f888c2373d
- Achieved big performance improvement + memory usage reduction - Can now translate / transcribe different languages |
||
---|---|---|
models | ||
samples | ||
.gitignore | ||
convert-pt-to-ggml.py | ||
download-ggml-model.sh | ||
dr_wav.h | ||
ggml.c | ||
ggml.h | ||
LICENSE | ||
main.cpp | ||
Makefile | ||
README.md |
whisper.cpp
C/C++ port of OpenAI's Whisper speech-to-text model
- Plain C/C++ implementation without dependencies
- ARM_NEON and AVX intrinsics support
- Mixed F16 / F32 support
- Low memory usage (Flash Attention + Flash Forward)
Usage
To build the main program, run make
. You can then transribe a .wav
file like this:
$ ./main -f input.wav
Before running the program, make sure to download one of the ggml Whisper models. For example:
bash ./download-ggml-model.sh base.en
For a quick demo, simply run make base.en
:
$ make base.en
gcc -pthread -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c
g++ -pthread -O3 -std=c++11 -c main.cpp
g++ -o main ggml.o main.o
./main -h
usage: ./main [options]
options:
-h, --help show this help message and exit
-s SEED, --seed SEED RNG seed (default: -1)
-t N, --threads N number of threads to use during computation (default: 4)
-T N, --tokens N maximum number of tokens to generate per iteration (default: 64)
-v, --verbose verbose output
--translate translate from source language to english
-ps, --print_special print special tokens
-l LANG, --language LANG spoken language (default: en)
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
-f FNAME, --file FNAME input WAV file path (default: samples/jfk.wav)
bash ./download-ggml-model.sh base.en
Downloading ggml model base.en ...
models/ggml-base.en.bin 100%[=====================================>] 141.11M 7.84MB/s in 18s
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
You can now use it like this:
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
===============================================
Running base.en on all samples in ./samples ...
===============================================
----------------------------------------------
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
----------------------------------------------
whisper_model_load: loading model from 'models/ggml-base.en.bin'
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 512
whisper_model_load: n_audio_head = 8
whisper_model_load: n_audio_layer = 6
whisper_model_load: n_text_ctx = 448
whisper_model_load: n_text_state = 512
whisper_model_load: n_text_head = 8
whisper_model_load: n_text_layer = 6
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 2
whisper_model_load: mem_required = 611.00 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: ggml ctx size = 163.43 MB
whisper_model_load: memory size = 22.83 MB
whisper_model_load: model size = 140.54 MB
log_mel_spectrogram: n_sample = 176000, n_len = 1100
log_mel_spectrogram: recording length: 11.000000 s
main: processing 176000 samples (11.0 sec), 4 threads, lang = english, task = transcribe ...
And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
main: load time = 71.89 ms
main: mel time = 36.95 ms
main: sample time = 2.10 ms
main: encode time = 700.94 ms / 116.82 ms per layer
main: decode time = 86.14 ms
main: total time = 898.72 ms
The command downloads the base.en
model converted to custom ggml
format and runs the inference on all .wav
samples in the folder samples
.
If you want some extra audio samples to play with, simply run:
make samples
This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via ffmpeg
.
You can download and run the other models as follows:
make tiny.en
make tiny
make base.en
make base
make small.en
make small
make medium.en
make medium
make large
For detailed usage instructions, run: ./main -h
Note that whisper.cpp
runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
For example, you can use ffmpeg
like this:
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
Limitations
- Very basic greedy sampling scheme - always pick up the top token
- No timestamps
- Inference only
- Runs on the CPU
- Only mono-channel 16-bit WAV is supported
Memory usage
Model | Disk | Mem |
---|---|---|
tiny | 75 MB | ~460 MB |
base | 142 MB | ~620 MB |
small | 466 MB | ~1.3 GB |
medium | 1.5 GB | ~2.8 GB |
large | 2.9 GB | ~4.9 GB |
ggml format
The original models are converted to a custom binary format. This allows to pack everything needed into a single file:
- model parameters
- mel filters
- vocabulary
- weights
You can download the converted models using the download-ggml-model.sh script.
For more details, see the conversion script convert-pt-to-ggml.py