forked from extern/whisper.cpp
c30bffc8a5
Can be used to partially process a recording
3253 lines
110 KiB
C++
3253 lines
110 KiB
C++
#define WHISPER_BUILD
|
|
#include "whisper.h"
|
|
|
|
#include "ggml.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#define _USE_MATH_DEFINES
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#define USE_FLASH_ATTN
|
|
//#define USE_FLASH_FF
|
|
|
|
// available whisper models
|
|
enum e_model {
|
|
MODEL_UNKNOWN,
|
|
MODEL_TINY,
|
|
MODEL_BASE,
|
|
MODEL_SMALL,
|
|
MODEL_MEDIUM,
|
|
MODEL_LARGE,
|
|
};
|
|
|
|
static const std::map<std::string, std::pair<int, std::string>> g_lang = {
|
|
{ "en", { 0, "english", } },
|
|
{ "zh", { 1, "chinese", } },
|
|
{ "de", { 2, "german", } },
|
|
{ "es", { 3, "spanish", } },
|
|
{ "ru", { 4, "russian", } },
|
|
{ "ko", { 5, "korean", } },
|
|
{ "fr", { 6, "french", } },
|
|
{ "ja", { 7, "japanese", } },
|
|
{ "pt", { 8, "portuguese", } },
|
|
{ "tr", { 9, "turkish", } },
|
|
{ "pl", { 10, "polish", } },
|
|
{ "ca", { 11, "catalan", } },
|
|
{ "nl", { 12, "dutch", } },
|
|
{ "ar", { 13, "arabic", } },
|
|
{ "sv", { 14, "swedish", } },
|
|
{ "it", { 15, "italian", } },
|
|
{ "id", { 16, "indonesian", } },
|
|
{ "hi", { 17, "hindi", } },
|
|
{ "fi", { 18, "finnish", } },
|
|
{ "vi", { 19, "vietnamese", } },
|
|
{ "iw", { 20, "hebrew", } },
|
|
{ "uk", { 21, "ukrainian", } },
|
|
{ "el", { 22, "greek", } },
|
|
{ "ms", { 23, "malay", } },
|
|
{ "cs", { 24, "czech", } },
|
|
{ "ro", { 25, "romanian", } },
|
|
{ "da", { 26, "danish", } },
|
|
{ "hu", { 27, "hungarian", } },
|
|
{ "ta", { 28, "tamil", } },
|
|
{ "no", { 29, "norwegian", } },
|
|
{ "th", { 30, "thai", } },
|
|
{ "ur", { 31, "urdu", } },
|
|
{ "hr", { 32, "croatian", } },
|
|
{ "bg", { 33, "bulgarian", } },
|
|
{ "lt", { 34, "lithuanian", } },
|
|
{ "la", { 35, "latin", } },
|
|
{ "mi", { 36, "maori", } },
|
|
{ "ml", { 37, "malayalam", } },
|
|
{ "cy", { 38, "welsh", } },
|
|
{ "sk", { 39, "slovak", } },
|
|
{ "te", { 40, "telugu", } },
|
|
{ "fa", { 41, "persian", } },
|
|
{ "lv", { 42, "latvian", } },
|
|
{ "bn", { 43, "bengali", } },
|
|
{ "sr", { 44, "serbian", } },
|
|
{ "az", { 45, "azerbaijani", } },
|
|
{ "sl", { 46, "slovenian", } },
|
|
{ "kn", { 47, "kannada", } },
|
|
{ "et", { 48, "estonian", } },
|
|
{ "mk", { 49, "macedonian", } },
|
|
{ "br", { 50, "breton", } },
|
|
{ "eu", { 51, "basque", } },
|
|
{ "is", { 52, "icelandic", } },
|
|
{ "hy", { 53, "armenian", } },
|
|
{ "ne", { 54, "nepali", } },
|
|
{ "mn", { 55, "mongolian", } },
|
|
{ "bs", { 56, "bosnian", } },
|
|
{ "kk", { 57, "kazakh", } },
|
|
{ "sq", { 58, "albanian", } },
|
|
{ "sw", { 59, "swahili", } },
|
|
{ "gl", { 60, "galician", } },
|
|
{ "mr", { 61, "marathi", } },
|
|
{ "pa", { 62, "punjabi", } },
|
|
{ "si", { 63, "sinhala", } },
|
|
{ "km", { 64, "khmer", } },
|
|
{ "sn", { 65, "shona", } },
|
|
{ "yo", { 66, "yoruba", } },
|
|
{ "so", { 67, "somali", } },
|
|
{ "af", { 68, "afrikaans", } },
|
|
{ "oc", { 69, "occitan", } },
|
|
{ "ka", { 70, "georgian", } },
|
|
{ "be", { 71, "belarusian", } },
|
|
{ "tg", { 72, "tajik", } },
|
|
{ "sd", { 73, "sindhi", } },
|
|
{ "gu", { 74, "gujarati", } },
|
|
{ "am", { 75, "amharic", } },
|
|
{ "yi", { 76, "yiddish", } },
|
|
{ "lo", { 77, "lao", } },
|
|
{ "uz", { 78, "uzbek", } },
|
|
{ "fo", { 79, "faroese", } },
|
|
{ "ht", { 80, "haitian creole", } },
|
|
{ "ps", { 81, "pashto", } },
|
|
{ "tk", { 82, "turkmen", } },
|
|
{ "nn", { 83, "nynorsk", } },
|
|
{ "mt", { 84, "maltese", } },
|
|
{ "sa", { 85, "sanskrit", } },
|
|
{ "lb", { 86, "luxembourgish", } },
|
|
{ "my", { 87, "myanmar", } },
|
|
{ "bo", { 88, "tibetan", } },
|
|
{ "tl", { 89, "tagalog", } },
|
|
{ "mg", { 90, "malagasy", } },
|
|
{ "as", { 91, "assamese", } },
|
|
{ "tt", { 92, "tatar", } },
|
|
{ "haw", { 93, "hawaiian", } },
|
|
{ "ln", { 94, "lingala", } },
|
|
{ "ha", { 95, "hausa", } },
|
|
{ "ba", { 96, "bashkir", } },
|
|
{ "jw", { 97, "javanese", } },
|
|
{ "su", { 98, "sundanese", } },
|
|
};
|
|
|
|
static const size_t MB = 1024*1024;
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_MODEL = {
|
|
{ MODEL_TINY, 74ull*MB },
|
|
{ MODEL_BASE, 142ull*MB },
|
|
{ MODEL_SMALL, 466ull*MB },
|
|
{ MODEL_MEDIUM, 1464ull*MB },
|
|
{ MODEL_LARGE, 2952ull*MB },
|
|
};
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_MEMORY = {
|
|
{ MODEL_TINY, 12ull*MB },
|
|
{ MODEL_BASE, 24ull*MB },
|
|
{ MODEL_SMALL, 70ull*MB },
|
|
{ MODEL_MEDIUM, 184ull*MB },
|
|
{ MODEL_LARGE, 306ull*MB },
|
|
};
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
|
{ MODEL_TINY, 80ull*MB },
|
|
{ MODEL_BASE, 128ull*MB },
|
|
{ MODEL_SMALL, 300ull*MB },
|
|
{ MODEL_MEDIUM, 680ull*MB },
|
|
{ MODEL_LARGE, 1100ull*MB },
|
|
};
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
|
|
{ MODEL_TINY, 104ull*MB },
|
|
{ MODEL_BASE, 138ull*MB },
|
|
{ MODEL_SMALL, 208ull*MB },
|
|
{ MODEL_MEDIUM, 280ull*MB },
|
|
{ MODEL_LARGE, 354ull*MB },
|
|
};
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
|
{ MODEL_TINY, 200ull*MB },
|
|
{ MODEL_BASE, 202ull*MB },
|
|
{ MODEL_SMALL, 204ull*MB },
|
|
{ MODEL_MEDIUM, 206ull*MB },
|
|
{ MODEL_LARGE, 208ull*MB },
|
|
};
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
|
|
{ MODEL_TINY, 32ull*MB },
|
|
{ MODEL_BASE, 44ull*MB },
|
|
{ MODEL_SMALL, 64ull*MB },
|
|
{ MODEL_MEDIUM, 84ull*MB },
|
|
{ MODEL_LARGE, 110ull*MB },
|
|
};
|
|
|
|
struct whisper_mel {
|
|
int n_len;
|
|
int n_mel;
|
|
|
|
std::vector<float> data;
|
|
};
|
|
|
|
struct whisper_filters {
|
|
int32_t n_mel;
|
|
int32_t n_fft;
|
|
|
|
std::vector<float> data;
|
|
};
|
|
|
|
struct whisper_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
|
|
int n_vocab = 51864;
|
|
|
|
std::map<token, id> token_to_id;
|
|
std::map<id, token> id_to_token;
|
|
|
|
id token_eot = 50256;
|
|
id token_sot = 50257;
|
|
id token_prev = 50360;
|
|
id token_solm = 50361; // ??
|
|
id token_not = 50362; // no timestamps
|
|
id token_beg = 50363;
|
|
|
|
// available tasks
|
|
static const id token_translate = 50358;
|
|
static const id token_transcribe = 50359;
|
|
|
|
bool is_multilingual() const {
|
|
return n_vocab == 51865;
|
|
}
|
|
};
|
|
|
|
struct whisper_segment {
|
|
int64_t t0;
|
|
int64_t t1;
|
|
|
|
std::string text;
|
|
|
|
std::vector<whisper_token_data> tokens;
|
|
};
|
|
|
|
// medium
|
|
// hparams: {
|
|
// 'n_mels': 80,
|
|
// 'n_vocab': 51864,
|
|
// 'n_audio_ctx': 1500,
|
|
// 'n_audio_state': 1024,
|
|
// 'n_audio_head': 16,
|
|
// 'n_audio_layer': 24,
|
|
// 'n_text_ctx': 448,
|
|
// 'n_text_state': 1024,
|
|
// 'n_text_head': 16,
|
|
// 'n_text_layer': 24
|
|
// }
|
|
//
|
|
// default hparams (Whisper tiny)
|
|
struct whisper_hparams {
|
|
int32_t n_vocab = 51864;
|
|
int32_t n_audio_ctx = 1500;
|
|
int32_t n_audio_state = 384;
|
|
int32_t n_audio_head = 6;
|
|
int32_t n_audio_layer = 4;
|
|
int32_t n_text_ctx = 448;
|
|
int32_t n_text_state = 384;
|
|
int32_t n_text_head = 6;
|
|
int32_t n_text_layer = 4;
|
|
int32_t n_mels = 80;
|
|
int32_t f16 = 1;
|
|
};
|
|
|
|
// audio encoding layer
|
|
struct whisper_layer_encoder {
|
|
// encoder.blocks.*.attn_ln
|
|
struct ggml_tensor * attn_ln_0_w;
|
|
struct ggml_tensor * attn_ln_0_b;
|
|
|
|
// encoder.blocks.*.attn.out
|
|
struct ggml_tensor * attn_ln_1_w;
|
|
struct ggml_tensor * attn_ln_1_b;
|
|
|
|
// encoder.blocks.*.attn.query
|
|
struct ggml_tensor * attn_q_w;
|
|
struct ggml_tensor * attn_q_b;
|
|
|
|
// encoder.blocks.*.attn.key
|
|
struct ggml_tensor * attn_k_w;
|
|
|
|
// encoder.blocks.*.attn.value
|
|
struct ggml_tensor * attn_v_w;
|
|
struct ggml_tensor * attn_v_b;
|
|
|
|
// encoder.blocks.*.mlp_ln
|
|
struct ggml_tensor * mlp_ln_w;
|
|
struct ggml_tensor * mlp_ln_b;
|
|
|
|
// encoder.blocks.*.mlp.0
|
|
struct ggml_tensor * mlp_0_w;
|
|
struct ggml_tensor * mlp_0_b;
|
|
|
|
// encoder.blocks.*.mlp.2
|
|
struct ggml_tensor * mlp_1_w;
|
|
struct ggml_tensor * mlp_1_b;
|
|
};
|
|
|
|
// token decoding layer
|
|
struct whisper_layer_decoder {
|
|
// decoder.blocks.*.attn_ln
|
|
struct ggml_tensor * attn_ln_0_w;
|
|
struct ggml_tensor * attn_ln_0_b;
|
|
|
|
// decoder.blocks.*.attn.out
|
|
struct ggml_tensor * attn_ln_1_w;
|
|
struct ggml_tensor * attn_ln_1_b;
|
|
|
|
// decoder.blocks.*.attn.query
|
|
struct ggml_tensor * attn_q_w;
|
|
struct ggml_tensor * attn_q_b;
|
|
|
|
// decoder.blocks.*.attn.key
|
|
struct ggml_tensor * attn_k_w;
|
|
|
|
// decoder.blocks.*.attn.value
|
|
struct ggml_tensor * attn_v_w;
|
|
struct ggml_tensor * attn_v_b;
|
|
|
|
// decoder.blocks.*.cross_attn_ln
|
|
struct ggml_tensor * cross_attn_ln_0_w;
|
|
struct ggml_tensor * cross_attn_ln_0_b;
|
|
|
|
// decoder.blocks.*.cross_attn.out
|
|
struct ggml_tensor * cross_attn_ln_1_w;
|
|
struct ggml_tensor * cross_attn_ln_1_b;
|
|
|
|
// decoder.blocks.*.cross_attn.query
|
|
struct ggml_tensor * cross_attn_q_w;
|
|
struct ggml_tensor * cross_attn_q_b;
|
|
|
|
// decoder.blocks.*.cross_attn.key
|
|
struct ggml_tensor * cross_attn_k_w;
|
|
|
|
// decoder.blocks.*.cross_attn.value
|
|
struct ggml_tensor * cross_attn_v_w;
|
|
struct ggml_tensor * cross_attn_v_b;
|
|
|
|
// decoder.blocks.*.mlp_ln
|
|
struct ggml_tensor * mlp_ln_w;
|
|
struct ggml_tensor * mlp_ln_b;
|
|
|
|
// decoder.blocks.*.mlp.0
|
|
struct ggml_tensor * mlp_0_w;
|
|
struct ggml_tensor * mlp_0_b;
|
|
|
|
// decoder.blocks.*.mlp.2
|
|
struct ggml_tensor * mlp_1_w;
|
|
struct ggml_tensor * mlp_1_b;
|
|
};
|
|
|
|
struct whisper_model {
|
|
e_model type = MODEL_UNKNOWN;
|
|
|
|
whisper_hparams hparams;
|
|
whisper_filters filters;
|
|
|
|
// encoder.positional_embedding
|
|
struct ggml_tensor * e_pe;
|
|
|
|
// encoder.conv1
|
|
struct ggml_tensor * e_conv_1_w;
|
|
struct ggml_tensor * e_conv_1_b;
|
|
|
|
// encoder.conv2
|
|
struct ggml_tensor * e_conv_2_w;
|
|
struct ggml_tensor * e_conv_2_b;
|
|
|
|
// encoder.ln_post
|
|
struct ggml_tensor * e_ln_w;
|
|
struct ggml_tensor * e_ln_b;
|
|
|
|
// decoder.positional_embedding
|
|
struct ggml_tensor * d_pe; // DD
|
|
|
|
// decoder.token_embedding
|
|
struct ggml_tensor * d_te; // DD
|
|
|
|
// decoder.ln
|
|
struct ggml_tensor * d_ln_w; // DD
|
|
struct ggml_tensor * d_ln_b; // DD
|
|
|
|
std::vector<whisper_layer_encoder> layers_encoder;
|
|
std::vector<whisper_layer_decoder> layers_decoder;
|
|
|
|
// key + value memory
|
|
struct ggml_tensor * memory_k;
|
|
struct ggml_tensor * memory_v;
|
|
|
|
struct ggml_tensor * memory_cross_k;
|
|
struct ggml_tensor * memory_cross_v;
|
|
|
|
// context
|
|
struct ggml_context * ctx;
|
|
struct ggml_context * ctx_mem;
|
|
|
|
// tensors
|
|
int n_loaded;
|
|
std::map<std::string, struct ggml_tensor *> tensors;
|
|
};
|
|
|
|
struct whisper_context {
|
|
int64_t t_load_us = 0;
|
|
int64_t t_mel_us = 0;
|
|
int64_t t_sample_us = 0;
|
|
int64_t t_encode_us = 0;
|
|
int64_t t_decode_us = 0;
|
|
int64_t t_start_us = 0;
|
|
|
|
std::vector<uint8_t> * buf_model; // the model buffer is read-only and can be shared between processors
|
|
std::vector<uint8_t> buf_memory;
|
|
std::vector<uint8_t> buf_compute;
|
|
std::vector<uint8_t> buf_compute_layer;
|
|
|
|
whisper_model model;
|
|
whisper_vocab vocab;
|
|
|
|
whisper_mel mel;
|
|
|
|
std::vector<float> probs;
|
|
std::vector<float> logits;
|
|
|
|
std::vector<whisper_segment> result_all;
|
|
|
|
std::vector<whisper_token> prompt_past;
|
|
|
|
// [EXPERIMENTAL] token-level timestamps data
|
|
int64_t t_beg;
|
|
int64_t t_last;
|
|
whisper_token tid_last;
|
|
std::vector<float> energy; // PCM signal energy
|
|
};
|
|
|
|
// load the model from a ggml file
|
|
//
|
|
// file format:
|
|
//
|
|
// - hparams
|
|
// - pre-computed mel filters
|
|
// - vocab
|
|
// - weights
|
|
//
|
|
// see the convert-pt-to-ggml.py script for details
|
|
//
|
|
static bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
|
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
|
|
|
|
auto & model = wctx.model;
|
|
auto & vocab = wctx.vocab;
|
|
|
|
auto fin = std::ifstream(fname, std::ios::binary);
|
|
if (!fin) {
|
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
|
|
// verify magic
|
|
{
|
|
uint32_t magic;
|
|
fin.read((char *) &magic, sizeof(magic));
|
|
if (magic != 0x67676d6c) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//load hparams
|
|
{
|
|
auto & hparams = model.hparams;
|
|
|
|
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
|
fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
|
fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
|
fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
|
fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
|
fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
|
fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
|
fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
|
fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
|
fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
|
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
|
|
|
assert(hparams.n_text_state == hparams.n_audio_state);
|
|
|
|
if (hparams.n_audio_layer == 4) {
|
|
model.type = e_model::MODEL_TINY;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 6) {
|
|
model.type = e_model::MODEL_BASE;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 12) {
|
|
model.type = e_model::MODEL_SMALL;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 24) {
|
|
model.type = e_model::MODEL_MEDIUM;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 32) {
|
|
model.type = e_model::MODEL_LARGE;
|
|
}
|
|
|
|
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
|
fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
|
|
fprintf(stderr, "%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
|
|
fprintf(stderr, "%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
|
|
fprintf(stderr, "%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
|
|
fprintf(stderr, "%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
|
|
fprintf(stderr, "%s: n_text_state = %d\n", __func__, hparams.n_text_state);
|
|
fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head);
|
|
fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
|
|
fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels);
|
|
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
|
|
fprintf(stderr, "%s: type = %d\n", __func__, model.type);
|
|
|
|
wctx.buf_model = new std::vector<uint8_t>();
|
|
wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type));
|
|
wctx.buf_memory.resize(MEM_REQ_MEMORY.at(model.type));
|
|
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
|
|
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
|
|
|
|
// this is the total memory required to run the inference
|
|
const size_t mem_required =
|
|
wctx.buf_model->size() +
|
|
wctx.buf_memory.size() +
|
|
wctx.buf_compute.size() +
|
|
wctx.buf_compute_layer.size();
|
|
|
|
fprintf(stderr, "%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
|
|
}
|
|
|
|
// load mel filters
|
|
{
|
|
auto & filters = wctx.model.filters;
|
|
|
|
fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
|
|
fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
|
|
|
|
filters.data.resize(filters.n_mel * filters.n_fft);
|
|
fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
|
|
}
|
|
|
|
// load vocab
|
|
{
|
|
int32_t n_vocab = 0;
|
|
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
|
|
|
//if (n_vocab != model.hparams.n_vocab) {
|
|
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
|
// __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
|
// return false;
|
|
//}
|
|
|
|
std::string word;
|
|
for (int i = 0; i < n_vocab; i++) {
|
|
uint32_t len;
|
|
fin.read((char *) &len, sizeof(len));
|
|
|
|
word.resize(len);
|
|
fin.read((char *) word.data(), len);
|
|
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
|
|
//printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
|
|
}
|
|
|
|
vocab.n_vocab = model.hparams.n_vocab;
|
|
if (vocab.is_multilingual()) {
|
|
vocab.token_eot++;
|
|
vocab.token_sot++;
|
|
vocab.token_prev++;
|
|
vocab.token_solm++;
|
|
vocab.token_not++;
|
|
vocab.token_beg++;
|
|
}
|
|
|
|
if (n_vocab < model.hparams.n_vocab) {
|
|
fprintf(stderr, "%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
|
|
for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
|
|
if (i > vocab.token_beg) {
|
|
word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
|
|
} else if (i == vocab.token_eot) {
|
|
word = "[_EOT_]";
|
|
} else if (i == vocab.token_sot) {
|
|
word = "[_SOT_]";
|
|
} else if (i == vocab.token_prev) {
|
|
word = "[_PREV_]";
|
|
} else if (i == vocab.token_not) {
|
|
word = "[_NOT_]";
|
|
} else if (i == vocab.token_beg) {
|
|
word = "[_BEG_]";
|
|
} else {
|
|
word = "[_extra_token_" + std::to_string(i) + "]";
|
|
}
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
}
|
|
}
|
|
}
|
|
|
|
// for the big tensors, we have the option to store the data in 16-bit floats
|
|
// in order to save memory and also to speed up the computation
|
|
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
|
|
|
|
|
size_t ctx_size = 0;
|
|
size_t ctx_mem_size = 0;
|
|
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
const int n_audio_ctx = hparams.n_audio_ctx;
|
|
const int n_audio_state = hparams.n_audio_state;
|
|
const int n_audio_layer = hparams.n_audio_layer;
|
|
|
|
const int n_text_ctx = hparams.n_text_ctx;
|
|
const int n_text_state = hparams.n_text_state;
|
|
const int n_text_layer = hparams.n_text_layer;
|
|
|
|
const int n_mels = hparams.n_mels;
|
|
|
|
// encoder
|
|
{
|
|
// TODO: F16 .. maybe not?
|
|
ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
|
|
|
|
ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
|
|
|
|
ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
|
|
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
|
|
}
|
|
|
|
// decoder
|
|
{
|
|
// TODO: F16 .. maybe not?
|
|
ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
|
|
|
|
ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
|
|
|
|
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
|
|
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
|
|
}
|
|
|
|
// encoder layers
|
|
{
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
|
|
|
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
|
|
ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
|
|
|
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
|
}
|
|
|
|
// decoder layers
|
|
{
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
|
|
|
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
|
|
ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
|
|
|
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
|
//
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
|
}
|
|
|
|
ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
|
ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
|
|
|
ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
|
ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
|
|
|
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
|
|
|
|
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
|
}
|
|
|
|
// create the ggml context
|
|
{
|
|
struct ggml_init_params params = {
|
|
.mem_size = wctx.buf_model->size(),
|
|
.mem_buffer = wctx.buf_model->data(),
|
|
};
|
|
|
|
model.ctx = ggml_init(params);
|
|
if (!model.ctx) {
|
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// prepare memory for the weights
|
|
{
|
|
auto & ctx = model.ctx;
|
|
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
const int n_audio_ctx = hparams.n_audio_ctx;
|
|
const int n_audio_state = hparams.n_audio_state;
|
|
const int n_audio_layer = hparams.n_audio_layer;
|
|
|
|
const int n_text_ctx = hparams.n_text_ctx;
|
|
const int n_text_state = hparams.n_text_state;
|
|
const int n_text_layer = hparams.n_text_layer;
|
|
|
|
const int n_mels = hparams.n_mels;
|
|
|
|
model.layers_encoder.resize(n_audio_layer);
|
|
model.layers_decoder.resize(n_text_layer);
|
|
|
|
// encoder
|
|
{
|
|
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
|
|
|
|
model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
|
|
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
|
|
|
model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
|
|
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
|
|
|
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
// map by name
|
|
model.tensors["encoder.positional_embedding"] = model.e_pe;
|
|
|
|
model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
|
|
model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
|
|
|
|
model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
|
|
model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
|
|
|
|
model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
|
|
model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
|
|
|
|
for (int i = 0; i < n_audio_layer; ++i) {
|
|
auto & layer = model.layers_encoder[i];
|
|
|
|
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
|
|
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
|
|
|
|
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
|
|
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
|
|
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
// map by name
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
|
|
}
|
|
}
|
|
|
|
// decoder
|
|
{
|
|
model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
|
|
|
|
model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
|
|
|
|
model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
// map by name
|
|
model.tensors["decoder.positional_embedding"] = model.d_pe;
|
|
|
|
model.tensors["decoder.token_embedding.weight"] = model.d_te;
|
|
|
|
model.tensors["decoder.ln.weight"] = model.d_ln_w;
|
|
model.tensors["decoder.ln.bias"] = model.d_ln_b;
|
|
|
|
for (int i = 0; i < n_text_layer; ++i) {
|
|
auto & layer = model.layers_decoder[i];
|
|
|
|
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
|
|
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
|
|
|
|
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
|
|
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
|
|
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
|
|
layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
// map by name
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
|
|
}
|
|
}
|
|
}
|
|
|
|
// create the ggml memory context
|
|
{
|
|
struct ggml_init_params params = {
|
|
.mem_size = wctx.buf_memory.size(),
|
|
.mem_buffer = wctx.buf_memory.data(),
|
|
};
|
|
|
|
model.ctx_mem = ggml_init(params);
|
|
if (!model.ctx_mem) {
|
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// key + value memory
|
|
{
|
|
auto & ctx = model.ctx_mem;
|
|
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_text_state = hparams.n_text_state;
|
|
const int n_text_layer = hparams.n_text_layer;
|
|
const int n_text_ctx = hparams.n_text_ctx;
|
|
|
|
// key/value memory for the self-attention layer
|
|
{
|
|
const int n_mem = n_text_layer*n_text_ctx;
|
|
const int n_elements = n_text_state*n_mem;
|
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
}
|
|
|
|
// key/value memory for the cross-attention layer
|
|
{
|
|
const int n_audio_ctx = hparams.n_audio_ctx;
|
|
|
|
const int n_mem = n_text_layer*n_audio_ctx;
|
|
const int n_elements = n_text_state*n_mem;
|
|
|
|
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
}
|
|
|
|
const size_t memory_size =
|
|
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
|
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
|
|
|
fprintf(stderr, "%s: memory size = %8.2f MB\n", __func__, memory_size/1024.0/1024.0);
|
|
}
|
|
|
|
// load weights
|
|
{
|
|
size_t total_size = 0;
|
|
|
|
model.n_loaded = 0;
|
|
|
|
while (true) {
|
|
int32_t n_dims;
|
|
int32_t length;
|
|
int32_t ftype;
|
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
|
|
|
if (fin.eof()) {
|
|
break;
|
|
}
|
|
|
|
int32_t nelements = 1;
|
|
int32_t ne[3] = { 1, 1, 1 };
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
nelements *= ne[i];
|
|
}
|
|
|
|
std::string name(length, 0);
|
|
fin.read(&name[0], length);
|
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
|
return false;
|
|
}
|
|
|
|
auto tensor = model.tensors[name.data()];
|
|
if (ggml_nelements(tensor) != nelements) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
|
return false;
|
|
}
|
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
|
|
__func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
|
|
return false;
|
|
}
|
|
|
|
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
|
|
|
if (nelements*bpe != ggml_nbytes(tensor)) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
|
return false;
|
|
}
|
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
|
|
|
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
|
total_size += ggml_nbytes(tensor);
|
|
model.n_loaded++;
|
|
}
|
|
|
|
fprintf(stderr, "%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
|
|
|
if (model.n_loaded == 0) {
|
|
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
|
|
} else if (model.n_loaded != (int) model.tensors.size()) {
|
|
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
fin.close();
|
|
|
|
return true;
|
|
}
|
|
|
|
// evaluate the encoder
|
|
//
|
|
// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
|
|
// part of the transformer model and returns the encoded features
|
|
//
|
|
// - model: the model
|
|
// - n_threads: number of threads to use
|
|
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
|
|
//
|
|
static bool whisper_encode(
|
|
whisper_context & wctx,
|
|
const int n_threads,
|
|
const int mel_offset) {
|
|
const auto & model = wctx.model;
|
|
const auto & mel_inp = wctx.mel;
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_ctx = hparams.n_audio_ctx;
|
|
const int n_state = hparams.n_audio_state;
|
|
const int n_head = hparams.n_audio_head;
|
|
const int n_layer = hparams.n_audio_layer;
|
|
|
|
const int N = n_ctx;
|
|
|
|
const int n_mels = hparams.n_mels;
|
|
assert(mel_inp.n_mel == n_mels);
|
|
|
|
struct ggml_init_params params = {
|
|
.mem_size = wctx.buf_compute.size(),
|
|
.mem_buffer = wctx.buf_compute.data(),
|
|
};
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
|
|
struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
|
|
assert(mel->type == GGML_TYPE_F32);
|
|
{
|
|
float * dst = (float *) mel->data;
|
|
memset(dst, 0, ggml_nbytes(mel));
|
|
|
|
const int i0 = std::min(mel_offset, mel_inp.n_len);
|
|
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
|
|
|
|
for (int j = 0; j < mel_inp.n_mel; ++j) {
|
|
for (int i = i0; i < i1; ++i) {
|
|
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ggml_tensor * cur;
|
|
|
|
// convolution + gelu
|
|
{
|
|
cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0,
|
|
model.e_conv_1_b,
|
|
cur),
|
|
cur);
|
|
|
|
cur = ggml_gelu(ctx0, cur);
|
|
|
|
cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0,
|
|
model.e_conv_2_b,
|
|
cur),
|
|
cur);
|
|
|
|
cur = ggml_gelu(ctx0, cur);
|
|
}
|
|
|
|
cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
|
|
|
|
struct ggml_tensor * inpL = cur;
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
const auto & layer = model.layers_encoder[il];
|
|
|
|
// create separate context for each layer to reduce memory usage
|
|
|
|
struct ggml_init_params paramsL = {
|
|
.mem_size = wctx.buf_compute_layer.size(),
|
|
.mem_buffer = wctx.buf_compute_layer.data(),
|
|
};
|
|
|
|
struct ggml_context * ctxL = ggml_init(paramsL);
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpL);
|
|
|
|
// cur = ln_0_w*cur + ln_0_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
|
layer.attn_q_w,
|
|
cur);
|
|
|
|
Qcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_q_b,
|
|
Qcur),
|
|
Qcur);
|
|
|
|
//Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
// note: no bias for Key
|
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
|
|
layer.attn_k_w,
|
|
cur);
|
|
|
|
//Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
|
|
layer.attn_v_w,
|
|
cur);
|
|
|
|
Vcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_v_b,
|
|
Vcur),
|
|
Vcur);
|
|
|
|
// ------
|
|
|
|
#ifdef USE_FLASH_ATTN
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Kcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * V =
|
|
ggml_cpy(ctxL,
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
Vcur,
|
|
n_state/n_head, n_head, N),
|
|
1, 2, 0, 3),
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
|
|
);
|
|
|
|
struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
|
|
#else
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Kcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
|
|
|
struct ggml_tensor * KQ_scaled =
|
|
ggml_scale(ctxL,
|
|
KQ,
|
|
ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
|
);
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
|
|
|
|
//struct ggml_tensor * V_trans =
|
|
// ggml_permute(ctxL,
|
|
// ggml_cpy(ctxL,
|
|
// Vcur,
|
|
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
// 1, 2, 0, 3);
|
|
|
|
//struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
|
|
|
struct ggml_tensor * V =
|
|
ggml_cpy(ctxL,
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
Vcur,
|
|
n_state/n_head, n_head, N),
|
|
0, 2, 1, 3),
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
|
|
);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
|
|
#endif
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cpy(ctxL,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
|
}
|
|
|
|
// projection
|
|
{
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.attn_ln_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// add the input
|
|
cur = ggml_add(ctxL, cur, inpL);
|
|
|
|
struct ggml_tensor * inpFF = cur;
|
|
|
|
// feed-forward network
|
|
{
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpFF);
|
|
|
|
// cur = mlp_ln_w*cur + mlp_ln_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
|
|
}
|
|
|
|
#ifdef USE_FLASH_FF
|
|
cur = ggml_flash_ff(ctxL,
|
|
ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
|
|
layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
|
|
#else
|
|
// fully connected
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_0_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_0_b, cur),
|
|
cur);
|
|
|
|
// GELU activation
|
|
cur = ggml_gelu(ctxL, cur);
|
|
|
|
// projection
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_1_b, cur),
|
|
cur);
|
|
#endif
|
|
}
|
|
|
|
// output from this layer
|
|
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
|
|
|
|
{
|
|
struct ggml_cgraph gf = {};
|
|
gf.n_threads = n_threads;
|
|
|
|
ggml_build_forward_expand(&gf, inpO);
|
|
ggml_graph_compute (ctxL, &gf);
|
|
|
|
//ggml_graph_print(&gf);
|
|
}
|
|
|
|
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
|
|
// input for next layer (inpO -> inpL)
|
|
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
|
|
inpL->op = GGML_OP_NONE;
|
|
inpL->src0 = NULL;
|
|
inpL->src1 = NULL;
|
|
|
|
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
|
|
|
|
ggml_free(ctxL);
|
|
}
|
|
|
|
cur = inpL;
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctx0, cur);
|
|
|
|
// cur = ln_f_g*cur + ln_f_b
|
|
cur = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.e_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctx0, model.e_ln_b, cur));
|
|
}
|
|
|
|
// run the computation
|
|
{
|
|
struct ggml_cgraph gf = {};
|
|
gf.n_threads = n_threads;
|
|
|
|
ggml_build_forward_expand(&gf, cur);
|
|
ggml_graph_compute (ctx0, &gf);
|
|
|
|
//ggml_graph_print(&gf);
|
|
}
|
|
|
|
// cur
|
|
//{
|
|
// printf("ne0 = %d\n", cur->ne[0]);
|
|
// printf("ne1 = %d\n", cur->ne[1]);
|
|
// for (int i = 0; i < 10; ++i) {
|
|
// printf("%8.4f ", ((float *)(cur->data))[i]);
|
|
// }
|
|
// printf("... ");
|
|
// for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
|
|
// printf("%8.4f ", ((float *)(cur->data))[i]);
|
|
// }
|
|
// printf("\n");
|
|
//}
|
|
|
|
// pre-compute cross-attention memory
|
|
{
|
|
struct ggml_cgraph gf = {};
|
|
gf.n_threads = n_threads;
|
|
|
|
// TODO: hack to disconnect the encoded features from the previous graph
|
|
cur->op = GGML_OP_NONE;
|
|
cur->src0 = NULL;
|
|
cur->src1 = NULL;
|
|
|
|
for (int il = 0; il < model.hparams.n_text_layer; ++il) {
|
|
auto & layer = model.layers_decoder[il];
|
|
|
|
struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
|
|
layer.cross_attn_k_w,
|
|
cur);
|
|
|
|
Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
|
|
layer.cross_attn_v_w,
|
|
cur);
|
|
|
|
Vcross = ggml_add(ctx0,
|
|
ggml_repeat(ctx0,
|
|
layer.cross_attn_v_b,
|
|
Vcross),
|
|
Vcross);
|
|
|
|
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
|
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
|
}
|
|
|
|
ggml_graph_compute(ctx0, &gf);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
//printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// evaluate the decoder
|
|
//
|
|
// given text prompt + audio features -> predicts the probabilities for the next token
|
|
//
|
|
// - model: the model
|
|
// - n_threads: number of threads to use
|
|
// - tokens: text prompt
|
|
// - n_tokens: number of tokens in the prompt
|
|
// - n_past: number of past tokens to prefix the prompt with
|
|
//
|
|
static bool whisper_decode(
|
|
whisper_context & wctx,
|
|
const int n_threads,
|
|
const whisper_token * tokens,
|
|
const int n_tokens,
|
|
const int n_past) {
|
|
const auto & model = wctx.model;
|
|
const auto & hparams = model.hparams;
|
|
|
|
auto & logits_out = wctx.logits;
|
|
auto & probs_out = wctx.probs;
|
|
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
const int n_ctx = hparams.n_text_ctx;
|
|
const int n_state = hparams.n_text_state;
|
|
const int n_head = hparams.n_text_head;
|
|
const int n_layer = hparams.n_text_layer;
|
|
|
|
const int N = n_tokens;
|
|
const int M = hparams.n_audio_ctx;
|
|
|
|
struct ggml_init_params params = {
|
|
.mem_size = wctx.buf_compute.size(),
|
|
.mem_buffer = wctx.buf_compute.data(),
|
|
};
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
|
|
|
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
for (int i = 0; i < N; ++i) {
|
|
((int32_t *) position->data)[i] = n_past + i;
|
|
}
|
|
|
|
// token encoding + position encoding
|
|
struct ggml_tensor * cur =
|
|
ggml_add(ctx0,
|
|
ggml_get_rows(ctx0, model.d_te, embd),
|
|
ggml_get_rows(ctx0, model.d_pe, position));
|
|
|
|
struct ggml_tensor * inpL = cur;
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
const auto & layer = model.layers_decoder[il];
|
|
|
|
struct ggml_init_params paramsL = {
|
|
.mem_size = wctx.buf_compute_layer.size(),
|
|
.mem_buffer = wctx.buf_compute_layer.data(),
|
|
};
|
|
|
|
struct ggml_context * ctxL = ggml_init(paramsL);
|
|
struct ggml_cgraph gf = {};
|
|
gf.n_threads = n_threads;
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpL);
|
|
|
|
// cur = ln_0_w*cur + ln_0_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
|
layer.attn_q_w,
|
|
cur);
|
|
|
|
Qcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_q_b,
|
|
Qcur),
|
|
Qcur);
|
|
|
|
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
// note: no bias for Key
|
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
|
|
layer.attn_k_w,
|
|
cur);
|
|
|
|
Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
|
|
layer.attn_v_w,
|
|
cur);
|
|
|
|
Vcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_v_b,
|
|
Vcur),
|
|
Vcur);
|
|
|
|
// store key and value to memory
|
|
{
|
|
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
|
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
|
|
}
|
|
|
|
// ------
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
|
n_state/n_head, n_head, n_past + N),
|
|
0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
|
|
|
//struct ggml_tensor * KQ_scaled =
|
|
// ggml_scale(ctxL,
|
|
// KQ,
|
|
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
|
// );
|
|
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
|
|
|
|
struct ggml_tensor * V_trans =
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
|
n_state/n_head, n_head, n_past + N),
|
|
1, 2, 0, 3);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cpy(ctxL,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
|
}
|
|
|
|
{
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.attn_ln_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// add the input
|
|
struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
|
|
|
|
// cur = ln_0_w*cur + ln_0_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
|
|
}
|
|
|
|
// cross-attention
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
|
layer.cross_attn_q_w,
|
|
cur);
|
|
|
|
Qcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.cross_attn_q_b,
|
|
Qcur),
|
|
Qcur);
|
|
|
|
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
// Kcross is already scaled
|
|
struct ggml_tensor * Kcross =
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
|
n_state/n_head, n_head, M);
|
|
|
|
struct ggml_tensor * Vcross =
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
|
n_state/n_head, n_head, M);
|
|
|
|
// ------
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
|
|
|
//struct ggml_tensor * KQ_scaled =
|
|
// ggml_scale(ctxL,
|
|
// KQ,
|
|
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
|
// );
|
|
|
|
// no masking for cross-attention
|
|
//struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
|
|
|
|
struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
|
|
|
// cur = KQV_merged.contiguous().view(n_state, N)
|
|
cur = ggml_cpy(ctxL,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
|
}
|
|
|
|
// projection
|
|
{
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.cross_attn_ln_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// add the input
|
|
cur = ggml_add(ctxL, cur, inpCA);
|
|
|
|
struct ggml_tensor * inpFF = cur;
|
|
|
|
// feed-forward network
|
|
{
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpFF);
|
|
|
|
// cur = mlp_ln_w*cur + mlp_ln_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
|
|
}
|
|
|
|
// fully connected
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_0_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_0_b, cur),
|
|
cur);
|
|
|
|
// GELU activation
|
|
cur = ggml_gelu(ctxL, cur);
|
|
|
|
// projection
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// output from this layer
|
|
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
|
|
|
|
{
|
|
ggml_build_forward_expand(&gf, inpO);
|
|
ggml_graph_compute (ctxL, &gf);
|
|
|
|
//ggml_graph_print(&gf);
|
|
}
|
|
|
|
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
|
|
// input for next layer (inpO -> inpL)
|
|
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
|
|
inpL->op = GGML_OP_NONE;
|
|
inpL->src0 = NULL;
|
|
inpL->src1 = NULL;
|
|
|
|
if (N > 1) {
|
|
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
|
|
}
|
|
|
|
ggml_free(ctxL);
|
|
}
|
|
|
|
cur = inpL;
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctx0, cur);
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.d_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctx0, model.d_ln_b, cur));
|
|
}
|
|
|
|
struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
|
|
|
|
// logits -> probs
|
|
cur = ggml_dup(ctx0, logits);
|
|
cur = ggml_soft_max(ctx0, cur); // in-place
|
|
|
|
// run the computation
|
|
{
|
|
struct ggml_cgraph gf = {};
|
|
gf.n_threads = n_threads;
|
|
|
|
ggml_build_forward_expand(&gf, cur);
|
|
ggml_graph_compute (ctx0, &gf);
|
|
}
|
|
|
|
logits_out.resize(N*n_vocab);
|
|
memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
|
|
|
|
probs_out.resize(N*n_vocab);
|
|
memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
|
|
|
|
if (N > 1) {
|
|
//const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
|
|
//printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
|
|
//printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
|
|
}
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// the most basic sampling scheme - select the top token
|
|
static whisper_token_data whisper_sample_best(
|
|
const whisper_vocab & vocab,
|
|
const float * probs) {
|
|
whisper_token_data result = {
|
|
0, 0, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
|
|
};
|
|
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
|
|
probs_id.reserve(n_logits);
|
|
|
|
for (int i = 0; i < n_logits; i++) {
|
|
probs_id.push_back(std::make_pair(probs[i], i));
|
|
}
|
|
|
|
{
|
|
double sum_ts = 0.0;
|
|
double max_ts = -1.0;
|
|
double max_tx = -1.0;
|
|
|
|
for (int i = 0; i < vocab.token_beg; i++) {
|
|
max_tx = std::max(max_tx, probs_id[i].first);
|
|
}
|
|
|
|
for (int i = vocab.token_beg; i < n_logits; i++) {
|
|
sum_ts += probs_id[i].first;
|
|
if (probs_id[i].first > max_ts) {
|
|
max_ts = probs_id[i].first;
|
|
result.tid = probs_id[i].second;
|
|
}
|
|
}
|
|
|
|
// if the probability sum of all timestamp tokens is higher than the max probability of the text tokens - sample a
|
|
// timestamp token
|
|
if (sum_ts > max_tx) {
|
|
// ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L430-L438
|
|
for (int i = 0; i < vocab.token_beg; i++) {
|
|
probs_id[i].first = -INFINITY;
|
|
}
|
|
}
|
|
|
|
result.pt = max_ts/(sum_ts + 1e-10);
|
|
result.ptsum = sum_ts;
|
|
}
|
|
|
|
// find the top K tokens
|
|
const int top_k = 4;
|
|
|
|
std::partial_sort(
|
|
probs_id.begin(),
|
|
probs_id.begin() + top_k, probs_id.end(),
|
|
[](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
probs_id.resize(top_k);
|
|
|
|
//printf("\n");
|
|
//for (int i = 0; i < (int) probs_id.size(); i++) {
|
|
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
|
|
//}
|
|
|
|
int res = 0;
|
|
while ((probs_id[res].second == vocab.token_sot ||
|
|
probs_id[res].second == vocab.token_solm ||
|
|
probs_id[res].second == vocab.token_not) &&
|
|
res < (int) probs_id.size() - 1) {
|
|
res++;
|
|
}
|
|
|
|
result.id = probs_id[res].second;
|
|
result.p = probs_id[res].first;
|
|
|
|
return result;
|
|
}
|
|
|
|
// samples only from the timestamps tokens
|
|
static whisper_vocab::id whisper_sample_timestamp(
|
|
const whisper_vocab & vocab,
|
|
const float * probs) {
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
|
|
probs_id.reserve(n_logits);
|
|
|
|
for (int i = vocab.token_beg + 1; i < n_logits; i++) {
|
|
probs_id.push_back(std::make_pair(probs[i], i));
|
|
}
|
|
|
|
const int top_k = 10;
|
|
|
|
// find the top K tokens
|
|
std::partial_sort(
|
|
probs_id.begin(),
|
|
probs_id.begin() + top_k, probs_id.end(),
|
|
[](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
probs_id.resize(top_k);
|
|
|
|
//printf("\n");
|
|
//for (int i = 0; i < (int) probs_id.size(); i++) {
|
|
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
|
|
//}
|
|
|
|
return probs_id[0].second;
|
|
}
|
|
|
|
// 500 -> 00:05.000
|
|
// 6000 -> 01:00.000
|
|
static std::string to_timestamp(int64_t t, bool comma = false) {
|
|
int64_t msec = t * 10;
|
|
int64_t hr = msec / (1000 * 60 * 60);
|
|
msec = msec - hr * (1000 * 60 * 60);
|
|
int64_t min = msec / (1000 * 60);
|
|
msec = msec - min * (1000 * 60);
|
|
int64_t sec = msec / 1000;
|
|
msec = msec - sec * 1000;
|
|
|
|
char buf[32];
|
|
snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec);
|
|
|
|
return std::string(buf);
|
|
}
|
|
|
|
// naive Discrete Fourier Transform
|
|
// input is real-valued
|
|
// output is complex-valued
|
|
static void dft(const std::vector<float> & in, std::vector<float> & out) {
|
|
int N = in.size();
|
|
|
|
out.resize(N*2);
|
|
|
|
for (int k = 0; k < N; k++) {
|
|
float re = 0;
|
|
float im = 0;
|
|
|
|
for (int n = 0; n < N; n++) {
|
|
float angle = 2*M_PI*k*n/N;
|
|
re += in[n]*cos(angle);
|
|
im -= in[n]*sin(angle);
|
|
}
|
|
|
|
out[k*2 + 0] = re;
|
|
out[k*2 + 1] = im;
|
|
}
|
|
}
|
|
|
|
// Cooley-Tukey FFT
|
|
// poor man's implementation - use something better
|
|
// input is real-valued
|
|
// output is complex-valued
|
|
static void fft(const std::vector<float> & in, std::vector<float> & out) {
|
|
out.resize(in.size()*2);
|
|
|
|
int N = in.size();
|
|
|
|
if (N == 1) {
|
|
out[0] = in[0];
|
|
out[1] = 0;
|
|
return;
|
|
}
|
|
|
|
if (N%2 == 1) {
|
|
dft(in, out);
|
|
return;
|
|
}
|
|
|
|
std::vector<float> even;
|
|
std::vector<float> odd;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
if (i % 2 == 0) {
|
|
even.push_back(in[i]);
|
|
} else {
|
|
odd.push_back(in[i]);
|
|
}
|
|
}
|
|
|
|
std::vector<float> even_fft;
|
|
std::vector<float> odd_fft;
|
|
|
|
fft(even, even_fft);
|
|
fft(odd, odd_fft);
|
|
|
|
for (int k = 0; k < N/2; k++) {
|
|
float theta = 2*M_PI*k/N;
|
|
|
|
float re = cos(theta);
|
|
float im = -sin(theta);
|
|
|
|
float re_odd = odd_fft[2*k + 0];
|
|
float im_odd = odd_fft[2*k + 1];
|
|
|
|
out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
|
|
out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
|
|
|
|
out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
|
|
out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
|
|
}
|
|
}
|
|
|
|
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
|
|
static bool log_mel_spectrogram(
|
|
const float * samples,
|
|
const int n_samples,
|
|
const int sample_rate,
|
|
const int fft_size,
|
|
const int fft_step,
|
|
const int n_mel,
|
|
const int n_threads,
|
|
const whisper_filters & filters,
|
|
whisper_mel & mel) {
|
|
|
|
// Hanning window
|
|
std::vector<float> hann;
|
|
hann.resize(fft_size);
|
|
for (int i = 0; i < fft_size; i++) {
|
|
hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
|
|
}
|
|
|
|
mel.n_mel = n_mel;
|
|
mel.n_len = (n_samples)/fft_step;
|
|
mel.data.resize(mel.n_mel*mel.n_len);
|
|
|
|
const int n_fft = 1 + fft_size/2;
|
|
|
|
//printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len);
|
|
//printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate);
|
|
|
|
std::vector<std::thread> workers(n_threads);
|
|
for (int iw = 0; iw < n_threads; ++iw) {
|
|
workers[iw] = std::thread([&](int ith) {
|
|
std::vector<float> fft_in;
|
|
fft_in.resize(fft_size);
|
|
for (int i = 0; i < fft_size; i++) {
|
|
fft_in[i] = 0.0;
|
|
}
|
|
|
|
std::vector<float> fft_out;
|
|
fft_out.resize(2*fft_size);
|
|
|
|
for (int i = ith; i < mel.n_len; i += n_threads) {
|
|
const int offset = i*fft_step;
|
|
|
|
// apply Hanning window
|
|
for (int j = 0; j < fft_size; j++) {
|
|
if (offset + j < n_samples) {
|
|
fft_in[j] = hann[j]*samples[offset + j];
|
|
} else {
|
|
fft_in[j] = 0.0;
|
|
}
|
|
}
|
|
|
|
// FFT -> mag^2
|
|
fft(fft_in, fft_out);
|
|
|
|
for (int j = 0; j < fft_size; j++) {
|
|
fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
|
|
}
|
|
for (int j = 1; j < fft_size/2; j++) {
|
|
//if (i == 0) {
|
|
// printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]);
|
|
//}
|
|
fft_out[j] += fft_out[fft_size - j];
|
|
}
|
|
if (i == 0) {
|
|
//for (int j = 0; j < fft_size; j++) {
|
|
// printf("%d: %e\n", j, fft_out[j]);
|
|
//}
|
|
}
|
|
|
|
// mel spectrogram
|
|
for (int j = 0; j < mel.n_mel; j++) {
|
|
double sum = 0.0;
|
|
|
|
for (int k = 0; k < n_fft; k++) {
|
|
sum += fft_out[k]*filters.data[j*n_fft + k];
|
|
}
|
|
if (sum < 1e-10) {
|
|
sum = 1e-10;
|
|
}
|
|
|
|
sum = log10(sum);
|
|
|
|
mel.data[j*mel.n_len + i] = sum;
|
|
}
|
|
}
|
|
}, iw);
|
|
}
|
|
|
|
for (int iw = 0; iw < n_threads; ++iw) {
|
|
workers[iw].join();
|
|
}
|
|
|
|
// clamping and normalization
|
|
double mmax = -1e20;
|
|
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
if (mel.data[i] > mmax) {
|
|
mmax = mel.data[i];
|
|
}
|
|
}
|
|
//printf("%s: max = %f\n", __func__, mmax);
|
|
|
|
mmax -= 8.0;
|
|
|
|
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
if (mel.data[i] < mmax) {
|
|
mel.data[i] = mmax;
|
|
}
|
|
|
|
mel.data[i] = (mel.data[i] + 4.0)/4.0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// interface implementation
|
|
//
|
|
|
|
struct whisper_context * whisper_init(const char * path_model) {
|
|
ggml_time_init();
|
|
|
|
whisper_context * ctx = new whisper_context;
|
|
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
ctx->t_start_us = t_start_us;
|
|
|
|
if (!whisper_model_load(path_model, *ctx)) {
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
|
|
return NULL;
|
|
}
|
|
|
|
ctx->t_load_us = ggml_time_us() - t_start_us;
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void whisper_free(struct whisper_context * ctx) {
|
|
if (ctx) {
|
|
if (ctx->buf_model) {
|
|
delete ctx->buf_model;
|
|
}
|
|
delete ctx;
|
|
}
|
|
}
|
|
|
|
int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, ctx->mel)) {
|
|
fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
ctx->t_mel_us = ggml_time_us() - t_start_us;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int whisper_set_mel(
|
|
struct whisper_context * ctx,
|
|
const float * data,
|
|
int n_len,
|
|
int n_mel) {
|
|
if (n_mel != WHISPER_N_MEL) {
|
|
fprintf(stderr, "%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL);
|
|
return -1;
|
|
}
|
|
|
|
ctx->mel.n_len = n_len;
|
|
ctx->mel.n_mel = n_mel;
|
|
|
|
ctx->mel.data.resize(n_len*n_mel);
|
|
memcpy(ctx->mel.data.data(), data, n_len*n_mel*sizeof(float));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!whisper_encode(*ctx, n_threads, offset)) {
|
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
ctx->t_encode_us += ggml_time_us() - t_start_us;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) {
|
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
ctx->t_decode_us += ggml_time_us() - t_start_us;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct whisper_token_data whisper_sample_best(struct whisper_context * ctx) {
|
|
const int64_t t_start_sample_us = ggml_time_us();
|
|
|
|
// TODO: simplify
|
|
auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab));
|
|
|
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
|
|
return res;
|
|
}
|
|
|
|
whisper_token whisper_sample_timestamp(struct whisper_context * ctx) {
|
|
const int64_t t_start_sample_us = ggml_time_us();
|
|
|
|
// TODO: simplify
|
|
auto res = whisper_sample_timestamp(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab));
|
|
|
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
|
|
return res;
|
|
}
|
|
|
|
int whisper_lang_id(const char * lang) {
|
|
if (!g_lang.count(lang)) {
|
|
fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang);
|
|
return -1;
|
|
}
|
|
|
|
return g_lang.at(lang).first;
|
|
}
|
|
|
|
int whisper_n_len(struct whisper_context * ctx) {
|
|
return ctx->mel.n_len;
|
|
}
|
|
|
|
int whisper_n_vocab(struct whisper_context * ctx) {
|
|
return ctx->vocab.n_vocab;
|
|
}
|
|
|
|
int whisper_n_text_ctx(struct whisper_context * ctx) {
|
|
return ctx->model.hparams.n_text_ctx;
|
|
}
|
|
|
|
int whisper_is_multilingual(struct whisper_context * ctx) {
|
|
return ctx->vocab.is_multilingual() ? 1 : 0;
|
|
}
|
|
|
|
float * whisper_get_probs(struct whisper_context * ctx) {
|
|
return ctx->probs.data();
|
|
}
|
|
|
|
const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) {
|
|
return ctx->vocab.id_to_token.at(token).c_str();
|
|
}
|
|
|
|
whisper_token whisper_token_eot(struct whisper_context * ctx) {
|
|
return ctx->vocab.token_eot;
|
|
}
|
|
|
|
whisper_token whisper_token_sot(struct whisper_context * ctx) {
|
|
return ctx->vocab.token_sot;
|
|
}
|
|
|
|
whisper_token whisper_token_prev(struct whisper_context * ctx) {
|
|
return ctx->vocab.token_prev;
|
|
}
|
|
|
|
whisper_token whisper_token_solm(struct whisper_context * ctx) {
|
|
return ctx->vocab.token_solm;
|
|
}
|
|
|
|
whisper_token whisper_token_not(struct whisper_context * ctx) {
|
|
return ctx->vocab.token_not;
|
|
}
|
|
|
|
whisper_token whisper_token_beg(struct whisper_context * ctx) {
|
|
return ctx->vocab.token_beg;
|
|
}
|
|
|
|
whisper_token whisper_token_translate() {
|
|
return whisper_vocab::token_translate;
|
|
}
|
|
|
|
whisper_token whisper_token_transcribe() {
|
|
return whisper_vocab::token_transcribe;
|
|
}
|
|
|
|
void whisper_print_timings(struct whisper_context * ctx) {
|
|
const int64_t t_end_us = ggml_time_us();
|
|
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us/1000.0f);
|
|
fprintf(stderr, "%s: mel time = %8.2f ms\n", __func__, ctx->t_mel_us/1000.0f);
|
|
fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, ctx->t_sample_us/1000.0f);
|
|
fprintf(stderr, "%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_encode_us/1000.0f, ctx->t_encode_us/1000.0f/ctx->model.hparams.n_audio_layer);
|
|
fprintf(stderr, "%s: decode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_decode_us/1000.0f, ctx->t_decode_us/1000.0f/ctx->model.hparams.n_text_layer);
|
|
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy) {
|
|
struct whisper_full_params result;
|
|
|
|
switch (strategy) {
|
|
case WHISPER_SAMPLING_GREEDY:
|
|
{
|
|
result = {
|
|
/*.strategy =*/ WHISPER_SAMPLING_GREEDY,
|
|
|
|
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
|
/*.n_max_text_ctx =*/ 16384,
|
|
/*.offset_ms =*/ 0,
|
|
/*.duration_ms =*/ 0,
|
|
|
|
/*.translate =*/ false,
|
|
/*.no_context =*/ false,
|
|
/*.print_special_tokens =*/ false,
|
|
/*.print_progress =*/ true,
|
|
/*.print_realtime =*/ false,
|
|
/*.print_timestamps =*/ true,
|
|
|
|
/*.token_timestamps =*/ false,
|
|
/*.thold_pt =*/ 0.01f,
|
|
/*.thold_ptsum =*/ 0.01f,
|
|
/*.max_len =*/ 0,
|
|
|
|
/*.language =*/ "en",
|
|
|
|
/*.greedy =*/ {
|
|
/*.n_past =*/ 0,
|
|
},
|
|
|
|
/*.beam_search =*/ {
|
|
/*.n_past =*/ -1,
|
|
/*.beam_width =*/ -1,
|
|
/*.n_best =*/ -1,
|
|
},
|
|
|
|
/*.new_segment_callback =*/ nullptr,
|
|
/*.new_segment_callback_user_data =*/ nullptr,
|
|
};
|
|
} break;
|
|
case WHISPER_SAMPLING_BEAM_SEARCH:
|
|
{
|
|
result = {
|
|
/*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH,
|
|
|
|
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
|
/*.n_max_text_ctx =*/ 16384,
|
|
/*.offset_ms =*/ 0,
|
|
/*.duration_ms =*/ 0,
|
|
|
|
/*.translate =*/ false,
|
|
/*.no_context =*/ false,
|
|
/*.print_special_tokens =*/ false,
|
|
/*.print_progress =*/ true,
|
|
/*.print_realtime =*/ false,
|
|
/*.print_timestamps =*/ true,
|
|
|
|
/*.token_timestamps =*/ false,
|
|
/*.thold_pt =*/ 0.01f,
|
|
/*.thold_ptsum =*/ 0.01f,
|
|
/*.max_len =*/ 0,
|
|
|
|
/*.language =*/ "en",
|
|
|
|
/*.greedy =*/ {
|
|
/*.n_past =*/ -1,
|
|
},
|
|
|
|
/*.beam_search =*/ {
|
|
/*.n_past =*/ 0,
|
|
/*.beam_width =*/ 10,
|
|
/*.n_best =*/ 5,
|
|
},
|
|
|
|
/*.new_segment_callback =*/ nullptr,
|
|
/*.new_segment_callback_user_data =*/ nullptr,
|
|
};
|
|
} break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// forward declarations
|
|
static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window);
|
|
static void whisper_exp_compute_token_level_timestamps(
|
|
struct whisper_context * ctx,
|
|
int i_segment,
|
|
float thold_pt,
|
|
float thold_ptsum);
|
|
|
|
// wrap the last segment to max_len characters
|
|
// returns the number of new segments
|
|
static int whisper_wrap_segment(struct whisper_context * ctx, int max_len) {
|
|
auto segment = ctx->result_all.back();
|
|
|
|
int res = 1;
|
|
int acc = 0;
|
|
|
|
std::string text;
|
|
|
|
for (int i = 0; i < (int) segment.tokens.size(); i++) {
|
|
const auto & token = segment.tokens[i];
|
|
if (token.id >= whisper_token_eot(ctx)) {
|
|
continue;
|
|
}
|
|
|
|
const auto txt = whisper_token_to_str(ctx, token.id);
|
|
|
|
const int cur = strlen(txt);
|
|
|
|
if (acc + cur > max_len && i > 0) {
|
|
// split here
|
|
ctx->result_all.back().text = std::move(text);
|
|
ctx->result_all.back().t1 = token.t0;
|
|
ctx->result_all.back().tokens.resize(i);
|
|
|
|
ctx->result_all.push_back({});
|
|
ctx->result_all.back().t0 = token.t0;
|
|
ctx->result_all.back().t1 = segment.t1;
|
|
|
|
// add tokens [i, end] to the new segment
|
|
ctx->result_all.back().tokens.insert(
|
|
ctx->result_all.back().tokens.end(),
|
|
segment.tokens.begin() + i,
|
|
segment.tokens.end());
|
|
|
|
acc = 0;
|
|
text = "";
|
|
|
|
segment = ctx->result_all.back();
|
|
i = -1;
|
|
|
|
res++;
|
|
} else {
|
|
acc += cur;
|
|
text += txt;
|
|
}
|
|
}
|
|
|
|
ctx->result_all.back().text = std::move(text);
|
|
|
|
return res;
|
|
}
|
|
|
|
int whisper_full(
|
|
struct whisper_context * ctx,
|
|
struct whisper_full_params params,
|
|
const float * samples,
|
|
int n_samples) {
|
|
// clear old results
|
|
auto & result_all = ctx->result_all;
|
|
|
|
result_all.clear();
|
|
|
|
// compute log mel spectrogram
|
|
if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) {
|
|
fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
if (params.token_timestamps) {
|
|
ctx->t_beg = 0;
|
|
ctx->t_last = 0;
|
|
ctx->tid_last = 0;
|
|
ctx->energy = get_signal_energy(samples, n_samples, 32);
|
|
}
|
|
|
|
const int seek_start = params.offset_ms/10;
|
|
const int seek_end = seek_start + (params.duration_ms == 0 ? whisper_n_len(ctx) : params.duration_ms/10);
|
|
|
|
// if length of spectrogram is less than 1s (100 samples), then return
|
|
// basically don't process anything that is less than 1s
|
|
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
|
|
if (seek_end < 100 + seek_start) {
|
|
return 0;
|
|
}
|
|
|
|
// the accumulated text context so far
|
|
auto & prompt_past = ctx->prompt_past;
|
|
if (params.no_context) {
|
|
prompt_past.clear();
|
|
}
|
|
|
|
// these tokens determine the task that will be performed
|
|
std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx) };
|
|
if (whisper_is_multilingual(ctx)) {
|
|
prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language));
|
|
if (params.translate) {
|
|
prompt_init.push_back(whisper_token_translate());
|
|
} else {
|
|
prompt_init.push_back(whisper_token_transcribe());
|
|
}
|
|
}
|
|
|
|
int progress_prev = 0;
|
|
int progress_step = 5;
|
|
|
|
std::vector<whisper_token_data> tokens_cur;
|
|
tokens_cur.reserve(whisper_n_text_ctx(ctx));
|
|
|
|
std::vector<whisper_token> prompt;
|
|
prompt.reserve(whisper_n_text_ctx(ctx));
|
|
|
|
// main loop
|
|
int seek = seek_start;
|
|
while (true) {
|
|
const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start);
|
|
while (progress_cur >= progress_prev + progress_step) {
|
|
progress_prev += progress_step;
|
|
if (params.print_progress) {
|
|
fprintf(stderr, "%s: progress = %3d%%\n", __func__, progress_prev);
|
|
}
|
|
}
|
|
|
|
if (seek + 100 >= seek_end) {
|
|
break;
|
|
}
|
|
|
|
// encode audio features starting at offset seek
|
|
if (whisper_encode(ctx, seek, params.n_threads) != 0) {
|
|
fprintf(stderr, "%s: failed to encode\n", __func__);
|
|
return 7;
|
|
}
|
|
|
|
int n_past = 0;
|
|
prompt.clear();
|
|
|
|
// if we have already generated some text, use it as a prompt to condition the next generation
|
|
if (prompt_past.size() > 0) {
|
|
int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size()));
|
|
|
|
prompt = { whisper_token_prev(ctx) };
|
|
prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
|
|
|
|
prompt_past.clear();
|
|
prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
|
|
}
|
|
|
|
prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
|
|
|
|
bool done = false;
|
|
int seek_delta = 100*WHISPER_CHUNK_SIZE;
|
|
|
|
// print the prompt
|
|
//printf("\n\n");
|
|
//for (int i = 0; i < prompt.size(); i++) {
|
|
// printf("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token[prompt[i]].c_str());
|
|
//}
|
|
//printf("\n\n");
|
|
|
|
// the accumulated transcription in the current interation
|
|
int result_len = 0;
|
|
tokens_cur.clear();
|
|
|
|
for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) {
|
|
if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) {
|
|
fprintf(stderr, "%s: failed to decode\n", __func__);
|
|
return 8;
|
|
}
|
|
|
|
n_past += prompt.size();
|
|
prompt.clear();
|
|
|
|
// very basic greedy sampling strategy:
|
|
//
|
|
// - always take the most probable token
|
|
//
|
|
// more sophisticated sampling strategies could be implemented here, but we keep it simple
|
|
// feel free to experiment!
|
|
//
|
|
{
|
|
auto token = whisper_sample_best(ctx);
|
|
|
|
if (i == 0) {
|
|
token.tid = whisper_token_beg(ctx);
|
|
}
|
|
|
|
// timestamp token - update sliding window
|
|
if (token.id > whisper_token_beg(ctx)) {
|
|
seek_delta = 2*(token.id - whisper_token_beg(ctx));
|
|
result_len = i + 1;
|
|
}
|
|
|
|
// add it to the context
|
|
prompt.push_back(token.id);
|
|
tokens_cur.push_back(token);
|
|
|
|
//{
|
|
// const auto tt = token.pt > 0.10 ? ctx->vocab.id_to_token[token.tid] : "[?]";
|
|
// printf("%s: %10s %6.3f '%s'\n", __func__, tt.c_str(), token.pt, ctx->vocab.id_to_token[token.id].c_str());
|
|
//}
|
|
|
|
// end of text token
|
|
if (token.id == whisper_token_eot(ctx)) {
|
|
if (result_len == 0) {
|
|
if (seek + seek_delta + 100 >= seek_end) {
|
|
result_len = i + 1;
|
|
} else {
|
|
// TODO: figure out how to resolve this
|
|
fprintf(stderr, "\n%s: failed to generate timestamp token - this should not happen\n\n", __func__);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// TESTS: if no tensors are loaded, it means we are running tests
|
|
if (ctx->model.n_loaded == 0) {
|
|
seek_delta = 100*WHISPER_CHUNK_SIZE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (done) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// shrink down to result_len
|
|
tokens_cur.resize(result_len);
|
|
|
|
for (const auto & r : tokens_cur) {
|
|
prompt_past.push_back(r.id);
|
|
}
|
|
|
|
// store the text from this iteration
|
|
if (tokens_cur.size() > 0) {
|
|
int i0 = 0;
|
|
auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx));
|
|
|
|
std::string text = "";
|
|
|
|
for (int i = 0; i < (int) tokens_cur.size(); i++) {
|
|
//printf("%s: %18s %6.3f %18s %6.3f\n", __func__,
|
|
// ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p,
|
|
// ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt);
|
|
|
|
if (params.print_special_tokens == false && tokens_cur[i].id >= whisper_token_eot(ctx)) {
|
|
} else {
|
|
text += whisper_token_to_str(ctx, tokens_cur[i].id);
|
|
}
|
|
if (tokens_cur[i].id > whisper_token_beg(ctx)) {
|
|
const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx));
|
|
if (!text.empty()) {
|
|
if (params.print_realtime) {
|
|
if (params.print_timestamps) {
|
|
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
|
|
} else {
|
|
printf("%s", text.c_str());
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
|
|
result_all.push_back({ t0, t1, text, {} });
|
|
for (int j = i0; j <= i; j++) {
|
|
result_all.back().tokens.push_back(tokens_cur[j]);
|
|
}
|
|
|
|
int n_new = 1;
|
|
|
|
if (params.token_timestamps) {
|
|
whisper_exp_compute_token_level_timestamps(
|
|
ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
|
|
|
|
if (params.max_len > 0) {
|
|
n_new = whisper_wrap_segment(ctx, params.max_len);
|
|
}
|
|
}
|
|
if (params.new_segment_callback) {
|
|
params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
|
|
}
|
|
}
|
|
text = "";
|
|
while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) {
|
|
i++;
|
|
}
|
|
i--;
|
|
t0 = t1;
|
|
i0 = i + 1;
|
|
}
|
|
}
|
|
|
|
if (!text.empty()) {
|
|
const auto t1 = seek + seek_delta;
|
|
|
|
if (params.print_realtime) {
|
|
if (params.print_timestamps) {
|
|
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
|
|
} else {
|
|
printf("%s", text.c_str());
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
|
|
result_all.push_back({ t0, t1, text, {} });
|
|
for (int j = i0; j < (int) tokens_cur.size(); j++) {
|
|
result_all.back().tokens.push_back(tokens_cur[j]);
|
|
}
|
|
|
|
int n_new = 1;
|
|
|
|
if (params.token_timestamps) {
|
|
whisper_exp_compute_token_level_timestamps(
|
|
ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
|
|
|
|
if (params.max_len > 0) {
|
|
n_new = whisper_wrap_segment(ctx, params.max_len);
|
|
}
|
|
}
|
|
if (params.new_segment_callback) {
|
|
params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
|
|
}
|
|
}
|
|
}
|
|
|
|
seek += seek_delta;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int whisper_full_parallel(
|
|
struct whisper_context * ctx,
|
|
struct whisper_full_params params,
|
|
const float * samples,
|
|
int n_samples,
|
|
const int n_processors) {
|
|
if (n_processors == 1) {
|
|
return whisper_full(ctx, params, samples, n_samples);
|
|
}
|
|
|
|
int ret = 0;
|
|
|
|
// prepare separate contexts for each thread
|
|
std::vector<struct whisper_context> ctxs(n_processors - 1);
|
|
|
|
for (int i = 0; i < n_processors - 1; ++i) {
|
|
ctxs[i] = *ctx;
|
|
|
|
auto & model = ctxs[i].model;
|
|
|
|
// create the ggml memory context
|
|
{
|
|
struct ggml_init_params params = {
|
|
.mem_size = ctxs[i].buf_memory.size(),
|
|
.mem_buffer = ctxs[i].buf_memory.data(),
|
|
};
|
|
|
|
model.ctx_mem = ggml_init(params);
|
|
if (!model.ctx_mem) {
|
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// separate key + value memory for each processor
|
|
{
|
|
auto & ctx = model.ctx_mem;
|
|
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_text_state = hparams.n_text_state;
|
|
const int n_text_layer = hparams.n_text_layer;
|
|
const int n_text_ctx = hparams.n_text_ctx;
|
|
|
|
// key/value memory for the self-attention layer
|
|
{
|
|
const int n_mem = n_text_layer*n_text_ctx;
|
|
const int n_elements = n_text_state*n_mem;
|
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
}
|
|
|
|
// key/value memory for the cross-attention layer
|
|
{
|
|
const int n_audio_ctx = hparams.n_audio_ctx;
|
|
|
|
const int n_mem = n_text_layer*n_audio_ctx;
|
|
const int n_elements = n_text_state*n_mem;
|
|
|
|
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
}
|
|
|
|
const size_t memory_size =
|
|
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
|
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
|
}
|
|
}
|
|
|
|
const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000;
|
|
const int n_samples_per_processor = (n_samples - offset_samples)/n_processors;
|
|
|
|
// the calling thread will process the first chunk
|
|
// while the other threads will process the remaining chunks
|
|
|
|
std::vector<std::thread> workers(n_processors - 1);
|
|
for (int i = 0; i < n_processors - 1; ++i) {
|
|
const int start_samples = offset_samples + (i + 1)*n_samples_per_processor;
|
|
const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor;
|
|
|
|
auto params_cur = params;
|
|
|
|
params_cur.offset_ms = 0;
|
|
params_cur.print_progress = false;
|
|
params_cur.print_realtime = false;
|
|
|
|
params_cur.new_segment_callback = nullptr;
|
|
params_cur.new_segment_callback_user_data = nullptr;
|
|
|
|
workers[i] = std::thread(whisper_full, &ctxs[i], std::move(params_cur), samples + start_samples, n_samples_cur);
|
|
}
|
|
|
|
{
|
|
auto params_cur = params;
|
|
|
|
ret = whisper_full(ctx, std::move(params_cur), samples, offset_samples + n_samples_per_processor);
|
|
}
|
|
|
|
for (int i = 0; i < n_processors - 1; ++i) {
|
|
workers[i].join();
|
|
}
|
|
|
|
const int64_t offset_t = (int64_t) params.offset_ms/10.0;
|
|
|
|
// combine results into ctx->result_all
|
|
for (int i = 0; i < n_processors - 1; ++i) {
|
|
auto & results_i = ctxs[i].result_all;
|
|
|
|
for (int j = 0; j < (int) results_i.size(); ++j) {
|
|
// correct the segment timestamp taking into account the offset
|
|
results_i[j].t0 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
|
|
results_i[j].t1 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
|
|
|
|
// make sure that segments are not overlapping
|
|
if (ctx->result_all.size() > 0) {
|
|
results_i[j].t0 = std::max(results_i[j].t0, ctx->result_all.back().t1);
|
|
}
|
|
|
|
ctx->result_all.push_back(std::move(results_i[j]));
|
|
|
|
// call the new_segment_callback for each segment
|
|
if (params.new_segment_callback) {
|
|
params.new_segment_callback(ctx, 1, params.new_segment_callback_user_data);
|
|
}
|
|
}
|
|
|
|
ctx->t_mel_us += ctxs[i].t_mel_us;
|
|
ctx->t_sample_us += ctxs[i].t_sample_us;
|
|
ctx->t_encode_us += ctxs[i].t_encode_us;
|
|
ctx->t_decode_us += ctxs[i].t_decode_us;
|
|
}
|
|
|
|
// average the timings
|
|
ctx->t_mel_us /= n_processors;
|
|
ctx->t_sample_us /= n_processors;
|
|
ctx->t_encode_us /= n_processors;
|
|
ctx->t_decode_us /= n_processors;
|
|
|
|
// print information about the audio boundaries
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s: the audio has been split into %d chunks at the following times:\n", __func__, n_processors);
|
|
for (int i = 0; i < n_processors - 1; ++i) {
|
|
fprintf(stderr, "%s: split %d - %s\n", __func__, (i + 1), to_timestamp(100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t).c_str());
|
|
}
|
|
fprintf(stderr, "%s: the transcription quality may be degraded near these boundaries\n", __func__);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int whisper_full_n_segments(struct whisper_context * ctx) {
|
|
return ctx->result_all.size();
|
|
}
|
|
|
|
int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {
|
|
return ctx->result_all[i_segment].t0;
|
|
}
|
|
|
|
int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) {
|
|
return ctx->result_all[i_segment].t1;
|
|
}
|
|
|
|
const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) {
|
|
return ctx->result_all[i_segment].text.c_str();
|
|
}
|
|
|
|
int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment) {
|
|
return ctx->result_all[i_segment].tokens.size();
|
|
}
|
|
|
|
const char * whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token) {
|
|
return ctx->vocab.id_to_token[ctx->result_all[i_segment].tokens[i_token].id].c_str();
|
|
}
|
|
|
|
whisper_token whisper_full_get_token_id(struct whisper_context * ctx, int i_segment, int i_token) {
|
|
return ctx->result_all[i_segment].tokens[i_token].id;
|
|
}
|
|
|
|
struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token) {
|
|
return ctx->result_all[i_segment].tokens[i_token];
|
|
}
|
|
|
|
float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token) {
|
|
return ctx->result_all[i_segment].tokens[i_token].p;
|
|
}
|
|
|
|
const char * whisper_print_system_info() {
|
|
static std::string s;
|
|
|
|
s = "";
|
|
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
|
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
|
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
|
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
|
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
|
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
|
|
|
return s.c_str();
|
|
}
|
|
|
|
// =================================================================================================
|
|
|
|
//
|
|
// Experimental stuff below
|
|
//
|
|
// Not sure if these should be part of the library at all, because the quality of the results is not
|
|
// guaranteed. Might get removed at some point unless a robust algorithm implementation is found
|
|
//
|
|
|
|
// =================================================================================================
|
|
|
|
//
|
|
// token-level timestamps
|
|
//
|
|
|
|
static int timestamp_to_sample(int64_t t, int n_samples) {
|
|
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
|
|
}
|
|
|
|
static int64_t sample_to_timestamp(int i_sample) {
|
|
return (100*i_sample)/WHISPER_SAMPLE_RATE;
|
|
}
|
|
|
|
// a cost-function / heuristic that is high for text that takes longer to pronounce
|
|
// obviously, can be improved
|
|
static float voice_length(const std::string & text) {
|
|
float res = 0.0f;
|
|
|
|
for (size_t i = 0; i < text.size(); ++i) {
|
|
if (text[i] == ' ') {
|
|
res += 0.01f;
|
|
} else if (text[i] == ',') {
|
|
res += 2.00f;
|
|
} else if (text[i] == '.') {
|
|
res += 3.00f;
|
|
} else if (text[i] == '!') {
|
|
res += 3.00f;
|
|
} else if (text[i] == '?') {
|
|
res += 3.00f;
|
|
} else if (text[i] >= '0' && text[i] <= '9') {
|
|
res += 3.00f;
|
|
} else {
|
|
res += 1.00f;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// average the fabs of the signal
|
|
static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) {
|
|
const int hw = n_samples_per_half_window;
|
|
|
|
std::vector<float> result(n_samples);
|
|
|
|
for (int i = 0; i < n_samples; i++) {
|
|
float sum = 0;
|
|
for (int j = -hw; j <= hw; j++) {
|
|
if (i + j >= 0 && i + j < n_samples) {
|
|
sum += fabs(signal[i + j]);
|
|
}
|
|
}
|
|
result[i] = sum/(2*hw + 1);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void whisper_exp_compute_token_level_timestamps(
|
|
struct whisper_context * ctx,
|
|
int i_segment,
|
|
float thold_pt,
|
|
float thold_ptsum) {
|
|
auto & segment = ctx->result_all[i_segment];
|
|
auto & tokens = segment.tokens;
|
|
|
|
const int n_samples = ctx->energy.size();
|
|
|
|
if (n_samples == 0) {
|
|
fprintf(stderr, "%s: no signal data available\n", __func__);
|
|
return;
|
|
}
|
|
|
|
const int64_t t0 = segment.t0;
|
|
const int64_t t1 = segment.t1;
|
|
|
|
const int s0 = timestamp_to_sample(t0, n_samples);
|
|
const int s1 = timestamp_to_sample(t1, n_samples);
|
|
|
|
const int n = tokens.size();
|
|
|
|
if (n == 0) {
|
|
return;
|
|
}
|
|
|
|
if (n == 1) {
|
|
tokens[0].t0 = t0;
|
|
tokens[0].t1 = t1;
|
|
|
|
return;
|
|
}
|
|
|
|
auto & t_beg = ctx->t_beg;
|
|
auto & t_last = ctx->t_last;
|
|
auto & tid_last = ctx->tid_last;
|
|
|
|
for (int j = 0; j < n; ++j) {
|
|
auto & token = tokens[j];
|
|
|
|
if (j == 0) {
|
|
if (token.id == whisper_token_beg(ctx)) {
|
|
tokens[j ].t0 = t0;
|
|
tokens[j ].t1 = t0;
|
|
tokens[j + 1].t0 = t0;
|
|
|
|
t_beg = t0;
|
|
t_last = t0;
|
|
tid_last = whisper_token_beg(ctx);
|
|
} else {
|
|
tokens[j ].t0 = t_last;
|
|
}
|
|
}
|
|
|
|
const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
|
|
|
|
tokens[j].id = token.id;
|
|
tokens[j].tid = token.tid;
|
|
tokens[j].p = token.p;
|
|
tokens[j].pt = token.pt;
|
|
tokens[j].ptsum = token.ptsum;
|
|
|
|
tokens[j].vlen = voice_length(whisper_token_to_str(ctx, token.id));
|
|
|
|
if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) {
|
|
if (j > 0) {
|
|
tokens[j - 1].t1 = tt;
|
|
}
|
|
tokens[j].t0 = tt;
|
|
tid_last = token.tid;
|
|
}
|
|
}
|
|
|
|
tokens[n - 2].t1 = t1;
|
|
tokens[n - 1].t0 = t1;
|
|
tokens[n - 1].t1 = t1;
|
|
|
|
t_last = t1;
|
|
|
|
// find intervals of tokens with unknown timestamps
|
|
// fill the timestamps by proportionally splitting the interval based on the token voice lengths
|
|
{
|
|
int p0 = 0;
|
|
int p1 = 0;
|
|
|
|
while (true) {
|
|
while (p1 < n && tokens[p1].t1 < 0) {
|
|
p1++;
|
|
}
|
|
|
|
if (p1 >= n) {
|
|
p1--;
|
|
}
|
|
|
|
if (p1 > p0) {
|
|
double psum = 0.0;
|
|
for (int j = p0; j <= p1; j++) {
|
|
psum += tokens[j].vlen;
|
|
}
|
|
|
|
//printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
|
|
|
|
const double dt = tokens[p1].t1 - tokens[p0].t0;
|
|
|
|
// split the time proportionally to the voice length
|
|
for (int j = p0 + 1; j <= p1; j++) {
|
|
const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
|
|
|
|
tokens[j - 1].t1 = ct;
|
|
tokens[j ].t0 = ct;
|
|
}
|
|
}
|
|
|
|
p1++;
|
|
p0 = p1;
|
|
if (p1 >= n) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// fix up (just in case)
|
|
for (int j = 0; j < n - 1; j++) {
|
|
if (tokens[j].t1 < 0) {
|
|
tokens[j + 1].t0 = tokens[j].t1;
|
|
}
|
|
|
|
if (j > 0) {
|
|
if (tokens[j - 1].t1 > tokens[j].t0) {
|
|
tokens[j].t0 = tokens[j - 1].t1;
|
|
tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// VAD
|
|
// expand or contract tokens based on voice activity
|
|
{
|
|
const int hw = WHISPER_SAMPLE_RATE/8;
|
|
|
|
for (int j = 0; j < n; j++) {
|
|
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
|
continue;
|
|
}
|
|
|
|
int s0 = timestamp_to_sample(tokens[j].t0, n_samples);
|
|
int s1 = timestamp_to_sample(tokens[j].t1, n_samples);
|
|
|
|
const int ss0 = std::max(s0 - hw, 0);
|
|
const int ss1 = std::min(s1 + hw, n_samples);
|
|
|
|
const int ns = ss1 - ss0;
|
|
|
|
float sum = 0.0f;
|
|
|
|
for (int k = ss0; k < ss1; k++) {
|
|
sum += ctx->energy[k];
|
|
}
|
|
|
|
const float thold = 0.5*sum/ns;
|
|
|
|
{
|
|
int k = s0;
|
|
if (ctx->energy[k] > thold && j > 0) {
|
|
while (k > 0 && ctx->energy[k] > thold) {
|
|
k--;
|
|
}
|
|
tokens[j].t0 = sample_to_timestamp(k);
|
|
if (tokens[j].t0 < tokens[j - 1].t1) {
|
|
tokens[j].t0 = tokens[j - 1].t1;
|
|
} else {
|
|
s0 = k;
|
|
}
|
|
} else {
|
|
while (ctx->energy[k] < thold && k < s1) {
|
|
k++;
|
|
}
|
|
s0 = k;
|
|
tokens[j].t0 = sample_to_timestamp(k);
|
|
}
|
|
}
|
|
|
|
{
|
|
int k = s1;
|
|
if (ctx->energy[k] > thold) {
|
|
while (k < n_samples - 1 && ctx->energy[k] > thold) {
|
|
k++;
|
|
}
|
|
tokens[j].t1 = sample_to_timestamp(k);
|
|
if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) {
|
|
tokens[j].t1 = tokens[j + 1].t0;
|
|
} else {
|
|
s1 = k;
|
|
}
|
|
} else {
|
|
while (ctx->energy[k] < thold && k > s0) {
|
|
k--;
|
|
}
|
|
s1 = k;
|
|
tokens[j].t1 = sample_to_timestamp(k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fixed token expand (optional)
|
|
//{
|
|
// const int t_expand = 0;
|
|
|
|
// for (int j = 0; j < n; j++) {
|
|
// if (j > 0) {
|
|
// tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
|
|
// }
|
|
// if (j < n - 1) {
|
|
// tokens[j].t1 = tokens[j].t1 + t_expand;
|
|
// }
|
|
// }
|
|
//}
|
|
|
|
// debug info
|
|
//for (int j = 0; j < n; ++j) {
|
|
// const auto & token = tokens[j];
|
|
// const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
|
|
// printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
|
|
// tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(ctx, token.id));
|
|
|
|
// if (tokens[j].id >= whisper_token_eot(ctx)) {
|
|
// continue;
|
|
// }
|
|
//}
|
|
}
|