|
||||
@ -396,16 +341,7 @@ extern "C" {
|
||||
const float * samples,
|
||||
int n_samples);
|
||||
|
||||
WHISPER_API int whisper_full_with_state(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
struct whisper_full_params params,
|
||||
const float * samples,
|
||||
int n_samples);
|
||||
|
||||
// Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
|
||||
// Result is stored in the default state of the context
|
||||
// Not thread safe if executed in parallel on the same context.
|
||||
// Split the input audio in chunks and process each chunk separately using whisper_full()
|
||||
// It seems this approach can offer some speedup in some cases.
|
||||
// However, the transcription accuracy can be worse at the beginning and end of each chunk.
|
||||
WHISPER_API int whisper_full_parallel(
|
||||
@ -415,56 +351,40 @@ extern "C" {
|
||||
int n_samples,
|
||||
int n_processors);
|
||||
|
||||
// Number of generated text segments
|
||||
// Number of generated text segments.
|
||||
// A segment can be a few words, a sentence, or even a paragraph.
|
||||
WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx);
|
||||
WHISPER_API int whisper_full_n_segments_from_state(struct whisper_state * state);
|
||||
|
||||
// Language id associated with the context's default state
|
||||
// Language id associated with the current context
|
||||
WHISPER_API int whisper_full_lang_id(struct whisper_context * ctx);
|
||||
|
||||
// Language id associated with the provided state
|
||||
WHISPER_API int whisper_full_lang_id_from_state(struct whisper_state * state);
|
||||
|
||||
// Get the start and end time of the specified segment
|
||||
// Get the start and end time of the specified segment.
|
||||
WHISPER_API int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment);
|
||||
WHISPER_API int64_t whisper_full_get_segment_t0_from_state(struct whisper_state * state, int i_segment);
|
||||
|
||||
WHISPER_API int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment);
|
||||
WHISPER_API int64_t whisper_full_get_segment_t1_from_state(struct whisper_state * state, int i_segment);
|
||||
|
||||
// Get the text of the specified segment
|
||||
// Get the text of the specified segment.
|
||||
WHISPER_API const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment);
|
||||
WHISPER_API const char * whisper_full_get_segment_text_from_state(struct whisper_state * state, int i_segment);
|
||||
|
||||
// Get number of tokens in the specified segment
|
||||
// Get number of tokens in the specified segment.
|
||||
WHISPER_API int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment);
|
||||
WHISPER_API int whisper_full_n_tokens_from_state(struct whisper_state * state, int i_segment);
|
||||
|
||||
// Get the token text of the specified token in the specified segment
|
||||
// Get the token text of the specified token in the specified segment.
|
||||
WHISPER_API const char * whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
WHISPER_API const char * whisper_full_get_token_text_from_state(struct whisper_context * ctx, struct whisper_state * state, int i_segment, int i_token);
|
||||
|
||||
WHISPER_API whisper_token whisper_full_get_token_id (struct whisper_context * ctx, int i_segment, int i_token);
|
||||
WHISPER_API whisper_token whisper_full_get_token_id_from_state(struct whisper_state * state, int i_segment, int i_token);
|
||||
|
||||
// Get token data for the specified token in the specified segment
|
||||
// Get token data for the specified token in the specified segment.
|
||||
// This contains probabilities, timestamps, etc.
|
||||
WHISPER_API whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
WHISPER_API whisper_token_data whisper_full_get_token_data_from_state(struct whisper_state * state, int i_segment, int i_token);
|
||||
|
||||
// Get the probability of the specified token in the specified segment
|
||||
// Get the probability of the specified token in the specified segment.
|
||||
WHISPER_API float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
WHISPER_API float whisper_full_get_token_p_from_state(struct whisper_state * state, int i_segment, int i_token);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Temporary helpers needed for exposing ggml interface
|
||||
|
||||
WHISPER_API int whisper_bench_memcpy(int n_threads);
|
||||
WHISPER_API const char * whisper_bench_memcpy_str(int n_threads);
|
||||
WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads);
|
||||
WHISPER_API const char * whisper_bench_ggml_mul_mat_str(int n_threads);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
Reference in New Issue
Block a user