forked from extern/whisper.cpp
f888c2373d
- Achieved big performance improvement + memory usage reduction - Can now translate / transcribe different languages
2293 lines
80 KiB
C++
2293 lines
80 KiB
C++
#include "ggml.h"
|
|
|
|
#define USE_FLASH_ATTN
|
|
#define USE_FLASH_FF
|
|
|
|
// third-party utilities
|
|
// use your favorite implementations
|
|
#define DR_WAV_IMPLEMENTATION
|
|
#include "dr_wav.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
// available whisper models
|
|
enum e_model {
|
|
MODEL_UNKNOWN,
|
|
MODEL_TINY,
|
|
MODEL_BASE,
|
|
MODEL_SMALL,
|
|
MODEL_MEDIUM,
|
|
MODEL_LARGE,
|
|
};
|
|
|
|
const std::map<std::string, std::pair<int, std::string>> g_lang = {
|
|
{ "en", { 0, "english", } },
|
|
{ "zh", { 1, "chinese", } },
|
|
{ "de", { 2, "german", } },
|
|
{ "es", { 3, "spanish", } },
|
|
{ "ru", { 4, "russian", } },
|
|
{ "ko", { 5, "korean", } },
|
|
{ "fr", { 6, "french", } },
|
|
{ "ja", { 7, "japanese", } },
|
|
{ "pt", { 8, "portuguese", } },
|
|
{ "tr", { 9, "turkish", } },
|
|
{ "pl", { 10, "polish", } },
|
|
{ "ca", { 11, "catalan", } },
|
|
{ "nl", { 12, "dutch", } },
|
|
{ "ar", { 13, "arabic", } },
|
|
{ "sv", { 14, "swedish", } },
|
|
{ "it", { 15, "italian", } },
|
|
{ "id", { 16, "indonesian", } },
|
|
{ "hi", { 17, "hindi", } },
|
|
{ "fi", { 18, "finnish", } },
|
|
{ "vi", { 19, "vietnamese", } },
|
|
{ "iw", { 20, "hebrew", } },
|
|
{ "uk", { 21, "ukrainian", } },
|
|
{ "el", { 22, "greek", } },
|
|
{ "ms", { 23, "malay", } },
|
|
{ "cs", { 24, "czech", } },
|
|
{ "ro", { 25, "romanian", } },
|
|
{ "da", { 26, "danish", } },
|
|
{ "hu", { 27, "hungarian", } },
|
|
{ "ta", { 28, "tamil", } },
|
|
{ "no", { 29, "norwegian", } },
|
|
{ "th", { 30, "thai", } },
|
|
{ "ur", { 31, "urdu", } },
|
|
{ "hr", { 32, "croatian", } },
|
|
{ "bg", { 33, "bulgarian", } },
|
|
{ "lt", { 34, "lithuanian", } },
|
|
{ "la", { 35, "latin", } },
|
|
{ "mi", { 36, "maori", } },
|
|
{ "ml", { 37, "malayalam", } },
|
|
{ "cy", { 38, "welsh", } },
|
|
{ "sk", { 39, "slovak", } },
|
|
{ "te", { 40, "telugu", } },
|
|
{ "fa", { 41, "persian", } },
|
|
{ "lv", { 42, "latvian", } },
|
|
{ "bn", { 43, "bengali", } },
|
|
{ "sr", { 44, "serbian", } },
|
|
{ "az", { 45, "azerbaijani", } },
|
|
{ "sl", { 46, "slovenian", } },
|
|
{ "kn", { 47, "kannada", } },
|
|
{ "et", { 48, "estonian", } },
|
|
{ "mk", { 49, "macedonian", } },
|
|
{ "br", { 50, "breton", } },
|
|
{ "eu", { 51, "basque", } },
|
|
{ "is", { 52, "icelandic", } },
|
|
{ "hy", { 53, "armenian", } },
|
|
{ "ne", { 54, "nepali", } },
|
|
{ "mn", { 55, "mongolian", } },
|
|
{ "bs", { 56, "bosnian", } },
|
|
{ "kk", { 57, "kazakh", } },
|
|
{ "sq", { 58, "albanian", } },
|
|
{ "sw", { 59, "swahili", } },
|
|
{ "gl", { 60, "galician", } },
|
|
{ "mr", { 61, "marathi", } },
|
|
{ "pa", { 62, "punjabi", } },
|
|
{ "si", { 63, "sinhala", } },
|
|
{ "km", { 64, "khmer", } },
|
|
{ "sn", { 65, "shona", } },
|
|
{ "yo", { 66, "yoruba", } },
|
|
{ "so", { 67, "somali", } },
|
|
{ "af", { 68, "afrikaans", } },
|
|
{ "oc", { 69, "occitan", } },
|
|
{ "ka", { 70, "georgian", } },
|
|
{ "be", { 71, "belarusian", } },
|
|
{ "tg", { 72, "tajik", } },
|
|
{ "sd", { 73, "sindhi", } },
|
|
{ "gu", { 74, "gujarati", } },
|
|
{ "am", { 75, "amharic", } },
|
|
{ "yi", { 76, "yiddish", } },
|
|
{ "lo", { 77, "lao", } },
|
|
{ "uz", { 78, "uzbek", } },
|
|
{ "fo", { 79, "faroese", } },
|
|
{ "ht", { 80, "haitian creole", } },
|
|
{ "ps", { 81, "pashto", } },
|
|
{ "tk", { 82, "turkmen", } },
|
|
{ "nn", { 83, "nynorsk", } },
|
|
{ "mt", { 84, "maltese", } },
|
|
{ "sa", { 85, "sanskrit", } },
|
|
{ "lb", { 86, "luxembourgish", } },
|
|
{ "my", { 87, "myanmar", } },
|
|
{ "bo", { 88, "tibetan", } },
|
|
{ "tl", { 89, "tagalog", } },
|
|
{ "mg", { 90, "malagasy", } },
|
|
{ "as", { 91, "assamese", } },
|
|
{ "tt", { 92, "tatar", } },
|
|
{ "haw", { 93, "hawaiian", } },
|
|
{ "ln", { 94, "lingala", } },
|
|
{ "ha", { 95, "hausa", } },
|
|
{ "ba", { 96, "bashkir", } },
|
|
{ "jw", { 97, "javanese", } },
|
|
{ "su", { 98, "sundanese", } },
|
|
};
|
|
|
|
const size_t MB = 1024*1024;
|
|
|
|
const std::map<e_model, size_t> MEM_REQ_MODEL = {
|
|
{ MODEL_TINY, 86ull*MB },
|
|
{ MODEL_BASE, 165ull*MB },
|
|
{ MODEL_SMALL, 540ull*MB },
|
|
{ MODEL_MEDIUM, 1650ull*MB },
|
|
{ MODEL_LARGE, 3260ull*MB },
|
|
};
|
|
|
|
const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
|
{ MODEL_TINY, 80ull*MB },
|
|
{ MODEL_BASE, 128ull*MB },
|
|
{ MODEL_SMALL, 300ull*MB },
|
|
{ MODEL_MEDIUM, 680ull*MB },
|
|
{ MODEL_LARGE, 1100ull*MB },
|
|
};
|
|
|
|
const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
|
|
{ MODEL_TINY, 64ull*MB },
|
|
{ MODEL_BASE, 84ull*MB },
|
|
{ MODEL_SMALL, 128ull*MB },
|
|
{ MODEL_MEDIUM, 172ull*MB },
|
|
{ MODEL_LARGE, 216ull*MB },
|
|
};
|
|
|
|
const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
|
{ MODEL_TINY, 190ull*MB },
|
|
{ MODEL_BASE, 190ull*MB },
|
|
{ MODEL_SMALL, 190ull*MB },
|
|
{ MODEL_MEDIUM, 200ull*MB },
|
|
{ MODEL_LARGE, 200ull*MB },
|
|
};
|
|
|
|
const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = {
|
|
{ MODEL_TINY, 32ull*MB },
|
|
{ MODEL_BASE, 44ull*MB },
|
|
{ MODEL_SMALL, 64ull*MB },
|
|
{ MODEL_MEDIUM, 84ull*MB },
|
|
{ MODEL_LARGE, 110ull*MB },
|
|
};
|
|
|
|
const int SAMPLE_RATE = 16000;
|
|
const int N_FFT = 400;
|
|
const int N_MEL = 80;
|
|
const int HOP_LENGTH = 160;
|
|
const int CHUNK_SIZE = 30; // seconds
|
|
|
|
struct whisper_mel {
|
|
int n_len;
|
|
int n_mel;
|
|
|
|
std::vector<float> data;
|
|
};
|
|
|
|
struct whisper_filters {
|
|
int32_t n_mel;
|
|
int32_t n_fft;
|
|
|
|
std::vector<float> data;
|
|
};
|
|
|
|
struct whisper_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
|
|
int n_vocab = 51864;
|
|
|
|
std::map<token, id> token_to_id;
|
|
std::map<id, token> id_to_token;
|
|
|
|
id token_eot = 50256;
|
|
id token_sot = 50257;
|
|
id token_prev = 50360;
|
|
id token_solm = 50361; // ??
|
|
id token_beg = 50363;
|
|
|
|
// available tasks
|
|
const id token_translate = 50358;
|
|
const id token_transcribe = 50359;
|
|
|
|
bool is_multilingual() const {
|
|
return n_vocab == 51865;
|
|
}
|
|
};
|
|
|
|
// command-line parameters
|
|
struct whisper_params {
|
|
int32_t seed = -1; // RNG seed, not used currently
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
|
|
// sampling parameter - used for the greedy strategy
|
|
int32_t max_tokens_per_iter = 64;
|
|
|
|
bool verbose = false;
|
|
bool translate = false;
|
|
bool print_special_tokens = false;
|
|
|
|
std::string language = "en";
|
|
std::string model = "models/ggml-base.en.bin";
|
|
std::string fname_inp = "samples/jfk.wav";
|
|
};
|
|
|
|
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
|
|
|
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
|
for (int i = 1; i < argc; i++) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "-s" || arg == "--seed") {
|
|
params.seed = std::stoi(argv[++i]);
|
|
} else if (arg == "-t" || arg == "--threads") {
|
|
params.n_threads = std::stoi(argv[++i]);
|
|
} else if (arg == "-T" || arg == "--tokens") {
|
|
params.max_tokens_per_iter = std::stoi(argv[++i]);
|
|
} else if (arg == "-v" || arg == "--verbose") {
|
|
params.verbose = true;
|
|
} else if (arg == "--translate") {
|
|
params.translate = true;
|
|
} else if (arg == "-l" || arg == "--language") {
|
|
params.language = argv[++i];
|
|
if (g_lang.find(params.language) == g_lang.end()) {
|
|
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
} else if (arg == "-ps" || arg == "--print_special") {
|
|
params.print_special_tokens = true;
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
params.model = argv[++i];
|
|
} else if (arg == "-f" || arg == "--file") {
|
|
params.fname_inp = argv[++i];
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
|
|
fprintf(stderr, " -v, --verbose verbose output\n");
|
|
fprintf(stderr, " --translate translate from source language to english\n");
|
|
fprintf(stderr, " -ps, --print_special print special tokens\n");
|
|
fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
|
|
fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
|
|
fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str());
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
|
|
// medium
|
|
// hparams: {
|
|
// 'n_mels': 80,
|
|
// 'n_vocab': 51864,
|
|
// 'n_audio_ctx': 1500,
|
|
// 'n_audio_state': 1024,
|
|
// 'n_audio_head': 16,
|
|
// 'n_audio_layer': 24,
|
|
// 'n_text_ctx': 448,
|
|
// 'n_text_state': 1024,
|
|
// 'n_text_head': 16,
|
|
// 'n_text_layer': 24
|
|
// }
|
|
//
|
|
// default hparams (Whisper tiny)
|
|
struct whisper_hparams {
|
|
int32_t n_vocab = 51864;
|
|
int32_t n_audio_ctx = 1500;
|
|
int32_t n_audio_state = 384;
|
|
int32_t n_audio_head = 6;
|
|
int32_t n_audio_layer = 4;
|
|
int32_t n_text_ctx = 448;
|
|
int32_t n_text_state = 384;
|
|
int32_t n_text_head = 6;
|
|
int32_t n_text_layer = 4;
|
|
int32_t n_mels = 80;
|
|
int32_t f16 = 1;
|
|
};
|
|
|
|
// audio encoding layer
|
|
struct whisper_layer_encoder {
|
|
// encoder.blocks.*.attn_ln
|
|
struct ggml_tensor * attn_ln_0_w;
|
|
struct ggml_tensor * attn_ln_0_b;
|
|
|
|
// encoder.blocks.*.attn.out
|
|
struct ggml_tensor * attn_ln_1_w;
|
|
struct ggml_tensor * attn_ln_1_b;
|
|
|
|
// encoder.blocks.*.attn.query
|
|
struct ggml_tensor * attn_q_w;
|
|
struct ggml_tensor * attn_q_b;
|
|
|
|
// encoder.blocks.*.attn.key
|
|
struct ggml_tensor * attn_k_w;
|
|
|
|
// encoder.blocks.*.attn.value
|
|
struct ggml_tensor * attn_v_w;
|
|
struct ggml_tensor * attn_v_b;
|
|
|
|
// encoder.blocks.*.mlp_ln
|
|
struct ggml_tensor * mlp_ln_w;
|
|
struct ggml_tensor * mlp_ln_b;
|
|
|
|
// encoder.blocks.*.mlp.0
|
|
struct ggml_tensor * mlp_0_w;
|
|
struct ggml_tensor * mlp_0_b;
|
|
|
|
// encoder.blocks.*.mlp.2
|
|
struct ggml_tensor * mlp_1_w;
|
|
struct ggml_tensor * mlp_1_b;
|
|
};
|
|
|
|
// token decoding layer
|
|
struct whisper_layer_decoder {
|
|
// decoder.blocks.*.attn_ln
|
|
struct ggml_tensor * attn_ln_0_w;
|
|
struct ggml_tensor * attn_ln_0_b;
|
|
|
|
// decoder.blocks.*.attn.out
|
|
struct ggml_tensor * attn_ln_1_w;
|
|
struct ggml_tensor * attn_ln_1_b;
|
|
|
|
// decoder.blocks.*.attn.query
|
|
struct ggml_tensor * attn_q_w;
|
|
struct ggml_tensor * attn_q_b;
|
|
|
|
// decoder.blocks.*.attn.key
|
|
struct ggml_tensor * attn_k_w;
|
|
|
|
// decoder.blocks.*.attn.value
|
|
struct ggml_tensor * attn_v_w;
|
|
struct ggml_tensor * attn_v_b;
|
|
|
|
// decoder.blocks.*.cross_attn_ln
|
|
struct ggml_tensor * cross_attn_ln_0_w;
|
|
struct ggml_tensor * cross_attn_ln_0_b;
|
|
|
|
// decoder.blocks.*.cross_attn.out
|
|
struct ggml_tensor * cross_attn_ln_1_w;
|
|
struct ggml_tensor * cross_attn_ln_1_b;
|
|
|
|
// decoder.blocks.*.cross_attn.query
|
|
struct ggml_tensor * cross_attn_q_w;
|
|
struct ggml_tensor * cross_attn_q_b;
|
|
|
|
// decoder.blocks.*.cross_attn.key
|
|
struct ggml_tensor * cross_attn_k_w;
|
|
|
|
// decoder.blocks.*.cross_attn.value
|
|
struct ggml_tensor * cross_attn_v_w;
|
|
struct ggml_tensor * cross_attn_v_b;
|
|
|
|
// decoder.blocks.*.mlp_ln
|
|
struct ggml_tensor * mlp_ln_w;
|
|
struct ggml_tensor * mlp_ln_b;
|
|
|
|
// decoder.blocks.*.mlp.0
|
|
struct ggml_tensor * mlp_0_w;
|
|
struct ggml_tensor * mlp_0_b;
|
|
|
|
// decoder.blocks.*.mlp.2
|
|
struct ggml_tensor * mlp_1_w;
|
|
struct ggml_tensor * mlp_1_b;
|
|
};
|
|
|
|
struct whisper_model {
|
|
e_model type = MODEL_UNKNOWN;
|
|
|
|
whisper_hparams hparams;
|
|
whisper_filters filters;
|
|
|
|
// encoder.positional_embedding
|
|
struct ggml_tensor * e_pe;
|
|
|
|
// encoder.conv1
|
|
struct ggml_tensor * e_conv_1_w;
|
|
struct ggml_tensor * e_conv_1_b;
|
|
|
|
// encoder.conv2
|
|
struct ggml_tensor * e_conv_2_w;
|
|
struct ggml_tensor * e_conv_2_b;
|
|
|
|
// encoder.ln_post
|
|
struct ggml_tensor * e_ln_w;
|
|
struct ggml_tensor * e_ln_b;
|
|
|
|
// decoder.positional_embedding
|
|
struct ggml_tensor * d_pe; // DD
|
|
|
|
// decoder.token_embedding
|
|
struct ggml_tensor * d_te; // DD
|
|
|
|
// decoder.ln
|
|
struct ggml_tensor * d_ln_w; // DD
|
|
struct ggml_tensor * d_ln_b; // DD
|
|
|
|
std::vector<whisper_layer_encoder> layers_encoder;
|
|
std::vector<whisper_layer_decoder> layers_decoder;
|
|
|
|
// key + value memory
|
|
struct ggml_tensor * memory_k;
|
|
struct ggml_tensor * memory_v;
|
|
|
|
struct ggml_tensor * memory_cross_k;
|
|
struct ggml_tensor * memory_cross_v;
|
|
|
|
//
|
|
struct ggml_context * ctx;
|
|
std::map<std::string, struct ggml_tensor *> tensors;
|
|
};
|
|
|
|
// load the model from a ggml file
|
|
//
|
|
// file format:
|
|
//
|
|
// - hparams
|
|
// - pre-computed mel filters
|
|
// - vocab
|
|
// - weights
|
|
//
|
|
// see the convert-pt-to-ggml.py script for details
|
|
//
|
|
bool whisper_model_load(const std::string & fname, whisper_model & model, whisper_vocab & vocab) {
|
|
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
|
|
|
auto fin = std::ifstream(fname, std::ios::binary);
|
|
if (!fin) {
|
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
|
|
// verify magic
|
|
{
|
|
uint32_t magic;
|
|
fin.read((char *) &magic, sizeof(magic));
|
|
if (magic != 0x67676d6c) {
|
|
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//load hparams
|
|
{
|
|
auto & hparams = model.hparams;
|
|
|
|
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
|
fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
|
|
fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
|
|
fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
|
|
fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
|
|
fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
|
|
fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
|
|
fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
|
|
fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
|
|
fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
|
|
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
|
|
|
assert(hparams.n_text_state == hparams.n_audio_state);
|
|
|
|
if (hparams.n_audio_layer == 4) {
|
|
model.type = e_model::MODEL_TINY;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 6) {
|
|
model.type = e_model::MODEL_BASE;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 12) {
|
|
model.type = e_model::MODEL_SMALL;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 24) {
|
|
model.type = e_model::MODEL_MEDIUM;
|
|
}
|
|
|
|
if (hparams.n_audio_layer == 32) {
|
|
model.type = e_model::MODEL_LARGE;
|
|
}
|
|
|
|
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
|
printf("%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
|
|
printf("%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
|
|
printf("%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
|
|
printf("%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
|
|
printf("%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
|
|
printf("%s: n_text_state = %d\n", __func__, hparams.n_text_state);
|
|
printf("%s: n_text_head = %d\n", __func__, hparams.n_text_head);
|
|
printf("%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
|
|
printf("%s: n_mels = %d\n", __func__, hparams.n_mels);
|
|
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
|
printf("%s: type = %d\n", __func__, model.type);
|
|
|
|
// this is the total memory required to run the inference
|
|
const size_t mem_required =
|
|
MEM_REQ_MODEL.at(model.type) +
|
|
MEM_REQ_ENCODE.at(model.type) +
|
|
MEM_REQ_ENCODE_LAYER.at(model.type) +
|
|
MEM_REQ_DECODE.at(model.type) +
|
|
MEM_REQ_DECODE_LAYER.at(model.type);
|
|
|
|
printf("%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
|
|
}
|
|
|
|
// load mel filters
|
|
{
|
|
auto & filters = model.filters;
|
|
|
|
fin.read((char *) &filters.n_mel, sizeof(filters.n_mel));
|
|
fin.read((char *) &filters.n_fft, sizeof(filters.n_fft));
|
|
|
|
filters.data.resize(filters.n_mel * filters.n_fft);
|
|
fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float));
|
|
}
|
|
|
|
// load vocab
|
|
{
|
|
int32_t n_vocab = 0;
|
|
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
|
|
|
//if (n_vocab != model.hparams.n_vocab) {
|
|
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
|
// __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
|
// return false;
|
|
//}
|
|
|
|
std::string word;
|
|
for (int i = 0; i < n_vocab; i++) {
|
|
uint32_t len;
|
|
fin.read((char *) &len, sizeof(len));
|
|
|
|
word.resize(len);
|
|
fin.read((char *) word.data(), len);
|
|
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
|
|
//printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
|
|
}
|
|
|
|
vocab.n_vocab = model.hparams.n_vocab;
|
|
if (vocab.is_multilingual()) {
|
|
vocab.token_eot++;
|
|
vocab.token_sot++;
|
|
vocab.token_prev++;
|
|
vocab.token_solm++;
|
|
vocab.token_beg++;
|
|
}
|
|
|
|
if (n_vocab < model.hparams.n_vocab) {
|
|
printf("%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab);
|
|
for (int i = n_vocab; i < model.hparams.n_vocab; i++) {
|
|
if (i > vocab.token_beg) {
|
|
word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]";
|
|
} else if (i == vocab.token_eot) {
|
|
word = "[_EOT_]";
|
|
} else if (i == vocab.token_sot) {
|
|
word = "[_SOT_]";
|
|
} else if (i == vocab.token_prev) {
|
|
word = "[_PREV_]";
|
|
} else if (i == vocab.token_beg) {
|
|
word = "[_BEG_]";
|
|
} else {
|
|
word = "[_extra_token_" + std::to_string(i) + "]";
|
|
}
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
}
|
|
}
|
|
}
|
|
|
|
// for the big tensors, we have the option to store the data in 16-bit floats
|
|
// in order to save memory and also to speed up the computation
|
|
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
|
|
|
auto & ctx = model.ctx;
|
|
|
|
size_t ctx_size = 0;
|
|
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
const int n_audio_ctx = hparams.n_audio_ctx;
|
|
const int n_audio_state = hparams.n_audio_state;
|
|
const int n_audio_layer = hparams.n_audio_layer;
|
|
|
|
const int n_text_ctx = hparams.n_text_ctx;
|
|
const int n_text_state = hparams.n_text_state;
|
|
const int n_text_layer = hparams.n_text_layer;
|
|
|
|
const int n_mels = hparams.n_mels;
|
|
|
|
// encoder
|
|
{
|
|
// TODO: F16 .. maybe not?
|
|
ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe;
|
|
|
|
ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b
|
|
|
|
ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b
|
|
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w;
|
|
ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b;
|
|
}
|
|
|
|
// decoder
|
|
{
|
|
// TODO: F16 .. maybe not?
|
|
ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe;
|
|
|
|
ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te;
|
|
|
|
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w;
|
|
ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b;
|
|
}
|
|
|
|
// encoder layers
|
|
{
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
|
|
|
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w
|
|
ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
|
|
|
ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
|
ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
|
|
|
ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w
|
|
ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
|
}
|
|
|
|
// decoder layers
|
|
{
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b
|
|
|
|
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w
|
|
ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b
|
|
|
|
ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b
|
|
//
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w
|
|
ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b
|
|
|
|
ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w
|
|
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
|
|
}
|
|
|
|
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
|
|
ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
|
|
|
|
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
|
|
ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
|
|
|
|
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
|
|
|
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
|
}
|
|
|
|
// create the ggml context
|
|
{
|
|
struct ggml_init_params params = {
|
|
.mem_size = ctx_size,
|
|
.mem_buffer = NULL,
|
|
};
|
|
|
|
model.ctx = ggml_init(params);
|
|
if (!model.ctx) {
|
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// prepare memory for the weights
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
const int n_audio_ctx = hparams.n_audio_ctx;
|
|
const int n_audio_state = hparams.n_audio_state;
|
|
const int n_audio_layer = hparams.n_audio_layer;
|
|
|
|
const int n_text_ctx = hparams.n_text_ctx;
|
|
const int n_text_state = hparams.n_text_state;
|
|
const int n_text_layer = hparams.n_text_layer;
|
|
|
|
const int n_mels = hparams.n_mels;
|
|
|
|
model.layers_encoder.resize(n_audio_layer);
|
|
model.layers_decoder.resize(n_text_layer);
|
|
|
|
// encoder
|
|
{
|
|
model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx);
|
|
|
|
model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state);
|
|
model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
|
|
|
model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state);
|
|
model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state);
|
|
|
|
model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
// map by name
|
|
model.tensors["encoder.positional_embedding"] = model.e_pe;
|
|
|
|
model.tensors["encoder.conv1.weight"] = model.e_conv_1_w;
|
|
model.tensors["encoder.conv1.bias"] = model.e_conv_1_b;
|
|
|
|
model.tensors["encoder.conv2.weight"] = model.e_conv_2_w;
|
|
model.tensors["encoder.conv2.bias"] = model.e_conv_2_b;
|
|
|
|
model.tensors["encoder.ln_post.weight"] = model.e_ln_w;
|
|
model.tensors["encoder.ln_post.bias"] = model.e_ln_b;
|
|
|
|
for (int i = 0; i < n_audio_layer; ++i) {
|
|
auto & layer = model.layers_encoder[i];
|
|
|
|
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
|
|
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
|
|
|
|
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
|
|
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
|
|
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state);
|
|
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
|
|
|
// map by name
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
|
|
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
|
|
model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
|
|
}
|
|
}
|
|
|
|
// decoder
|
|
{
|
|
model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx);
|
|
|
|
model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab);
|
|
|
|
model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
// map by name
|
|
model.tensors["decoder.positional_embedding"] = model.d_pe;
|
|
|
|
model.tensors["decoder.token_embedding.weight"] = model.d_te;
|
|
|
|
model.tensors["decoder.ln.weight"] = model.d_ln_w;
|
|
model.tensors["decoder.ln.bias"] = model.d_ln_b;
|
|
|
|
for (int i = 0; i < n_text_layer; ++i) {
|
|
auto & layer = model.layers_decoder[i];
|
|
|
|
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state);
|
|
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state);
|
|
|
|
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state);
|
|
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
|
|
layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
|
|
layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state);
|
|
layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state);
|
|
|
|
// map by name
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b;
|
|
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w;
|
|
model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b;
|
|
}
|
|
}
|
|
}
|
|
|
|
// key + value memory
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_text_state = hparams.n_text_state;
|
|
const int n_text_layer = hparams.n_text_layer;
|
|
const int n_text_ctx = hparams.n_text_ctx;
|
|
|
|
// key/value memory for the self-attention layer
|
|
{
|
|
const int n_mem = n_text_layer*n_text_ctx;
|
|
const int n_elements = n_text_state*n_mem;
|
|
|
|
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
}
|
|
|
|
// key/value memory for the cross-attention layer
|
|
{
|
|
const int n_audio_ctx = hparams.n_audio_ctx;
|
|
|
|
const int n_mem = n_text_layer*n_audio_ctx;
|
|
const int n_elements = n_text_state*n_mem;
|
|
|
|
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
|
|
}
|
|
|
|
const size_t memory_size =
|
|
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
|
|
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
|
|
|
|
printf("%s: memory size = %8.2f MB \n", __func__, memory_size/1024.0/1024.0);
|
|
}
|
|
|
|
// load weights
|
|
{
|
|
size_t total_size = 0;
|
|
|
|
while (true) {
|
|
int32_t n_dims;
|
|
int32_t length;
|
|
int32_t ftype;
|
|
|
|
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
|
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
|
|
|
if (fin.eof()) {
|
|
break;
|
|
}
|
|
|
|
int32_t nelements = 1;
|
|
int32_t ne[3] = { 1, 1, 1 };
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
nelements *= ne[i];
|
|
}
|
|
|
|
std::string name(length, 0);
|
|
fin.read(&name[0], length);
|
|
|
|
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
|
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
|
return false;
|
|
}
|
|
|
|
auto tensor = model.tensors[name.data()];
|
|
if (ggml_nelements(tensor) != nelements) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
|
return false;
|
|
}
|
|
|
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
|
|
__func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
|
|
return false;
|
|
}
|
|
|
|
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
|
|
|
if (nelements*bpe != ggml_nbytes(tensor)) {
|
|
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
|
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
|
return false;
|
|
}
|
|
|
|
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
|
|
|
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
|
total_size += ggml_nbytes(tensor);
|
|
}
|
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
|
}
|
|
|
|
fin.close();
|
|
|
|
return true;
|
|
}
|
|
|
|
// evaluate the encoder
|
|
//
|
|
// given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder
|
|
// part of the transformer model and returns the encoded features
|
|
//
|
|
// - model: the model
|
|
// - n_threads: number of threads to use
|
|
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
|
|
// - mel_inp: input mel spectrogram
|
|
// - features: output encoded features
|
|
//
|
|
bool whisper_encode(
|
|
const whisper_model & model,
|
|
const int n_threads,
|
|
const int mel_offset,
|
|
const whisper_mel & mel_inp,
|
|
std::vector<float> & features) {
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
const int n_ctx = hparams.n_audio_ctx;
|
|
const int n_state = hparams.n_audio_state;
|
|
const int n_head = hparams.n_audio_head;
|
|
const int n_layer = hparams.n_audio_layer;
|
|
|
|
const int N = n_ctx;
|
|
|
|
const int n_mels = hparams.n_mels;
|
|
assert(mel_inp.n_mel == n_mels);
|
|
|
|
struct ggml_init_params params;
|
|
|
|
{
|
|
static size_t buf_size = MEM_REQ_ENCODE.at(model.type);
|
|
static void * buf = malloc(buf_size);
|
|
|
|
params = {
|
|
.mem_size = buf_size,
|
|
.mem_buffer = buf,
|
|
};
|
|
}
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
|
|
struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels);
|
|
assert(mel->type == GGML_TYPE_F32);
|
|
{
|
|
float * dst = (float *) mel->data;
|
|
memset(dst, 0, ggml_nbytes(mel));
|
|
|
|
const int i0 = std::min(mel_offset, mel_inp.n_len);
|
|
const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len);
|
|
|
|
for (int j = 0; j < mel_inp.n_mel; ++j) {
|
|
for (int i = i0; i < i1; ++i) {
|
|
dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i];
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ggml_tensor * cur;
|
|
|
|
// convolution + gelu
|
|
{
|
|
cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel);
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0,
|
|
model.e_conv_1_b,
|
|
cur),
|
|
cur);
|
|
|
|
cur = ggml_gelu(ctx0, cur);
|
|
|
|
cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur);
|
|
cur = ggml_add(ctx0,
|
|
ggml_repeat(ctx0,
|
|
model.e_conv_2_b,
|
|
cur),
|
|
cur);
|
|
|
|
cur = ggml_gelu(ctx0, cur);
|
|
}
|
|
|
|
cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
|
|
|
|
struct ggml_tensor * inpL = cur;
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
const auto & layer = model.layers_encoder[il];
|
|
|
|
// create separate context for each layer to reduce memory usage
|
|
|
|
struct ggml_init_params paramsL;
|
|
{
|
|
static size_t buf_size = MEM_REQ_ENCODE_LAYER.at(model.type);
|
|
static void * buf = malloc(buf_size);
|
|
|
|
paramsL = {
|
|
.mem_size = buf_size,
|
|
.mem_buffer = buf,
|
|
};
|
|
}
|
|
|
|
struct ggml_context * ctxL = ggml_init(paramsL);
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpL);
|
|
|
|
// cur = ln_0_w*cur + ln_0_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
|
layer.attn_q_w,
|
|
cur);
|
|
|
|
Qcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_q_b,
|
|
Qcur),
|
|
Qcur);
|
|
|
|
//Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
// note: no bias for Key
|
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
|
|
layer.attn_k_w,
|
|
cur);
|
|
|
|
//Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
|
|
layer.attn_v_w,
|
|
cur);
|
|
|
|
Vcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_v_b,
|
|
Vcur),
|
|
Vcur);
|
|
|
|
// ------
|
|
|
|
#ifdef USE_FLASH_ATTN
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Kcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * V =
|
|
ggml_cpy(ctxL,
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
Vcur,
|
|
n_state/n_head, n_head, N),
|
|
1, 2, 0, 3),
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
|
|
);
|
|
|
|
struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
|
|
#else
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Kcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
|
|
|
struct ggml_tensor * KQ_scaled =
|
|
ggml_scale(ctxL,
|
|
KQ,
|
|
ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
|
);
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
|
|
|
|
//struct ggml_tensor * V_trans =
|
|
// ggml_permute(ctxL,
|
|
// ggml_cpy(ctxL,
|
|
// Vcur,
|
|
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
|
// 1, 2, 0, 3);
|
|
|
|
//struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
|
|
|
struct ggml_tensor * V =
|
|
ggml_cpy(ctxL,
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
Vcur,
|
|
n_state/n_head, n_head, N),
|
|
0, 2, 1, 3),
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
|
|
);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
|
|
#endif
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cpy(ctxL,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
|
}
|
|
|
|
// projection
|
|
{
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.attn_ln_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// add the input
|
|
cur = ggml_add(ctxL, cur, inpL);
|
|
|
|
struct ggml_tensor * inpFF = cur;
|
|
|
|
// feed-forward network
|
|
{
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpFF);
|
|
|
|
// cur = mlp_ln_w*cur + mlp_ln_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
|
|
}
|
|
|
|
#ifdef USE_FLASH_FF
|
|
cur = ggml_flash_ff(ctxL,
|
|
ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
|
|
layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
|
|
#else
|
|
// fully connected
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_0_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_0_b, cur),
|
|
cur);
|
|
|
|
// GELU activation
|
|
cur = ggml_gelu(ctxL, cur);
|
|
|
|
// projection
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_1_b, cur),
|
|
cur);
|
|
#endif
|
|
}
|
|
|
|
// output from this layer
|
|
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
|
|
|
|
{
|
|
struct ggml_cgraph gf = { .n_threads = n_threads };
|
|
|
|
ggml_build_forward_expand(&gf, inpO);
|
|
ggml_graph_compute (ctxL, &gf);
|
|
|
|
//ggml_graph_print(&gf);
|
|
}
|
|
|
|
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
|
|
// input for next layer (inpO -> inpL)
|
|
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
|
|
inpL->op = GGML_OP_NONE;
|
|
inpL->src0 = NULL;
|
|
inpL->src1 = NULL;
|
|
|
|
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
|
|
|
|
ggml_free(ctxL);
|
|
}
|
|
|
|
cur = inpL;
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctx0, cur);
|
|
|
|
// cur = ln_f_g*cur + ln_f_b
|
|
cur = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.e_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctx0, model.e_ln_b, cur));
|
|
}
|
|
|
|
// run the computation
|
|
{
|
|
struct ggml_cgraph gf = { .n_threads = n_threads };
|
|
|
|
ggml_build_forward_expand(&gf, cur);
|
|
ggml_graph_compute (ctx0, &gf);
|
|
|
|
//ggml_graph_print(&gf);
|
|
}
|
|
|
|
// cur
|
|
//{
|
|
// printf("ne0 = %d\n", cur->ne[0]);
|
|
// printf("ne1 = %d\n", cur->ne[1]);
|
|
// for (int i = 0; i < 10; ++i) {
|
|
// printf("%8.4f ", ((float *)(cur->data))[i]);
|
|
// }
|
|
// printf("... ");
|
|
// for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) {
|
|
// printf("%8.4f ", ((float *)(cur->data))[i]);
|
|
// }
|
|
// printf("\n");
|
|
//}
|
|
|
|
// pre-compute cross-attention memory
|
|
{
|
|
struct ggml_cgraph gf = { .n_threads = n_threads };
|
|
|
|
// TODO: hack to disconnect the encoded features from the previous graph
|
|
cur->op = GGML_OP_NONE;
|
|
cur->src0 = NULL;
|
|
cur->src1 = NULL;
|
|
|
|
for (int il = 0; il < model.hparams.n_text_layer; ++il) {
|
|
auto & layer = model.layers_decoder[il];
|
|
|
|
struct ggml_tensor * Kcross = ggml_mul_mat(ctx0,
|
|
layer.cross_attn_k_w,
|
|
cur);
|
|
|
|
Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
struct ggml_tensor * Vcross = ggml_mul_mat(ctx0,
|
|
layer.cross_attn_v_w,
|
|
cur);
|
|
|
|
Vcross = ggml_add(ctx0,
|
|
ggml_repeat(ctx0,
|
|
layer.cross_attn_v_b,
|
|
Vcross),
|
|
Vcross);
|
|
|
|
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
|
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
|
|
}
|
|
|
|
ggml_graph_compute(ctx0, &gf);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
// output the features
|
|
assert(cur->type == GGML_TYPE_F32);
|
|
features.resize(cur->ne[0]*cur->ne[1]);
|
|
memcpy(features.data(), cur->data, features.size()*sizeof(float));
|
|
|
|
//printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0);
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// evaluate the decoder
|
|
//
|
|
// given text prompt + audio features -> predicts the probabilities for the next token
|
|
//
|
|
// - model: the model
|
|
// - n_threads: number of threads to use
|
|
// - n_past: prompt length
|
|
// - prompt: text prompt
|
|
// - logits_out: output logits
|
|
// - probs_out: output probabilities
|
|
//
|
|
bool whisper_decode(
|
|
const whisper_model & model,
|
|
const int n_threads,
|
|
const int n_past,
|
|
const std::vector<whisper_vocab::id> & prompt,
|
|
std::vector<float> & logits_out,
|
|
std::vector<float> & probs_out) {
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_vocab = hparams.n_vocab;
|
|
|
|
const int n_ctx = hparams.n_text_ctx;
|
|
const int n_state = hparams.n_text_state;
|
|
const int n_head = hparams.n_text_head;
|
|
const int n_layer = hparams.n_text_layer;
|
|
|
|
const int N = prompt.size();
|
|
const int M = hparams.n_audio_ctx;
|
|
|
|
struct ggml_init_params params;
|
|
|
|
{
|
|
static size_t buf_size = MEM_REQ_DECODE.at(model.type);
|
|
static void * buf = malloc(buf_size);
|
|
|
|
params = {
|
|
.mem_size = buf_size,
|
|
.mem_buffer = buf,
|
|
};
|
|
}
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
memcpy(embd->data, prompt.data(), N*ggml_element_size(embd));
|
|
|
|
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
for (int i = 0; i < N; ++i) {
|
|
((int32_t *) position->data)[i] = n_past + i;
|
|
}
|
|
|
|
// token encoding + position encoding
|
|
struct ggml_tensor * cur =
|
|
ggml_add(ctx0,
|
|
ggml_get_rows(ctx0, model.d_te, embd),
|
|
ggml_get_rows(ctx0, model.d_pe, position));
|
|
|
|
struct ggml_tensor * inpL = cur;
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
const auto & layer = model.layers_decoder[il];
|
|
|
|
struct ggml_init_params paramsL;
|
|
|
|
{
|
|
static size_t buf_size = MEM_REQ_DECODE_LAYER.at(model.type);
|
|
static void * buf = malloc(buf_size);
|
|
|
|
paramsL = {
|
|
.mem_size = buf_size,
|
|
.mem_buffer = buf,
|
|
};
|
|
}
|
|
|
|
struct ggml_context * ctxL = ggml_init(paramsL);
|
|
struct ggml_cgraph gf = { .n_threads = n_threads };
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpL);
|
|
|
|
// cur = ln_0_w*cur + ln_0_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_0_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.attn_ln_0_b, cur));
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
|
layer.attn_q_w,
|
|
cur);
|
|
|
|
Qcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_q_b,
|
|
Qcur),
|
|
Qcur);
|
|
|
|
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
// note: no bias for Key
|
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
|
|
layer.attn_k_w,
|
|
cur);
|
|
|
|
Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
|
|
layer.attn_v_w,
|
|
cur);
|
|
|
|
Vcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.attn_v_b,
|
|
Vcur),
|
|
Vcur);
|
|
|
|
// store key and value to memory
|
|
{
|
|
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
|
|
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
|
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
|
|
}
|
|
|
|
// ------
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
|
|
n_state/n_head, n_head, n_past + N),
|
|
0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
|
|
|
//struct ggml_tensor * KQ_scaled =
|
|
// ggml_scale(ctxL,
|
|
// KQ,
|
|
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
|
// );
|
|
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past);
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked);
|
|
|
|
struct ggml_tensor * V_trans =
|
|
ggml_permute(ctxL,
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
|
|
n_state/n_head, n_head, n_past + N),
|
|
1, 2, 0, 3);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
|
|
|
cur = ggml_cpy(ctxL,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
|
}
|
|
|
|
{
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.attn_ln_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.attn_ln_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// add the input
|
|
struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL);
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
|
|
|
|
// cur = ln_0_w*cur + ln_0_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur));
|
|
}
|
|
|
|
// cross-attention
|
|
{
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctxL,
|
|
layer.cross_attn_q_w,
|
|
cur);
|
|
|
|
Qcur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL,
|
|
layer.cross_attn_q_b,
|
|
Qcur),
|
|
Qcur);
|
|
|
|
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
|
|
|
|
// Kcross is already scaled
|
|
struct ggml_tensor * Kcross =
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
|
|
n_state/n_head, n_head, M);
|
|
|
|
struct ggml_tensor * Vcross =
|
|
ggml_reshape_3d(ctxL,
|
|
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
|
|
n_state/n_head, n_head, M);
|
|
|
|
// ------
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctxL,
|
|
ggml_cpy(ctxL,
|
|
Qcur,
|
|
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
|
|
|
|
//struct ggml_tensor * KQ_scaled =
|
|
// ggml_scale(ctxL,
|
|
// KQ,
|
|
// ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
|
|
// );
|
|
|
|
// no masking for cross-attention
|
|
//struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past);
|
|
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
|
|
|
|
struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3);
|
|
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
|
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
|
|
|
|
// cur = KQV_merged.contiguous().view(n_state, N)
|
|
cur = ggml_cpy(ctxL,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
|
}
|
|
|
|
// projection
|
|
{
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.cross_attn_ln_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// add the input
|
|
cur = ggml_add(ctxL, cur, inpCA);
|
|
|
|
struct ggml_tensor * inpFF = cur;
|
|
|
|
// feed-forward network
|
|
{
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctxL, inpFF);
|
|
|
|
// cur = mlp_ln_w*cur + mlp_ln_b
|
|
cur = ggml_add(ctxL,
|
|
ggml_mul(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctxL, layer.mlp_ln_b, cur));
|
|
}
|
|
|
|
// fully connected
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_0_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_0_b, cur),
|
|
cur);
|
|
|
|
// GELU activation
|
|
cur = ggml_gelu(ctxL, cur);
|
|
|
|
// projection
|
|
cur = ggml_mul_mat(ctxL,
|
|
layer.mlp_1_w,
|
|
cur);
|
|
|
|
cur = ggml_add(ctxL,
|
|
ggml_repeat(ctxL, layer.mlp_1_b, cur),
|
|
cur);
|
|
}
|
|
|
|
// output from this layer
|
|
struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF);
|
|
|
|
{
|
|
ggml_build_forward_expand(&gf, inpO);
|
|
ggml_graph_compute (ctxL, &gf);
|
|
|
|
//ggml_graph_print(&gf);
|
|
}
|
|
|
|
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
|
|
// input for next layer (inpO -> inpL)
|
|
memcpy(inpL->data, inpO->data, ggml_nbytes(inpL));
|
|
inpL->op = GGML_OP_NONE;
|
|
inpL->src0 = NULL;
|
|
inpL->src1 = NULL;
|
|
|
|
if (N > 1) {
|
|
//printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0);
|
|
}
|
|
|
|
ggml_free(ctxL);
|
|
}
|
|
|
|
cur = inpL;
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_norm(ctx0, cur);
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.d_ln_w, cur),
|
|
cur),
|
|
ggml_repeat(ctx0, model.d_ln_b, cur));
|
|
}
|
|
|
|
struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur);
|
|
|
|
// logits -> probs
|
|
cur = ggml_dup(ctx0, logits);
|
|
cur = ggml_soft_max(ctx0, cur); // in-place
|
|
|
|
// run the computation
|
|
{
|
|
struct ggml_cgraph gf = { .n_threads = n_threads };
|
|
|
|
ggml_build_forward_expand(&gf, cur);
|
|
ggml_graph_compute (ctx0, &gf);
|
|
}
|
|
|
|
logits_out.resize(N*n_vocab);
|
|
memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab);
|
|
|
|
probs_out.resize(N*n_vocab);
|
|
memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
|
|
|
|
if (N > 1) {
|
|
//const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
|
|
//printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
|
|
//printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
|
|
}
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// the most basic sampling scheme - select the top token
|
|
// TODO: beam search
|
|
// TODO: temperature
|
|
whisper_vocab::id whisper_sample_best(
|
|
const whisper_vocab & vocab,
|
|
const float * probs,
|
|
double temp,
|
|
int offset = 0) {
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
std::vector<std::pair<double, whisper_vocab::id>> probs_id;
|
|
probs_id.reserve(n_logits);
|
|
|
|
for (int i = offset; i < n_logits; i++) {
|
|
probs_id.push_back(std::make_pair(probs[i], i));
|
|
}
|
|
|
|
const int top_k = 10;
|
|
|
|
// find the top K tokens
|
|
std::partial_sort(
|
|
probs_id.begin(),
|
|
probs_id.begin() + top_k, probs_id.end(),
|
|
[](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
probs_id.resize(top_k);
|
|
|
|
//printf("\n");
|
|
//for (int i = 0; i < (int) probs_id.size(); i++) {
|
|
// printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second);
|
|
//}
|
|
|
|
int res = 0;
|
|
while (probs_id[res].second == vocab.token_solm && res < (int) probs_id.size() - 1) {
|
|
res++;
|
|
}
|
|
|
|
return probs_id[res].second;
|
|
}
|
|
|
|
// Cooley-Tukey FFT
|
|
// poor man's implmentation - use something better
|
|
// input is real-valued
|
|
// output is complex-valued
|
|
void fft(const std::vector<float> & in, std::vector<float> & out) {
|
|
out.resize(in.size()*2);
|
|
|
|
int N = in.size();
|
|
|
|
if (N == 1) {
|
|
out[0] = in[0];
|
|
out[1] = 0;
|
|
return;
|
|
}
|
|
|
|
std::vector<float> even;
|
|
std::vector<float> odd;
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
if (i % 2 == 0) {
|
|
even.push_back(in[i]);
|
|
} else {
|
|
odd.push_back(in[i]);
|
|
}
|
|
}
|
|
|
|
std::vector<float> even_fft;
|
|
std::vector<float> odd_fft;
|
|
|
|
fft(even, even_fft);
|
|
fft(odd, odd_fft);
|
|
|
|
for (int k = 0; k < N/2; k++) {
|
|
float theta = 2*M_PI*k/N;
|
|
|
|
float re = cos(theta);
|
|
float im = -sin(theta);
|
|
|
|
float re_odd = odd_fft[2*k + 0];
|
|
float im_odd = odd_fft[2*k + 1];
|
|
|
|
out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
|
|
out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
|
|
|
|
out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
|
|
out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
|
|
}
|
|
}
|
|
|
|
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
|
|
bool log_mel_spectrogram(
|
|
const std::vector<float> sf32,
|
|
const int sample_rate,
|
|
const int fft_size,
|
|
const int fft_step,
|
|
const int n_mel,
|
|
const int n_threads,
|
|
const whisper_filters & filters,
|
|
whisper_mel & mel) {
|
|
const int n_sample = sf32.size();
|
|
const float * samples = sf32.data();
|
|
|
|
// Hanning window
|
|
std::vector<float> hann;
|
|
hann.resize(fft_size);
|
|
for (int i = 0; i < fft_size; i++) {
|
|
hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
|
|
}
|
|
|
|
mel.n_mel = n_mel;
|
|
mel.n_len = (n_sample)/fft_step;
|
|
mel.data.resize(mel.n_mel*mel.n_len);
|
|
|
|
const int n_fft = 1 + fft_size/2;
|
|
|
|
printf("%s: n_sample = %d, n_len = %d\n", __func__, n_sample, mel.n_len);
|
|
printf("%s: recording length: %f s\n", __func__, (float) n_sample/sample_rate);
|
|
|
|
std::vector<std::thread> workers(n_threads);
|
|
for (int iw = 0; iw < n_threads; ++iw) {
|
|
workers[iw] = std::thread([&](int ith) {
|
|
std::vector<float> fft_in;
|
|
fft_in.resize(fft_size);
|
|
for (int i = 0; i < fft_size; i++) {
|
|
fft_in[i] = 0.0;
|
|
}
|
|
|
|
std::vector<float> fft_out;
|
|
fft_out.resize(2*fft_size);
|
|
|
|
for (int i = ith; i < mel.n_len; i += n_threads) {
|
|
const int offset = i*fft_step;
|
|
|
|
// apply Hanning window
|
|
for (int j = 0; j < fft_size; j++) {
|
|
if (offset + j < n_sample) {
|
|
fft_in[j] = hann[j]*samples[offset + j];
|
|
} else {
|
|
fft_in[j] = 0.0;
|
|
}
|
|
}
|
|
|
|
// FFT -> mag^2
|
|
fft(fft_in, fft_out);
|
|
|
|
for (int j = 0; j < n_fft; j++) {
|
|
fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
|
|
}
|
|
|
|
// mel spectrogram
|
|
for (int j = 0; j < mel.n_mel; j++) {
|
|
double sum = 0.0;
|
|
|
|
for (int k = 0; k < n_fft; k++) {
|
|
sum += fft_out[k]*filters.data[j*n_fft + k];
|
|
}
|
|
if (sum < 1e-10) {
|
|
sum = 1e-10;
|
|
}
|
|
|
|
sum = log10(sum);
|
|
|
|
mel.data[j*mel.n_len + i] = sum;
|
|
}
|
|
}
|
|
}, iw);
|
|
}
|
|
|
|
for (int iw = 0; iw < n_threads; ++iw) {
|
|
workers[iw].join();
|
|
}
|
|
|
|
// clamping and normalization
|
|
double mmax = -1e20;
|
|
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
if (mel.data[i] > mmax) {
|
|
mmax = mel.data[i];
|
|
}
|
|
}
|
|
|
|
mmax -= 8.0;
|
|
|
|
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
if (mel.data[i] < mmax) {
|
|
mel.data[i] = mmax;
|
|
}
|
|
|
|
mel.data[i] = (mel.data[i] + 4.0)/4.0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
whisper_params params;
|
|
|
|
if (whisper_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
if (params.seed < 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
// Model loading
|
|
|
|
//printf("%s: seed = %d\n", __func__, params.seed);
|
|
|
|
int64_t t_load_us = 0;
|
|
int64_t t_mel_us = 0;
|
|
int64_t t_sample_us = 0;
|
|
int64_t t_encode_us = 0;
|
|
int64_t t_decode_us = 0;
|
|
|
|
whisper_vocab vocab;
|
|
whisper_model model;
|
|
|
|
// load the model
|
|
{
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!whisper_model_load(params.model, model, vocab)) {
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
whisper_print_usage(argc, argv, {});
|
|
return 1;
|
|
}
|
|
|
|
t_load_us = ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
// WAV input
|
|
std::vector<float> pcmf32;
|
|
{
|
|
drwav wav;
|
|
if (!drwav_init_file(&wav, params.fname_inp.c_str(), NULL)) {
|
|
fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], params.fname_inp.c_str());
|
|
whisper_print_usage(argc, argv, {});
|
|
return 2;
|
|
}
|
|
|
|
if (wav.channels != 1) {
|
|
fprintf(stderr, "%s: WAV file '%s' must be mono\n", argv[0], params.fname_inp.c_str());
|
|
return 3;
|
|
}
|
|
|
|
if (wav.sampleRate != SAMPLE_RATE) {
|
|
fprintf(stderr, "%s: WAV file '%s' must be 16 kHz\n", argv[0], params.fname_inp.c_str());
|
|
return 4;
|
|
}
|
|
|
|
if (wav.bitsPerSample != 16) {
|
|
fprintf(stderr, "%s: WAV file '%s' must be 16-bit\n", argv[0], params.fname_inp.c_str());
|
|
return 5;
|
|
}
|
|
|
|
std::vector<int16_t> pcm16;
|
|
pcm16.resize(wav.totalPCMFrameCount);
|
|
drwav_read_pcm_frames_s16(&wav, wav.totalPCMFrameCount, pcm16.data());
|
|
drwav_uninit(&wav);
|
|
|
|
// convert to float
|
|
pcmf32.resize(pcm16.size());
|
|
for (size_t i = 0; i < pcm16.size(); i++) {
|
|
pcmf32[i] = float(pcm16[i])/32768.0f;
|
|
}
|
|
}
|
|
|
|
// compute log mel spectrogram
|
|
whisper_mel mel_inp;
|
|
{
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
log_mel_spectrogram(pcmf32, SAMPLE_RATE, N_FFT, HOP_LENGTH, N_MEL, params.n_threads, model.filters, mel_inp);
|
|
|
|
t_mel_us = ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
// print some info about the processing
|
|
{
|
|
printf("\n");
|
|
if (!vocab.is_multilingual()) {
|
|
if (params.language != "en" || params.translate) {
|
|
params.language = "en";
|
|
params.translate = false;
|
|
printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
|
}
|
|
}
|
|
printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s ...\n",
|
|
__func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads,
|
|
g_lang.at(params.language).second.c_str(),
|
|
params.translate ? "translate" : "transcribe");
|
|
}
|
|
|
|
// the accumulated text context so far
|
|
std::vector<whisper_vocab::id> prompt_past = { };
|
|
|
|
// these tokens determine the task that will be performed
|
|
std::vector<whisper_vocab::id> prompt_init = { vocab.token_sot };
|
|
if (vocab.is_multilingual()) {
|
|
prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first);
|
|
if (params.translate) {
|
|
prompt_init.push_back(vocab.token_translate);
|
|
} else {
|
|
prompt_init.push_back(vocab.token_transcribe);
|
|
}
|
|
}
|
|
|
|
// main loop
|
|
int seek = 0;
|
|
while (true) {
|
|
if (seek >= mel_inp.n_len) {
|
|
break;
|
|
}
|
|
|
|
// encode audio features starting at offset seek
|
|
std::vector<float> features;
|
|
{
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!whisper_encode(model, params.n_threads, seek, mel_inp, features)) {
|
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
t_encode_us = ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
std::vector<float> probs;
|
|
std::vector<float> logits;
|
|
|
|
std::vector<whisper_vocab::id> prompt;
|
|
|
|
int n_past = 0;
|
|
|
|
// if we have already generated some text, use it as a prompt to condition the next generation
|
|
if (prompt_past.size() > 0) {
|
|
int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
|
|
|
|
prompt = { vocab.token_prev };
|
|
prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
|
|
|
|
prompt_past.clear();
|
|
prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
|
|
}
|
|
|
|
prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
|
|
|
|
bool done = false;
|
|
int seek_delta = 100*CHUNK_SIZE;
|
|
whisper_vocab::id last_id = 0;
|
|
|
|
//for (int i = 0; i < prompt.size(); i++) {
|
|
// printf("%s: prompt[%d] = %s\n", __func__, i, vocab.id_to_token[prompt[i]].c_str());
|
|
//}
|
|
|
|
printf("\n");
|
|
for (int i = 0; i < model.hparams.n_text_ctx/2; ++i) {
|
|
// decode
|
|
if (prompt.size() > 0) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!whisper_decode(model, params.n_threads, n_past, prompt, logits, probs)) {
|
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
t_decode_us += ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
n_past += prompt.size();
|
|
prompt.clear();
|
|
|
|
// very basic greedy sampling strategy:
|
|
//
|
|
// - always take the most probable token
|
|
// - if we have accumulated more than 'params.max_tokens_per_iter' -> pick most probable timestamp token
|
|
// and advance the sliding window by that amount
|
|
// - in the meantime, if we encounter 2 consecutive timestamp tokens, we advance the sliding window too
|
|
//
|
|
// more sophisticated sampling strategies could be implemented here, but we keep it simple
|
|
// feel free to experiment!
|
|
//
|
|
{
|
|
// sample next token
|
|
const float temp = 1.0; // TODO
|
|
|
|
const int n_vocab = model.hparams.n_vocab;
|
|
|
|
whisper_vocab::id id = 0;
|
|
|
|
{
|
|
const int64_t t_start_sample_us = ggml_time_us();
|
|
|
|
id = whisper_sample_best(vocab, probs.data() + (probs.size() - n_vocab), temp, i > params.max_tokens_per_iter ? vocab.token_beg : 0);
|
|
|
|
t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
}
|
|
|
|
// end of text token
|
|
if (id == vocab.token_eot) {
|
|
break;
|
|
}
|
|
|
|
// 2 consecutive time tokens
|
|
if (id > vocab.token_beg && last_id > vocab.token_beg) {
|
|
seek_delta = 2*(id - vocab.token_beg);
|
|
done = true;
|
|
}
|
|
last_id = id;
|
|
|
|
// add it to the context
|
|
prompt.push_back(id);
|
|
prompt_past.push_back(id);
|
|
}
|
|
|
|
// display text
|
|
for (auto id : prompt) {
|
|
if (params.print_special_tokens == false && id >= vocab.token_eot) {
|
|
continue;
|
|
}
|
|
printf("%s", vocab.id_to_token[id].c_str());
|
|
}
|
|
fflush(stdout);
|
|
|
|
if (done) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
seek += seek_delta;
|
|
}
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
printf("\n\n");
|
|
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
|
printf("%s: mel time = %8.2f ms\n", __func__, t_mel_us/1000.0f);
|
|
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
|
printf("%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, t_encode_us/1000.0f, t_encode_us/1000.0f/model.hparams.n_audio_layer);
|
|
printf("%s: decode time = %8.2f ms\n", __func__, t_decode_us/1000.0f);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
|
}
|
|
|
|
ggml_free(model.ctx);
|
|
|
|
return 0;
|
|
}
|