forked from extern/whisper.cpp
8de452c18b
* whisper : prepare infra for new decoding strategies * whisper : apply logit filters and compute logprobs * whisper : add whisper_get_logits() * whisper : separate self and cross attention memory Initial step needed for supporting parallel decoders * whisper : move probs_id buffer to whisper_context * whisper : refactor kv cache into separate struct * whisper : move self-attention kv cache to whisper_decoder * whisper : wip decoding parameters + strategies * whisper : wip decoding parameters + strategies (part 2) * whisper : wip decoding parameters + strategies (part 3) * whisper : wip decoding parameters + strategies (part 4) * whisper : fix prompt_past update to not include prompt_init * whisper : temperature + best_of support * whisper : support for compression_ration_threshold We actually use entropy, but it is similar * command : fix example to use logits instead of obsolete probs * whisper : handle empty sequence ranking * whisper : add WHISPER_DEBUG + diagnostic prints + new main args * whisper : minor fixes * whisper : add beam-search support * whisper : bug fix when there no previous context * whisper : add comments * stream : disable temperature fallback For real-time processing, we always want a single decoder running at T=0 * whisper.swiftui : update example - fix paths + add empty folders |
||
---|---|---|
.. | ||
whisper.cpp.swift | ||
whisper.swiftui.demo | ||
whisper.swiftui.xcodeproj | ||
README.md |
A sample SwiftUI app using whisper.cpp to do voice-to-text transcriptions. See also: whisper.objc.
To use:
- Select a model from the whisper.cpp repository.1
- Add the model to "whisper.swiftui.demo/Resources/models" via Xcode.
- Select a sample audio file (for example, jfk.wav).
- Add the model to "whisper.swiftui.demo/Resources/samples" via Xcode.
- Select the "release" build configuration under "Run", then deploy and run to your device.
-
I recommend the tiny, base or small models for running on an iOS device. ↩︎