Merge branch 'main' into patch-23
48
CHANGES.md
@ -1,5 +1,53 @@
|
||||
# What's new?
|
||||
|
||||
## v2.5
|
||||
### Major Changes
|
||||
- **Nearly twice as fast** - significantly faster speed of image generation. We're now pretty close to automatic1111's speed. Code contributions are welcome to make our project even faster: https://github.com/easydiffusion/sdkit/#is-it-fast
|
||||
- **Full support for Stable Diffusion 2.1 (including CPU)** - supports loading v1.4 or v2.0 or v2.1 models seamlessly. No need to enable "Test SD2", and no need to add `sd2_` to your SD 2.0 model file names. Works on CPU as well.
|
||||
- **Memory optimized Stable Diffusion 2.1** - you can now use Stable Diffusion 2.1 models, with the same low VRAM optimizations that we've always had for SD 1.4. Please note, the SD 2.0 and 2.1 models require more GPU and System RAM, as compared to the SD 1.4 and 1.5 models.
|
||||
- **6 new samplers!** - explore the new samplers, some of which can generate great images in less than 10 inference steps!
|
||||
- **Model Merging** - You can now merge two models (`.ckpt` or `.safetensors`) and output `.ckpt` or `.safetensors` models, optionally in `fp16` precision. Details: https://github.com/cmdr2/stable-diffusion-ui/wiki/Model-Merging
|
||||
- **Fast loading/unloading of VAEs** - No longer needs to reload the entire Stable Diffusion model, each time you change the VAE
|
||||
- **Database of known models** - automatically picks the right configuration for known models. E.g. we automatically detect and apply "v" parameterization (required for some SD 2.0 models), and "fp32" attention precision (required for some SD 2.1 models).
|
||||
- **Color correction for img2img** - an option to preserve the color profile (histogram) of the initial image. This is especially useful if you're getting red-tinted images after inpainting/masking.
|
||||
- **Three GPU Memory Usage Settings** - `High` (fastest, maximum VRAM usage), `Balanced` (default - almost as fast, significantly lower VRAM usage), `Low` (slowest, very low VRAM usage). The `Low` setting is applied automatically for GPUs with less than 4 GB of VRAM.
|
||||
- **Find models in sub-folders** - This allows you to organize your models into sub-folders inside `models/stable-diffusion`, instead of keeping them all in a single folder.
|
||||
- **Save metadata as JSON** - You can now save the metadata files as either text or json files (choose in the Settings tab).
|
||||
- **Major rewrite of the code** - Most of the codebase has been reorganized and rewritten, to make it more manageable and easier for new developers to contribute features. We've separated our core engine into a new project called `sdkit`, which allows anyone to easily integrate Stable Diffusion (and related modules like GFPGAN etc) into their programming projects (via a simple `pip install sdkit`): https://github.com/easydiffusion/sdkit/
|
||||
- **Name change** - Last, and probably the least, the UI is now called "Easy Diffusion". It indicates the focus of this project - an easy way for people to play with Stable Diffusion.
|
||||
|
||||
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
|
||||
|
||||
### Detailed changelog
|
||||
* 2.5.15 - 8 Feb 2023 - Allow using 'balanced' VRAM usage mode on GPUs with 4 GB or less of VRAM. This mode used to be called 'Turbo' in the previous version.
|
||||
* 2.5.14 - 8 Feb 2023 - Fix broken auto-save settings. We renamed `sampler` to `sampler_name`, which caused old settings to fail.
|
||||
* 2.5.14 - 6 Feb 2023 - Simplify the UI for merging models, and some other minor UI tweaks. Better error reporting if a model failed to load.
|
||||
* 2.5.14 - 3 Feb 2023 - Fix the 'Make Similar Images' button, which was producing incorrect images (weren't very similar).
|
||||
* 2.5.13 - 1 Feb 2023 - Fix the remaining GPU memory leaks, including a better fix (more comprehensive) for the change in 2.5.12 (27 Jan).
|
||||
* 2.5.12 - 27 Jan 2023 - Fix a memory leak, which made the UI unresponsive after an out-of-memory error. The allocated memory is now freed-up after an error.
|
||||
* 2.5.11 - 25 Jan 2023 - UI for Merging Models. Thanks @JeLuf. More info: https://github.com/cmdr2/stable-diffusion-ui/wiki/Model-Merging
|
||||
* 2.5.10 - 24 Jan 2023 - Reduce the VRAM usage for img2img in 'balanced' mode (without reducing the rendering speed), to make it similar to v2.4 of this UI.
|
||||
* 2.5.9 - 23 Jan 2023 - Fix a bug where img2img would produce poorer-quality images for the same settings, as compared to version 2.4 of this UI.
|
||||
* 2.5.9 - 23 Jan 2023 - Reduce the VRAM usage for 'balanced' mode (without reducing the rendering speed), to make it similar to v2.4 of the UI.
|
||||
* 2.5.8 - 17 Jan 2023 - Fix a bug where 'Low' VRAM usage would consume a LOT of VRAM (on higher-end GPUs). Also fixed a bug that caused out-of-memory errors on SD 2.1-768 models, on 'high' VRAM usage setting.
|
||||
* 2.5.7 - 16 Jan 2023 - Fix a bug where VAE files ending with .vae.pt weren't getting displayed. Thanks Madrang, rbertus2000 and JeLuf.
|
||||
* 2.5.6 - 10 Jan 2023 - `Fill` tool for the Image Editor, to allow filling areas with color (or the entire image). And some bug fixes to the Image Editor. Thanks @mdiller.
|
||||
* 2.5.6 - 10 Jan 2023 - Find Stable Diffusion models in sub-folders inside `models/stable-diffusion`. This allows you to organize your models into sub-folders, instead of keeping them all in a single folder. Thanks @JeLuf.
|
||||
* 2.5.5 - 9 Jan 2023 - Lots of bug fixes. Thanks @patriceac and @JeLuf.
|
||||
* 2.5.4 - 29 Dec 2022 - Press Esc key on the keyboard to close the Image Editor. Thanks @patriceac.
|
||||
* 2.5.4 - 29 Dec 2022 - Lots of bug fixes in the UI. Thanks @patriceac.
|
||||
* 2.5.4 - 28 Dec 2022 - Full support for running tasks in parallel on multiple GPUs. Warning: 'Euler Ancestral', 'DPM2 Ancestral' and 'DPM++ 2s Ancestral' may produce slight variations in the image (if run in parallel), so we recommend using the other samplers.
|
||||
* 2.5.3 - 27 Dec 2022 - Fix broken drag-and-drop for text metadata files (as well as paste in clipboard).
|
||||
* 2.5.3 - 27 Dec 2022 - Allow upscaling by 2x as well as 4x.
|
||||
* 2.5.3 - 27 Dec 2022 - Fix broken renders on a second GPU.
|
||||
* 2.5.3 - 26 Dec 2022 - Add a `Remove` button on each image. Thanks @JeLuf.
|
||||
* 2.5.2 - 26 Dec 2022 - Fix broken inpainting if using non-square target images.
|
||||
* 2.5.2 - 26 Dec 2022 - Fix a bug where an incorrect model config would get used for some SD 2.1 models.
|
||||
* 2.5.2 - 26 Dec 2022 - Slight performance and memory improvement while rendering using SD 2.1 models.
|
||||
* 2.5.1 - 25 Dec 2022 - Allow custom config yaml files for models. You can put a config file (`.yaml`) next to the model file, with the same name as the model. For e.g. if you put `robo-diffusion-v2-base.yaml` next to `robo-diffusion-v2-base.ckpt`, it'll automatically use that config file.
|
||||
* 2.5.1 - 25 Dec 2022 - Fix broken rendering for SD 2.1-768 models. Fix broken rendering SD 2.0 safetensor models.
|
||||
* 2.5.0 - 25 Dec 2022 - Major new release! Nearly twice as fast, Full support for SD 2.1 (including low GPU RAM optimizations), 6 new samplers, Model Merging, Fast loading/unloading of VAEs, Database of known models, Color correction for img2img, Three GPU Memory Usage Settings, Save metadata as JSON, Major rewrite of the code, Name change.
|
||||
|
||||
## v2.4
|
||||
### Major Changes
|
||||
- **Allow reordering the task queue** (by dragging and dropping tasks). Thanks @madrang
|
||||
|
47
README.md
@ -1,14 +1,13 @@
|
||||
# Stable Diffusion UI
|
||||
### The easiest way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your own computer. Does not require technical knowledge, does not require pre-installed software. 1-click install, powerful features, friendly community.
|
||||
# Easy Diffusion 2.5
|
||||
### The easiest way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your own computer.
|
||||
|
||||
[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB) (for support, and development discussion) | [Troubleshooting guide for common problems](https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting)
|
||||
Does not require technical knowledge, does not require pre-installed software. 1-click install, powerful features, friendly community.
|
||||
|
||||
### New:
|
||||
Experimental support for Stable Diffusion 2.0 is available in beta!
|
||||
[Installation guide](#step-1-download-and-extract-the-installer) | [Troubleshooting guide](https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting) | <sub>[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB)</sub> <sup>(for support queries, and development discussions)</sup>
|
||||
|
||||
----
|
||||
![t2i](https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/assets/stable-samples/txt2img/768/merged-0006.png)
|
||||
|
||||
# Step 1: Download and prepare the installer
|
||||
# Step 1: Download and extract the installer
|
||||
Click the download button for your operating system:
|
||||
|
||||
<p float="left">
|
||||
@ -44,9 +43,18 @@ The installer will take care of whatever is needed. If you face any problems, yo
|
||||
### User experience
|
||||
- **Hassle-free installation**: Does not require technical knowledge, does not require pre-installed software. Just download and run!
|
||||
- **Clutter-free UI**: A friendly and simple UI, while providing a lot of powerful features.
|
||||
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish.
|
||||
- **Intelligent Model Detection**: Automatically figures out the YAML config file to use for the chosen model (via a models database).
|
||||
- **Live Preview**: See the image as the AI is drawing it.
|
||||
- **Image Modifiers**: A library of *modifier tags* like *"Realistic"*, *"Pencil Sketch"*, *"ArtStation"* etc. Experiment with various styles quickly.
|
||||
- **Multiple Prompts File**: Queue multiple prompts by entering one prompt per line, or by running a text file.
|
||||
- **Save generated images to disk**: Save your images to your PC!
|
||||
- **UI Themes**: Customize the program to your liking.
|
||||
- **Organize your models into sub-folders**
|
||||
|
||||
### Image generation
|
||||
- **Supports**: "*Text to Image*" and "*Image to Image*".
|
||||
- **14 Samplers**: `ddim`, `plms`, `heun`, `euler`, `euler_a`, `dpm2`, `dpm2_a`, `lms`, `dpm_solver_stability`, `dpmpp_2s_a`, `dpmpp_2m`, `dpmpp_sde`, `dpm_fast`, `dpm_adaptive`
|
||||
- **In-Painting**: Specify areas of your image to paint into.
|
||||
- **Simple Drawing Tool**: Draw basic images to guide the AI, without needing an external drawing program.
|
||||
- **Face Correction (GFPGAN)**
|
||||
@ -56,7 +64,6 @@ The installer will take care of whatever is needed. If you face any problems, yo
|
||||
- **Attention/Emphasis**: () in the prompt increases the model's attention to enclosed words, and [] decreases it.
|
||||
- **Weighted Prompts**: Use weights for specific words in your prompt to change their importance, e.g. `red:2.4 dragon:1.2`.
|
||||
- **Prompt Matrix**: Quickly create multiple variations of your prompt, e.g. `a photograph of an astronaut riding a horse | illustration | cinematic lighting`.
|
||||
- **Lots of Samplers**: ddim, plms, heun, euler, euler_a, dpm2, dpm2_a, lms.
|
||||
- **1-click Upscale/Face Correction**: Upscale or correct an image after it has been generated.
|
||||
- **Make Similar Images**: Click to generate multiple variations of a generated image.
|
||||
- **NSFW Setting**: A setting in the UI to control *NSFW content*.
|
||||
@ -64,13 +71,15 @@ The installer will take care of whatever is needed. If you face any problems, yo
|
||||
|
||||
### Advanced features
|
||||
- **Custom Models**: Use your own `.ckpt` or `.safetensors` file, by placing it inside the `models/stable-diffusion` folder!
|
||||
- **Stable Diffusion 2.0 support (experimental)**: available in beta channel.
|
||||
- **Stable Diffusion 2.1 support**
|
||||
- **Merge Models**
|
||||
- **Use custom VAE models**
|
||||
- **Use pre-trained Hypernetworks**
|
||||
- **UI Plugins**: Choose from a growing list of [community-generated UI plugins](https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Plugins), or write your own plugin to add features to the project!
|
||||
|
||||
### Performance and security
|
||||
- **Low Memory Usage**: Creates 512x512 images with less than 4GB of GPU RAM!
|
||||
- **Fast**: Creates a 512x512 image with euler_a in 5 seconds, on an NVIDIA 3060 12GB.
|
||||
- **Low Memory Usage**: Create 512x512 images with less than 3 GB of GPU RAM, and 768x768 images with less than 4 GB of GPU RAM!
|
||||
- **Use CPU setting**: If you don't have a compatible graphics card, but still want to run it on your CPU.
|
||||
- **Multi-GPU support**: Automatically spreads your tasks across multiple GPUs (if available), for faster performance!
|
||||
- **Auto scan for malicious models**: Uses picklescan to prevent malicious models.
|
||||
@ -78,23 +87,17 @@ The installer will take care of whatever is needed. If you face any problems, yo
|
||||
- **Auto-updater**: Gets you the latest improvements and bug-fixes to a rapidly evolving project.
|
||||
- **Developer Console**: A developer-mode for those who want to modify their Stable Diffusion code, and edit the conda environment.
|
||||
|
||||
### Usability:
|
||||
- **Live Preview**: See the image as the AI is drawing it.
|
||||
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish.
|
||||
- **Image Modifiers**: A library of *modifier tags* like *"Realistic"*, *"Pencil Sketch"*, *"ArtStation"* etc. Experiment with various styles quickly.
|
||||
- **Multiple Prompts File**: Queue multiple prompts by entering one prompt per line, or by running a text file.
|
||||
- **Save generated images to disk**: Save your images to your PC!
|
||||
- **UI Themes**: Customize the program to your liking.
|
||||
|
||||
**(and a lot more)**
|
||||
|
||||
----
|
||||
|
||||
## Easy for new users:
|
||||
![Screenshot of the initial UI](media/shot-v10-simple.jpg?raw=true)
|
||||
![Screenshot of the initial UI](https://user-images.githubusercontent.com/844287/217043152-29454d15-0387-4228-b70d-9a4b84aeb8ba.png)
|
||||
|
||||
|
||||
## Powerful features for advanced users:
|
||||
![Screenshot of advanced settings](media/shot-v10.jpg?raw=true)
|
||||
![Screenshot of advanced settings](https://user-images.githubusercontent.com/844287/217042588-fc53c975-bacd-4a9c-af88-37408734ade3.png)
|
||||
|
||||
|
||||
## Live Preview
|
||||
Useful for judging (and stopping) an image quickly, without waiting for it to finish rendering.
|
||||
@ -102,7 +105,9 @@ Useful for judging (and stopping) an image quickly, without waiting for it to fi
|
||||
![live-512](https://user-images.githubusercontent.com/844287/192097249-729a0a1e-a677-485e-9ccc-16a9e848fabe.gif)
|
||||
|
||||
## Task Queue
|
||||
![Screenshot of task queue](media/task-queue-v1.jpg?raw=true)
|
||||
![Screenshot of task queue](https://user-images.githubusercontent.com/844287/217043984-0b35f73b-1318-47cb-9eed-a2a91b430490.png)
|
||||
|
||||
|
||||
|
||||
# System Requirements
|
||||
1. Windows 10/11, or Linux. Experimental support for Mac is coming soon.
|
||||
|
@ -23,23 +23,20 @@ call conda --version
|
||||
|
||||
echo.
|
||||
|
||||
@rem activate the environment
|
||||
call conda activate .\stable-diffusion\env
|
||||
@rem activate the legacy environment (if present) and set PYTHONPATH
|
||||
if exist "installer_files\env" (
|
||||
set PYTHONPATH=%cd%\installer_files\env\lib\site-packages
|
||||
)
|
||||
if exist "stable-diffusion\env" (
|
||||
call conda activate .\stable-diffusion\env
|
||||
set PYTHONPATH=%cd%\stable-diffusion\env\lib\site-packages
|
||||
)
|
||||
|
||||
call where python
|
||||
call python --version
|
||||
|
||||
@rem set the PYTHONPATH
|
||||
cd stable-diffusion
|
||||
set SD_DIR=%cd%
|
||||
|
||||
cd env\lib\site-packages
|
||||
set PYTHONPATH=%SD_DIR%;%cd%
|
||||
cd ..\..\..
|
||||
echo PYTHONPATH=%PYTHONPATH%
|
||||
|
||||
cd ..
|
||||
|
||||
@rem done
|
||||
echo.
|
||||
|
||||
|
@ -24,7 +24,7 @@ if exist "%INSTALL_ENV_DIR%" set PATH=%INSTALL_ENV_DIR%;%INSTALL_ENV_DIR%\Librar
|
||||
set PACKAGES_TO_INSTALL=
|
||||
|
||||
if not exist "%LEGACY_INSTALL_ENV_DIR%\etc\profile.d\conda.sh" (
|
||||
if not exist "%INSTALL_ENV_DIR%\etc\profile.d\conda.sh" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% conda
|
||||
if not exist "%INSTALL_ENV_DIR%\etc\profile.d\conda.sh" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% conda python=3.8.5
|
||||
)
|
||||
|
||||
call git --version >.tmp1 2>.tmp2
|
||||
|
@ -21,6 +21,7 @@ OS_ARCH=$(uname -m)
|
||||
case "${OS_ARCH}" in
|
||||
x86_64*) OS_ARCH="64";;
|
||||
arm64*) OS_ARCH="arm64";;
|
||||
aarch64*) OS_ARCH="arm64";;
|
||||
*) echo "Unknown system architecture: $OS_ARCH! This script runs only on x86_64 or arm64" && exit
|
||||
esac
|
||||
|
||||
@ -39,7 +40,7 @@ if [ -e "$INSTALL_ENV_DIR" ]; then export PATH="$INSTALL_ENV_DIR/bin:$PATH"; fi
|
||||
|
||||
PACKAGES_TO_INSTALL=""
|
||||
|
||||
if [ ! -e "$LEGACY_INSTALL_ENV_DIR/etc/profile.d/conda.sh" ] && [ ! -e "$INSTALL_ENV_DIR/etc/profile.d/conda.sh" ]; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL conda"; fi
|
||||
if [ ! -e "$LEGACY_INSTALL_ENV_DIR/etc/profile.d/conda.sh" ] && [ ! -e "$INSTALL_ENV_DIR/etc/profile.d/conda.sh" ]; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL conda python=3.8.5"; fi
|
||||
if ! hash "git" &>/dev/null; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL git"; fi
|
||||
|
||||
if "$MAMBA_ROOT_PREFIX/micromamba" --version &>/dev/null; then umamba_exists="T"; fi
|
||||
|
13
scripts/check_modules.py
Normal file
@ -0,0 +1,13 @@
|
||||
'''
|
||||
This script checks if the given modules exist
|
||||
'''
|
||||
|
||||
import sys
|
||||
import pkgutil
|
||||
|
||||
modules = sys.argv[1:]
|
||||
missing_modules = []
|
||||
for m in modules:
|
||||
if pkgutil.find_loader(m) is None:
|
||||
print('module', m, 'not found')
|
||||
exit(1)
|
@ -26,21 +26,23 @@ if [ "$0" == "bash" ]; then
|
||||
|
||||
echo ""
|
||||
|
||||
# activate the environment
|
||||
CONDA_BASEPATH=$(conda info --base)
|
||||
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # otherwise conda complains about 'shell not initialized' (needed when running in a script)
|
||||
# activate the legacy environment (if present) and set PYTHONPATH
|
||||
if [ -e "installer_files/env" ]; then
|
||||
export PYTHONPATH="$(pwd)/installer_files/env/lib/python3.8/site-packages"
|
||||
fi
|
||||
if [ -e "stable-diffusion/env" ]; then
|
||||
CONDA_BASEPATH=$(conda info --base)
|
||||
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # otherwise conda complains about 'shell not initialized' (needed when running in a script)
|
||||
|
||||
conda activate ./stable-diffusion/env
|
||||
conda activate ./stable-diffusion/env
|
||||
|
||||
export PYTHONPATH="$(pwd)/stable-diffusion/env/lib/python3.8/site-packages"
|
||||
fi
|
||||
|
||||
which python
|
||||
python --version
|
||||
|
||||
# set the PYTHONPATH
|
||||
cd stable-diffusion
|
||||
SD_PATH=`pwd`
|
||||
export PYTHONPATH="$SD_PATH:$SD_PATH/env/lib/python3.8/site-packages"
|
||||
echo "PYTHONPATH=$PYTHONPATH"
|
||||
cd ..
|
||||
|
||||
# done
|
||||
|
||||
|
@ -53,6 +53,7 @@ if "%update_branch%"=="" (
|
||||
@xcopy sd-ui-files\ui ui /s /i /Y /q
|
||||
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
|
||||
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
|
||||
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
|
||||
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
|
||||
@copy "sd-ui-files\scripts\Developer Console.cmd" . /Y
|
||||
|
||||
|
@ -37,6 +37,7 @@ rm -rf ui
|
||||
cp -Rf sd-ui-files/ui .
|
||||
cp sd-ui-files/scripts/on_sd_start.sh scripts/
|
||||
cp sd-ui-files/scripts/bootstrap.sh scripts/
|
||||
cp sd-ui-files/scripts/check_modules.py scripts/
|
||||
cp sd-ui-files/scripts/start.sh .
|
||||
cp sd-ui-files/scripts/developer_console.sh .
|
||||
|
||||
|
@ -5,11 +5,20 @@
|
||||
|
||||
@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y
|
||||
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
|
||||
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
|
||||
|
||||
if exist "%cd%\profile" (
|
||||
set USERPROFILE=%cd%\profile
|
||||
)
|
||||
|
||||
@rem set the correct installer path (current vs legacy)
|
||||
if exist "%cd%\installer_files\env" (
|
||||
set INSTALL_ENV_DIR=%cd%\installer_files\env
|
||||
)
|
||||
if exist "%cd%\stable-diffusion\env" (
|
||||
set INSTALL_ENV_DIR=%cd%\stable-diffusion\env
|
||||
)
|
||||
|
||||
@mkdir tmp
|
||||
@set TMP=%cd%\tmp
|
||||
@set TEMP=%cd%\tmp
|
||||
@ -27,150 +36,117 @@ if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
|
||||
|
||||
@call python -c "import os; import shutil; frm = 'sd-ui-files\\ui\\hotfix\\9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
|
||||
|
||||
if NOT DEFINED test_sd2 set test_sd2=N
|
||||
@rem create the stable-diffusion folder, to work with legacy installations
|
||||
if not exist "stable-diffusion" mkdir stable-diffusion
|
||||
cd stable-diffusion
|
||||
|
||||
@>nul findstr /m "sd_git_cloned" scripts\install_status.txt
|
||||
@if "%ERRORLEVEL%" EQU "0" (
|
||||
@echo "Stable Diffusion's git repository was already installed. Updating.."
|
||||
|
||||
@cd stable-diffusion
|
||||
|
||||
@call git remote set-url origin https://github.com/easydiffusion/diffusion-kit.git
|
||||
|
||||
@call git reset --hard
|
||||
@call git pull
|
||||
|
||||
if "%test_sd2%" == "N" (
|
||||
@call git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
|
||||
)
|
||||
if "%test_sd2%" == "Y" (
|
||||
@call git -c advice.detachedHead=false checkout 733a1f6f9cae9b9a9b83294bf3281b123378cb1f
|
||||
)
|
||||
|
||||
@cd ..
|
||||
) else (
|
||||
@echo. & echo "Downloading Stable Diffusion.." & echo.
|
||||
|
||||
@call git clone https://github.com/easydiffusion/diffusion-kit.git stable-diffusion && (
|
||||
@echo sd_git_cloned >> scripts\install_status.txt
|
||||
) || (
|
||||
@echo "Error downloading Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
@exit /b
|
||||
)
|
||||
|
||||
@cd stable-diffusion
|
||||
@call git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
|
||||
|
||||
@cd ..
|
||||
@rem activate the old stable-diffusion env, if it exists
|
||||
if exist "env" (
|
||||
call conda activate .\env
|
||||
)
|
||||
|
||||
@cd stable-diffusion
|
||||
@rem disable the legacy src and ldm folder (otherwise this prevents installing gfpgan and realesrgan)
|
||||
if exist src rename src src-old
|
||||
if exist ldm rename ldm ldm-old
|
||||
|
||||
@>nul findstr /m "conda_sd_env_created" ..\scripts\install_status.txt
|
||||
@if "%ERRORLEVEL%" EQU "0" (
|
||||
@echo "Packages necessary for Stable Diffusion were already installed"
|
||||
if not exist "..\models\stable-diffusion" mkdir "..\models\stable-diffusion"
|
||||
if not exist "..\models\gfpgan" mkdir "..\models\gfpgan"
|
||||
if not exist "..\models\realesrgan" mkdir "..\models\realesrgan"
|
||||
if not exist "..\models\vae" mkdir "..\models\vae"
|
||||
|
||||
@call conda activate .\env
|
||||
@rem migrate the legacy models to the correct path (if already downloaded)
|
||||
if exist "sd-v1-4.ckpt" move sd-v1-4.ckpt ..\models\stable-diffusion\
|
||||
if exist "custom-model.ckpt" move custom-model.ckpt ..\models\stable-diffusion\
|
||||
if exist "GFPGANv1.3.pth" move GFPGANv1.3.pth ..\models\gfpgan\
|
||||
if exist "RealESRGAN_x4plus.pth" move RealESRGAN_x4plus.pth ..\models\realesrgan\
|
||||
if exist "RealESRGAN_x4plus_anime_6B.pth" move RealESRGAN_x4plus_anime_6B.pth ..\models\realesrgan\
|
||||
|
||||
@rem install torch and torchvision
|
||||
call python ..\scripts\check_modules.py torch torchvision
|
||||
if "%ERRORLEVEL%" EQU "0" (
|
||||
echo "torch and torchvision have already been installed."
|
||||
) else (
|
||||
@echo. & echo "Downloading packages necessary for Stable Diffusion.." & echo. & echo "***** This will take some time (depending on the speed of the Internet connection) and may appear to be stuck, but please be patient ***** .." & echo.
|
||||
echo "Installing torch and torchvision.."
|
||||
|
||||
@rmdir /s /q .\env
|
||||
@REM prevent from using packages from the user's home directory, to avoid conflicts
|
||||
set PYTHONNOUSERSITE=1
|
||||
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
|
||||
|
||||
@REM prevent conda from using packages from the user's home directory, to avoid conflicts
|
||||
@set PYTHONNOUSERSITE=1
|
||||
|
||||
set USERPROFILE=%cd%\profile
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
@call conda env create --prefix env -f environment.yaml || (
|
||||
@echo. & echo "Error installing the packages necessary for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
call python -m pip install --upgrade torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 || (
|
||||
echo "Error installing torch. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
|
||||
@call conda activate .\env
|
||||
|
||||
for /f "tokens=*" %%a in ('python -c "import torch; import ldm; import transformers; import numpy; import antlr4; print(42)"') do if "%%a" NEQ "42" (
|
||||
@echo. & echo "Dependency test failed! Error installing the packages necessary for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
|
||||
@echo conda_sd_env_created >> ..\scripts\install_status.txt
|
||||
)
|
||||
|
||||
@rem allow rolling back the sdkit-based changes
|
||||
if exist "src-old" (
|
||||
if not exist "src" (
|
||||
rename "src-old" "src"
|
||||
|
||||
if exist "ldm-old" (
|
||||
rd /s /q "ldm-old"
|
||||
)
|
||||
|
||||
call pip uninstall -y sdkit stable-diffusion-sdkit
|
||||
)
|
||||
)
|
||||
|
||||
set PATH=C:\Windows\System32;%PATH%
|
||||
|
||||
@>nul findstr /m "conda_sd_gfpgan_deps_installed" ..\scripts\install_status.txt
|
||||
@if "%ERRORLEVEL%" EQU "0" (
|
||||
@echo "Packages necessary for GFPGAN (Face Correction) were already installed"
|
||||
@rem install/upgrade sdkit
|
||||
call python ..\scripts\check_modules.py sdkit sdkit.models ldm transformers numpy antlr4 gfpgan realesrgan
|
||||
if "%ERRORLEVEL%" EQU "0" (
|
||||
echo "sdkit is already installed."
|
||||
|
||||
@rem skip sdkit upgrade if in developer-mode
|
||||
if not exist "..\src\sdkit" (
|
||||
@REM prevent from using packages from the user's home directory, to avoid conflicts
|
||||
set PYTHONNOUSERSITE=1
|
||||
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
|
||||
|
||||
call python -m pip install --upgrade sdkit -q || (
|
||||
echo "Error updating sdkit"
|
||||
)
|
||||
)
|
||||
) else (
|
||||
@echo. & echo "Downloading packages necessary for GFPGAN (Face Correction).." & echo.
|
||||
echo "Installing sdkit: https://pypi.org/project/sdkit/"
|
||||
|
||||
@set PYTHONNOUSERSITE=1
|
||||
@REM prevent from using packages from the user's home directory, to avoid conflicts
|
||||
set PYTHONNOUSERSITE=1
|
||||
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
|
||||
|
||||
set USERPROFILE=%cd%\profile
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
for /f "tokens=*" %%a in ('python -c "from gfpgan import GFPGANer; print(42)"') do if "%%a" NEQ "42" (
|
||||
@echo. & echo "Dependency test failed! Error installing the packages necessary for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
call python -m pip install sdkit || (
|
||||
echo "Error installing sdkit. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
|
||||
@echo conda_sd_gfpgan_deps_installed >> ..\scripts\install_status.txt
|
||||
)
|
||||
|
||||
@>nul findstr /m "conda_sd_esrgan_deps_installed" ..\scripts\install_status.txt
|
||||
@if "%ERRORLEVEL%" EQU "0" (
|
||||
@echo "Packages necessary for ESRGAN (Resolution Upscaling) were already installed"
|
||||
call python -c "from importlib.metadata import version; print('sdkit version:', version('sdkit'))"
|
||||
|
||||
@rem upgrade stable-diffusion-sdkit
|
||||
call python -m pip install --upgrade stable-diffusion-sdkit -q || (
|
||||
echo "Error updating stable-diffusion-sdkit"
|
||||
)
|
||||
call python -c "from importlib.metadata import version; print('stable-diffusion version:', version('stable-diffusion-sdkit'))"
|
||||
|
||||
@rem install rich
|
||||
call python ..\scripts\check_modules.py rich
|
||||
if "%ERRORLEVEL%" EQU "0" (
|
||||
echo "rich has already been installed."
|
||||
) else (
|
||||
@echo. & echo "Downloading packages necessary for ESRGAN (Resolution Upscaling).." & echo.
|
||||
echo "Installing rich.."
|
||||
|
||||
@set PYTHONNOUSERSITE=1
|
||||
set PYTHONNOUSERSITE=1
|
||||
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
|
||||
|
||||
set USERPROFILE=%cd%\profile
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
for /f "tokens=*" %%a in ('python -c "from basicsr.archs.rrdbnet_arch import RRDBNet; from realesrgan import RealESRGANer; print(42)"') do if "%%a" NEQ "42" (
|
||||
@echo. & echo "Dependency test failed! Error installing the packages necessary for ESRGAN (Resolution Upscaling). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
call python -m pip install rich || (
|
||||
echo "Error installing rich. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
|
||||
@echo conda_sd_esrgan_deps_installed >> ..\scripts\install_status.txt
|
||||
)
|
||||
|
||||
@>nul findstr /m "conda_sd_ui_deps_installed" ..\scripts\install_status.txt
|
||||
set PATH=C:\Windows\System32;%PATH%
|
||||
|
||||
call python ..\scripts\check_modules.py uvicorn fastapi
|
||||
@if "%ERRORLEVEL%" EQU "0" (
|
||||
echo "Packages necessary for Stable Diffusion UI were already installed"
|
||||
) else (
|
||||
@echo. & echo "Downloading packages necessary for Stable Diffusion UI.." & echo.
|
||||
|
||||
@set PYTHONNOUSERSITE=1
|
||||
set PYTHONNOUSERSITE=1
|
||||
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
|
||||
|
||||
set USERPROFILE=%cd%\profile
|
||||
|
||||
set PYTHONPATH=%cd%;%cd%\env\lib\site-packages
|
||||
|
||||
@call conda install -c conda-forge -y --prefix env uvicorn fastapi || (
|
||||
@call conda install -c conda-forge -y uvicorn fastapi || (
|
||||
echo "Error installing the packages necessary for Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
exit /b
|
||||
@ -185,70 +161,35 @@ call WHERE uvicorn > .tmp
|
||||
exit /b
|
||||
)
|
||||
|
||||
@>nul 2>nul call python -m picklescan --help
|
||||
@if "%ERRORLEVEL%" NEQ "0" (
|
||||
@echo. & echo Picklescan not found. Installing
|
||||
@call pip install picklescan || (
|
||||
echo "Error installing the picklescan package necessary for Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
)
|
||||
|
||||
@>nul 2>nul call python -c "import safetensors"
|
||||
@if "%ERRORLEVEL%" NEQ "0" (
|
||||
@echo. & echo SafeTensors not found. Installing
|
||||
@call pip install safetensors || (
|
||||
echo "Error installing the safetensors package necessary for Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
|
||||
pause
|
||||
exit /b
|
||||
)
|
||||
)
|
||||
|
||||
@>nul findstr /m "conda_sd_ui_deps_installed" ..\scripts\install_status.txt
|
||||
@if "%ERRORLEVEL%" NEQ "0" (
|
||||
@echo conda_sd_ui_deps_installed >> ..\scripts\install_status.txt
|
||||
)
|
||||
|
||||
|
||||
|
||||
if not exist "..\models\stable-diffusion" mkdir "..\models\stable-diffusion"
|
||||
if not exist "..\models\vae" mkdir "..\models\vae"
|
||||
if not exist "..\models\hypernetwork" mkdir "..\models\hypernetwork"
|
||||
echo. > "..\models\stable-diffusion\Put your custom ckpt files here.txt"
|
||||
echo. > "..\models\vae\Put your VAE files here.txt"
|
||||
echo. > "..\models\hypernetwork\Put your hypernetwork files here.txt"
|
||||
|
||||
@rem if downgrading from v2.5, migrate the models to the legacy path (if already downloaded)
|
||||
if exist "..\models\stable-diffusion\sd-v1-4.ckpt" if not exist "sd-v1-4.ckpt" move ..\models\stable-diffusion\sd-v1-4.ckpt .
|
||||
if exist "..\models\gfpgan\GFPGANv1.3.pth" if not exist "GFPGANv1.3.pth" move ..\models\gfpgan\GFPGANv1.3.pth .
|
||||
if exist "..\models\realesrgan\RealESRGAN_x4plus.pth" if not exist "RealESRGAN_x4plus.pth" move ..\models\realesrgan\RealESRGAN_x4plus.pth .
|
||||
if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" if not exist "RealESRGAN_x4plus_anime_6B.pth" move ..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth .
|
||||
|
||||
@if exist "sd-v1-4.ckpt" (
|
||||
for %%I in ("sd-v1-4.ckpt") do if "%%~zI" EQU "4265380512" (
|
||||
@if exist "..\models\stable-diffusion\sd-v1-4.ckpt" (
|
||||
for %%I in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zI" EQU "4265380512" (
|
||||
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the HuggingFace 4 GB Model."
|
||||
) else (
|
||||
for %%J in ("sd-v1-4.ckpt") do if "%%~zJ" EQU "7703807346" (
|
||||
for %%J in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zJ" EQU "7703807346" (
|
||||
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the HuggingFace 7 GB Model."
|
||||
) else (
|
||||
for %%K in ("sd-v1-4.ckpt") do if "%%~zK" EQU "7703810927" (
|
||||
for %%K in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zK" EQU "7703810927" (
|
||||
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the Waifu Model."
|
||||
) else (
|
||||
echo. & echo "The model file present at %cd%\sd-v1-4.ckpt is invalid. It is only %%~zK bytes in size. Re-downloading.." & echo.
|
||||
del "sd-v1-4.ckpt"
|
||||
echo. & echo "The model file present at models\stable-diffusion\sd-v1-4.ckpt is invalid. It is only %%~zK bytes in size. Re-downloading.." & echo.
|
||||
del "..\models\stable-diffusion\sd-v1-4.ckpt"
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
@if not exist "sd-v1-4.ckpt" (
|
||||
@if not exist "..\models\stable-diffusion\sd-v1-4.ckpt" (
|
||||
@echo. & echo "Downloading data files (weights) for Stable Diffusion.." & echo.
|
||||
|
||||
@call curl -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
|
||||
@call curl -L -k https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt > ..\models\stable-diffusion\sd-v1-4.ckpt
|
||||
|
||||
@if exist "sd-v1-4.ckpt" (
|
||||
for %%I in ("sd-v1-4.ckpt") do if "%%~zI" NEQ "4265380512" (
|
||||
@if exist "..\models\stable-diffusion\sd-v1-4.ckpt" (
|
||||
for %%I in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zI" NEQ "4265380512" (
|
||||
echo. & echo "Error: The downloaded model file was invalid! Bytes downloaded: %%~zI" & echo.
|
||||
echo. & echo "Error downloading the data files (weights) for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
@ -263,22 +204,22 @@ if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" if not exist "Rea
|
||||
|
||||
|
||||
|
||||
@if exist "GFPGANv1.3.pth" (
|
||||
for %%I in ("GFPGANv1.3.pth") do if "%%~zI" EQU "348632874" (
|
||||
@if exist "..\models\gfpgan\GFPGANv1.3.pth" (
|
||||
for %%I in ("..\models\gfpgan\GFPGANv1.3.pth") do if "%%~zI" EQU "348632874" (
|
||||
echo "Data files (weights) necessary for GFPGAN (Face Correction) were already downloaded"
|
||||
) else (
|
||||
echo. & echo "The GFPGAN model file present at %cd%\GFPGANv1.3.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
|
||||
del "GFPGANv1.3.pth"
|
||||
echo. & echo "The GFPGAN model file present at models\gfpgan\GFPGANv1.3.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
|
||||
del "..\models\gfpgan\GFPGANv1.3.pth"
|
||||
)
|
||||
)
|
||||
|
||||
@if not exist "GFPGANv1.3.pth" (
|
||||
@if not exist "..\models\gfpgan\GFPGANv1.3.pth" (
|
||||
@echo. & echo "Downloading data files (weights) for GFPGAN (Face Correction).." & echo.
|
||||
|
||||
@call curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
|
||||
@call curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > ..\models\gfpgan\GFPGANv1.3.pth
|
||||
|
||||
@if exist "GFPGANv1.3.pth" (
|
||||
for %%I in ("GFPGANv1.3.pth") do if "%%~zI" NEQ "348632874" (
|
||||
@if exist "..\models\gfpgan\GFPGANv1.3.pth" (
|
||||
for %%I in ("..\models\gfpgan\GFPGANv1.3.pth") do if "%%~zI" NEQ "348632874" (
|
||||
echo. & echo "Error: The downloaded GFPGAN model file was invalid! Bytes downloaded: %%~zI" & echo.
|
||||
echo. & echo "Error downloading the data files (weights) for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
@ -293,22 +234,22 @@ if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" if not exist "Rea
|
||||
|
||||
|
||||
|
||||
@if exist "RealESRGAN_x4plus.pth" (
|
||||
for %%I in ("RealESRGAN_x4plus.pth") do if "%%~zI" EQU "67040989" (
|
||||
@if exist "..\models\realesrgan\RealESRGAN_x4plus.pth" (
|
||||
for %%I in ("..\models\realesrgan\RealESRGAN_x4plus.pth") do if "%%~zI" EQU "67040989" (
|
||||
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus were already downloaded"
|
||||
) else (
|
||||
echo. & echo "The RealESRGAN model file present at %cd%\RealESRGAN_x4plus.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
|
||||
del "RealESRGAN_x4plus.pth"
|
||||
echo. & echo "The RealESRGAN model file present at models\realesrgan\RealESRGAN_x4plus.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
|
||||
del "..\models\realesrgan\RealESRGAN_x4plus.pth"
|
||||
)
|
||||
)
|
||||
|
||||
@if not exist "RealESRGAN_x4plus.pth" (
|
||||
@if not exist "..\models\realesrgan\RealESRGAN_x4plus.pth" (
|
||||
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.." & echo.
|
||||
|
||||
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
|
||||
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > ..\models\realesrgan\RealESRGAN_x4plus.pth
|
||||
|
||||
@if exist "RealESRGAN_x4plus.pth" (
|
||||
for %%I in ("RealESRGAN_x4plus.pth") do if "%%~zI" NEQ "67040989" (
|
||||
@if exist "..\models\realesrgan\RealESRGAN_x4plus.pth" (
|
||||
for %%I in ("..\models\realesrgan\RealESRGAN_x4plus.pth") do if "%%~zI" NEQ "67040989" (
|
||||
echo. & echo "Error: The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: %%~zI" & echo.
|
||||
echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
pause
|
||||
@ -323,21 +264,21 @@ if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" if not exist "Rea
|
||||
|
||||
|
||||
|
||||
@if exist "RealESRGAN_x4plus_anime_6B.pth" (
|
||||
for %%I in ("RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" EQU "17938799" (
|
||||
@if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" (
|
||||
for %%I in ("..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" EQU "17938799" (
|
||||
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus_anime were already downloaded"
|
||||
) else (
|
||||
echo. & echo "The RealESRGAN model file present at %cd%\RealESRGAN_x4plus_anime_6B.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
|
||||
del "RealESRGAN_x4plus_anime_6B.pth"
|
||||
echo. & echo "The RealESRGAN model file present at models\realesrgan\RealESRGAN_x4plus_anime_6B.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
|
||||
del "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth"
|
||||
)
|
||||
)
|
||||
|
||||
@if not exist "RealESRGAN_x4plus_anime_6B.pth" (
|
||||
@if not exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" (
|
||||
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.." & echo.
|
||||
|
||||
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
|
||||
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > ..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth
|
||||
|
||||
@if exist "RealESRGAN_x4plus_anime_6B.pth" (
|
||||
@if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" (
|
||||
for %%I in ("RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" NEQ "17938799" (
|
||||
echo. & echo "Error: The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: %%~zI" & echo.
|
||||
echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
|
||||
@ -381,10 +322,6 @@ if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" if not exist "Rea
|
||||
)
|
||||
)
|
||||
|
||||
if "%test_sd2%" == "Y" (
|
||||
@call pip install open_clip_torch==2.0.2
|
||||
)
|
||||
|
||||
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
|
||||
@if "%ERRORLEVEL%" NEQ "0" (
|
||||
@echo sd_weights_downloaded >> ..\scripts\install_status.txt
|
||||
@ -395,10 +332,8 @@ if "%test_sd2%" == "Y" (
|
||||
|
||||
@set SD_DIR=%cd%
|
||||
|
||||
@cd env\lib\site-packages
|
||||
@set PYTHONPATH=%SD_DIR%;%cd%
|
||||
@cd ..\..\..
|
||||
@echo PYTHONPATH=%PYTHONPATH%
|
||||
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
|
||||
echo PYTHONPATH=%PYTHONPATH%
|
||||
|
||||
call where python
|
||||
call python --version
|
||||
@ -407,17 +342,12 @@ call python --version
|
||||
@set SD_UI_PATH=%cd%\ui
|
||||
@cd stable-diffusion
|
||||
|
||||
@rem
|
||||
@rem Rewrite easy-install.pth. This fixes the installation if the user has relocated the SDUI installation
|
||||
@rem
|
||||
>env\Lib\site-packages\easy-install.pth echo %cd%\src\taming-transformers
|
||||
>>env\Lib\site-packages\easy-install.pth echo %cd%\src\clip
|
||||
>>env\Lib\site-packages\easy-install.pth echo %cd%\src\gfpgan
|
||||
>>env\Lib\site-packages\easy-install.pth echo %cd%\src\realesrgan
|
||||
@rem set any overrides
|
||||
set HF_HUB_DISABLE_SYMLINKS_WARNING=true
|
||||
|
||||
@if NOT DEFINED SD_UI_BIND_PORT set SD_UI_BIND_PORT=9000
|
||||
@if NOT DEFINED SD_UI_BIND_IP set SD_UI_BIND_IP=0.0.0.0
|
||||
@uvicorn server:app --app-dir "%SD_UI_PATH%" --port %SD_UI_BIND_PORT% --host %SD_UI_BIND_IP%
|
||||
@uvicorn main:server_api --app-dir "%SD_UI_PATH%" --port %SD_UI_BIND_PORT% --host %SD_UI_BIND_IP% --log-level error
|
||||
|
||||
|
||||
@pause
|
||||
|
@ -4,6 +4,7 @@ source ./scripts/functions.sh
|
||||
|
||||
cp sd-ui-files/scripts/on_env_start.sh scripts/
|
||||
cp sd-ui-files/scripts/bootstrap.sh scripts/
|
||||
cp sd-ui-files/scripts/check_modules.py scripts/
|
||||
|
||||
# activate the installer env
|
||||
CONDA_BASEPATH=$(conda info --base)
|
||||
@ -21,125 +22,110 @@ python -c "import os; import shutil; frm = 'sd-ui-files/ui/hotfix/9c24e6cd9f499d
|
||||
# Caution, this file will make your eyes and brain bleed. It's such an unholy mess.
|
||||
# Note to self: Please rewrite this in Python. For the sake of your own sanity.
|
||||
|
||||
if [ "$test_sd2" == "" ]; then
|
||||
export test_sd2="N"
|
||||
fi
|
||||
|
||||
if [ -e "scripts/install_status.txt" ] && [ `grep -c sd_git_cloned scripts/install_status.txt` -gt "0" ]; then
|
||||
echo "Stable Diffusion's git repository was already installed. Updating.."
|
||||
|
||||
cd stable-diffusion
|
||||
|
||||
git remote set-url origin https://github.com/easydiffusion/diffusion-kit.git
|
||||
|
||||
git reset --hard
|
||||
git pull
|
||||
|
||||
if [ "$test_sd2" == "N" ]; then
|
||||
git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
|
||||
elif [ "$test_sd2" == "Y" ]; then
|
||||
git -c advice.detachedHead=false checkout 733a1f6f9cae9b9a9b83294bf3281b123378cb1f
|
||||
fi
|
||||
|
||||
cd ..
|
||||
else
|
||||
printf "\n\nDownloading Stable Diffusion..\n\n"
|
||||
|
||||
if git clone https://github.com/easydiffusion/diffusion-kit.git stable-diffusion ; then
|
||||
echo sd_git_cloned >> scripts/install_status.txt
|
||||
else
|
||||
fail "git clone of basujindal/stable-diffusion.git failed"
|
||||
fi
|
||||
|
||||
cd stable-diffusion
|
||||
git -c advice.detachedHead=false checkout 7f32368ed1030a6e710537047bacd908adea183a
|
||||
|
||||
cd ..
|
||||
# set the correct installer path (current vs legacy)
|
||||
if [ -e "installer_files/env" ]; then
|
||||
export INSTALL_ENV_DIR="$(pwd)/installer_files/env"
|
||||
fi
|
||||
if [ -e "stable-diffusion/env" ]; then
|
||||
export INSTALL_ENV_DIR="$(pwd)/stable-diffusion/env"
|
||||
fi
|
||||
|
||||
# create the stable-diffusion folder, to work with legacy installations
|
||||
if [ ! -e "stable-diffusion" ]; then mkdir stable-diffusion; fi
|
||||
cd stable-diffusion
|
||||
|
||||
if [ `grep -c conda_sd_env_created ../scripts/install_status.txt` -gt "0" ]; then
|
||||
echo "Packages necessary for Stable Diffusion were already installed"
|
||||
|
||||
# activate the old stable-diffusion env, if it exists
|
||||
if [ -e "env" ]; then
|
||||
conda activate ./env || fail "conda activate failed"
|
||||
fi
|
||||
|
||||
# disable the legacy src and ldm folder (otherwise this prevents installing gfpgan and realesrgan)
|
||||
if [ -e "src" ]; then mv src src-old; fi
|
||||
if [ -e "ldm" ]; then mv ldm ldm-old; fi
|
||||
|
||||
mkdir -p "../models/stable-diffusion"
|
||||
mkdir -p "../models/gfpgan"
|
||||
mkdir -p "../models/realesrgan"
|
||||
mkdir -p "../models/vae"
|
||||
|
||||
# migrate the legacy models to the correct path (if already downloaded)
|
||||
if [ -e "sd-v1-4.ckpt" ]; then mv sd-v1-4.ckpt ../models/stable-diffusion/; fi
|
||||
if [ -e "custom-model.ckpt" ]; then mv custom-model.ckpt ../models/stable-diffusion/; fi
|
||||
if [ -e "GFPGANv1.3.pth" ]; then mv GFPGANv1.3.pth ../models/gfpgan/; fi
|
||||
if [ -e "RealESRGAN_x4plus.pth" ]; then mv RealESRGAN_x4plus.pth ../models/realesrgan/; fi
|
||||
if [ -e "RealESRGAN_x4plus_anime_6B.pth" ]; then mv RealESRGAN_x4plus_anime_6B.pth ../models/realesrgan/; fi
|
||||
|
||||
# install torch and torchvision
|
||||
if python ../scripts/check_modules.py torch torchvision; then
|
||||
echo "torch and torchvision have already been installed."
|
||||
else
|
||||
printf "\n\nDownloading packages necessary for Stable Diffusion..\n"
|
||||
printf "\n\n***** This will take some time (depending on the speed of the Internet connection) and may appear to be stuck, but please be patient ***** ..\n\n"
|
||||
echo "Installing torch and torchvision.."
|
||||
|
||||
# prevent conda from using packages from the user's home directory, to avoid conflicts
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
|
||||
|
||||
if conda env create --prefix env --force -f environment.yaml ; then
|
||||
echo "Installed. Testing.."
|
||||
if python -m pip install --upgrade torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 ; then
|
||||
echo "Installed."
|
||||
else
|
||||
fail "'conda env create' failed"
|
||||
fail "torch install failed"
|
||||
fi
|
||||
|
||||
conda activate ./env || fail "conda activate failed"
|
||||
|
||||
out_test=`python -c "import torch; import ldm; import transformers; import numpy; import antlr4; print(42)"`
|
||||
if [ "$out_test" != "42" ]; then
|
||||
fail "Dependency test failed"
|
||||
fi
|
||||
|
||||
echo conda_sd_env_created >> ../scripts/install_status.txt
|
||||
fi
|
||||
|
||||
# allow rolling back the sdkit-based changes
|
||||
if [ -e "src-old" ] && [ ! -e "src" ]; then
|
||||
mv src-old src
|
||||
# install/upgrade sdkit
|
||||
if python ../scripts/check_modules.py sdkit sdkit.models ldm transformers numpy antlr4 gfpgan realesrgan ; then
|
||||
echo "sdkit is already installed."
|
||||
|
||||
if [ -e "ldm-old" ]; then rm -r ldm-old; fi
|
||||
# skip sdkit upgrade if in developer-mode
|
||||
if [ ! -e "../src/sdkit" ]; then
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
|
||||
|
||||
pip uninstall -y sdkit stable-diffusion-sdkit
|
||||
fi
|
||||
|
||||
if [ `grep -c conda_sd_gfpgan_deps_installed ../scripts/install_status.txt` -gt "0" ]; then
|
||||
echo "Packages necessary for GFPGAN (Face Correction) were already installed"
|
||||
python -m pip install --upgrade sdkit -q
|
||||
fi
|
||||
else
|
||||
printf "\n\nDownloading packages necessary for GFPGAN (Face Correction)..\n"
|
||||
echo "Installing sdkit: https://pypi.org/project/sdkit/"
|
||||
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
|
||||
|
||||
out_test=`python -c "from gfpgan import GFPGANer; print(42)"`
|
||||
if [ "$out_test" != "42" ]; then
|
||||
echo "EE The dependency check has failed. This usually means that some system libraries are missing."
|
||||
echo "EE On Debian/Ubuntu systems, this are often these packages: libsm6 libxext6 libxrender-dev"
|
||||
echo "EE Other Linux distributions might have different package names for these libraries."
|
||||
fail "GFPGAN dependency test failed"
|
||||
if python -m pip install sdkit ; then
|
||||
echo "Installed."
|
||||
else
|
||||
fail "sdkit install failed"
|
||||
fi
|
||||
|
||||
echo conda_sd_gfpgan_deps_installed >> ../scripts/install_status.txt
|
||||
fi
|
||||
|
||||
if [ `grep -c conda_sd_esrgan_deps_installed ../scripts/install_status.txt` -gt "0" ]; then
|
||||
echo "Packages necessary for ESRGAN (Resolution Upscaling) were already installed"
|
||||
python -c "from importlib.metadata import version; print('sdkit version:', version('sdkit'))"
|
||||
|
||||
# upgrade stable-diffusion-sdkit
|
||||
python -m pip install --upgrade stable-diffusion-sdkit -q
|
||||
python -c "from importlib.metadata import version; print('stable-diffusion version:', version('stable-diffusion-sdkit'))"
|
||||
|
||||
# install rich
|
||||
if python ../scripts/check_modules.py rich; then
|
||||
echo "rich has already been installed."
|
||||
else
|
||||
printf "\n\nDownloading packages necessary for ESRGAN (Resolution Upscaling)..\n"
|
||||
echo "Installing rich.."
|
||||
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
|
||||
|
||||
out_test=`python -c "from basicsr.archs.rrdbnet_arch import RRDBNet; from realesrgan import RealESRGANer; print(42)"`
|
||||
if [ "$out_test" != "42" ]; then
|
||||
fail "ESRGAN dependency test failed"
|
||||
if python -m pip install rich ; then
|
||||
echo "Installed."
|
||||
else
|
||||
fail "Install failed for rich"
|
||||
fi
|
||||
|
||||
echo conda_sd_esrgan_deps_installed >> ../scripts/install_status.txt
|
||||
fi
|
||||
|
||||
if [ `grep -c conda_sd_ui_deps_installed ../scripts/install_status.txt` -gt "0" ]; then
|
||||
if python ../scripts/check_modules.py uvicorn fastapi ; then
|
||||
echo "Packages necessary for Stable Diffusion UI were already installed"
|
||||
else
|
||||
printf "\n\nDownloading packages necessary for Stable Diffusion UI..\n\n"
|
||||
|
||||
export PYTHONNOUSERSITE=1
|
||||
export PYTHONPATH="$(pwd):$(pwd)/env/lib/site-packages"
|
||||
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
|
||||
|
||||
if conda install -c conda-forge --prefix ./env -y uvicorn fastapi ; then
|
||||
if conda install -c conda-forge -y uvicorn fastapi ; then
|
||||
echo "Installed. Testing.."
|
||||
else
|
||||
fail "'conda install uvicorn' failed"
|
||||
@ -148,57 +134,26 @@ else
|
||||
if ! command -v uvicorn &> /dev/null; then
|
||||
fail "UI packages not found!"
|
||||
fi
|
||||
|
||||
echo conda_sd_ui_deps_installed >> ../scripts/install_status.txt
|
||||
fi
|
||||
|
||||
if python -m picklescan --help >/dev/null 2>&1; then
|
||||
echo "Picklescan is already installed."
|
||||
else
|
||||
echo "Picklescan not found, installing."
|
||||
pip install picklescan || fail "Picklescan installation failed."
|
||||
fi
|
||||
|
||||
if python -c "import safetensors" --help >/dev/null 2>&1; then
|
||||
echo "SafeTensors is already installed."
|
||||
else
|
||||
echo "SafeTensors not found, installing."
|
||||
pip install safetensors || fail "SafeTensors installation failed."
|
||||
fi
|
||||
|
||||
|
||||
|
||||
mkdir -p "../models/stable-diffusion"
|
||||
mkdir -p "../models/vae"
|
||||
mkdir -p "../models/hypernetwork"
|
||||
echo "" > "../models/stable-diffusion/Put your custom ckpt files here.txt"
|
||||
echo "" > "../models/vae/Put your VAE files here.txt"
|
||||
echo "" > "../models/hypernetwork/Put your hypernetwork files here.txt"
|
||||
|
||||
# if downgrading from v2.5, migrate the models to the legacy path (if already downloaded)
|
||||
if [ -e "../models/stable-diffusion/sd-v1-4.ckpt" ] && [ ! -e "sd-v1-4.ckpt" ]; then mv ../models/stable-diffusion/sd-v1-4.ckpt . ; fi
|
||||
if [ -e "../models/gfpgan/GFPGANv1.3.pth" ] && [ ! -e "GFPGANv1.3.pth" ]; then mv ../models/gfpgan/GFPGANv1.3.pth . ; fi
|
||||
if [ -e "../models/realesrgan/RealESRGAN_x4plus.pth" ] && [ ! -e "RealESRGAN_x4plus.pth" ]; then mv ../models/realesrgan/RealESRGAN_x4plus.pth . ; fi
|
||||
if [ -e "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" ] && [ ! -e "RealESRGAN_x4plus_anime_6B.pth" ]; then mv ../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth . ; fi
|
||||
|
||||
if [ -f "sd-v1-4.ckpt" ]; then
|
||||
model_size=`find "sd-v1-4.ckpt" -printf "%s"`
|
||||
if [ -f "../models/stable-diffusion/sd-v1-4.ckpt" ]; then
|
||||
model_size=`find "../models/stable-diffusion/sd-v1-4.ckpt" -printf "%s"`
|
||||
|
||||
if [ "$model_size" -eq "4265380512" ] || [ "$model_size" -eq "7703807346" ] || [ "$model_size" -eq "7703810927" ]; then
|
||||
echo "Data files (weights) necessary for Stable Diffusion were already downloaded"
|
||||
else
|
||||
printf "\n\nThe model file present at $PWD/sd-v1-4.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm sd-v1-4.ckpt
|
||||
printf "\n\nThe model file present at models/stable-diffusion/sd-v1-4.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm ../models/stable-diffusion/sd-v1-4.ckpt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -f "sd-v1-4.ckpt" ]; then
|
||||
if [ ! -f "../models/stable-diffusion/sd-v1-4.ckpt" ]; then
|
||||
echo "Downloading data files (weights) for Stable Diffusion.."
|
||||
|
||||
curl -L -k https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt > sd-v1-4.ckpt
|
||||
curl -L -k https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt > ../models/stable-diffusion/sd-v1-4.ckpt
|
||||
|
||||
if [ -f "sd-v1-4.ckpt" ]; then
|
||||
model_size=`find "sd-v1-4.ckpt" -printf "%s"`
|
||||
if [ -f "../models/stable-diffusion/sd-v1-4.ckpt" ]; then
|
||||
model_size=`find "../models/stable-diffusion/sd-v1-4.ckpt" -printf "%s"`
|
||||
if [ ! "$model_size" == "4265380512" ]; then
|
||||
fail "The downloaded model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
@ -208,24 +163,24 @@ if [ ! -f "sd-v1-4.ckpt" ]; then
|
||||
fi
|
||||
|
||||
|
||||
if [ -f "GFPGANv1.3.pth" ]; then
|
||||
model_size=`find "GFPGANv1.3.pth" -printf "%s"`
|
||||
if [ -f "../models/gfpgan/GFPGANv1.3.pth" ]; then
|
||||
model_size=`find "../models/gfpgan/GFPGANv1.3.pth" -printf "%s"`
|
||||
|
||||
if [ "$model_size" -eq "348632874" ]; then
|
||||
echo "Data files (weights) necessary for GFPGAN (Face Correction) were already downloaded"
|
||||
else
|
||||
printf "\n\nThe model file present at $PWD/GFPGANv1.3.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm GFPGANv1.3.pth
|
||||
printf "\n\nThe model file present at models/gfpgan/GFPGANv1.3.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm ../models/gfpgan/GFPGANv1.3.pth
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -f "GFPGANv1.3.pth" ]; then
|
||||
if [ ! -f "../models/gfpgan/GFPGANv1.3.pth" ]; then
|
||||
echo "Downloading data files (weights) for GFPGAN (Face Correction).."
|
||||
|
||||
curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > GFPGANv1.3.pth
|
||||
curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > ../models/gfpgan/GFPGANv1.3.pth
|
||||
|
||||
if [ -f "GFPGANv1.3.pth" ]; then
|
||||
model_size=`find "GFPGANv1.3.pth" -printf "%s"`
|
||||
if [ -f "../models/gfpgan/GFPGANv1.3.pth" ]; then
|
||||
model_size=`find "../models/gfpgan/GFPGANv1.3.pth" -printf "%s"`
|
||||
if [ ! "$model_size" -eq "348632874" ]; then
|
||||
fail "The downloaded GFPGAN model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
@ -235,24 +190,24 @@ if [ ! -f "GFPGANv1.3.pth" ]; then
|
||||
fi
|
||||
|
||||
|
||||
if [ -f "RealESRGAN_x4plus.pth" ]; then
|
||||
model_size=`find "RealESRGAN_x4plus.pth" -printf "%s"`
|
||||
if [ -f "../models/realesrgan/RealESRGAN_x4plus.pth" ]; then
|
||||
model_size=`find "../models/realesrgan/RealESRGAN_x4plus.pth" -printf "%s"`
|
||||
|
||||
if [ "$model_size" -eq "67040989" ]; then
|
||||
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus were already downloaded"
|
||||
else
|
||||
printf "\n\nThe model file present at $PWD/RealESRGAN_x4plus.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm RealESRGAN_x4plus.pth
|
||||
printf "\n\nThe model file present at models/realesrgan/RealESRGAN_x4plus.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm ../models/realesrgan/RealESRGAN_x4plus.pth
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -f "RealESRGAN_x4plus.pth" ]; then
|
||||
if [ ! -f "../models/realesrgan/RealESRGAN_x4plus.pth" ]; then
|
||||
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.."
|
||||
|
||||
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > RealESRGAN_x4plus.pth
|
||||
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > ../models/realesrgan/RealESRGAN_x4plus.pth
|
||||
|
||||
if [ -f "RealESRGAN_x4plus.pth" ]; then
|
||||
model_size=`find "RealESRGAN_x4plus.pth" -printf "%s"`
|
||||
if [ -f "../models/realesrgan/RealESRGAN_x4plus.pth" ]; then
|
||||
model_size=`find "../models/realesrgan/RealESRGAN_x4plus.pth" -printf "%s"`
|
||||
if [ ! "$model_size" -eq "67040989" ]; then
|
||||
fail "The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
@ -262,24 +217,24 @@ if [ ! -f "RealESRGAN_x4plus.pth" ]; then
|
||||
fi
|
||||
|
||||
|
||||
if [ -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
model_size=`find "RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
|
||||
if [ -f "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
model_size=`find "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
|
||||
|
||||
if [ "$model_size" -eq "17938799" ]; then
|
||||
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus_anime were already downloaded"
|
||||
else
|
||||
printf "\n\nThe model file present at $PWD/RealESRGAN_x4plus_anime_6B.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm RealESRGAN_x4plus_anime_6B.pth
|
||||
printf "\n\nThe model file present at models/realesrgan/RealESRGAN_x4plus_anime_6B.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
|
||||
rm ../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
if [ ! -f "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.."
|
||||
|
||||
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > RealESRGAN_x4plus_anime_6B.pth
|
||||
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > ../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth
|
||||
|
||||
if [ -f "RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
model_size=`find "RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
|
||||
if [ -f "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" ]; then
|
||||
model_size=`find "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
|
||||
if [ ! "$model_size" -eq "17938799" ]; then
|
||||
fail "The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: $model_size"
|
||||
fi
|
||||
@ -320,10 +275,6 @@ if [ ! -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ "$test_sd2" == "Y" ]; then
|
||||
pip install open_clip_torch==2.0.2
|
||||
fi
|
||||
|
||||
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
|
||||
echo sd_weights_downloaded >> ../scripts/install_status.txt
|
||||
echo sd_install_complete >> ../scripts/install_status.txt
|
||||
@ -332,7 +283,8 @@ fi
|
||||
printf "\n\nStable Diffusion is ready!\n\n"
|
||||
|
||||
SD_PATH=`pwd`
|
||||
export PYTHONPATH="$SD_PATH:$SD_PATH/env/lib/python3.8/site-packages"
|
||||
|
||||
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
|
||||
echo "PYTHONPATH=$PYTHONPATH"
|
||||
|
||||
which python
|
||||
@ -342,6 +294,6 @@ cd ..
|
||||
export SD_UI_PATH=`pwd`/ui
|
||||
cd stable-diffusion
|
||||
|
||||
uvicorn server:app --app-dir "$SD_UI_PATH" --port ${SD_UI_BIND_PORT:-9000} --host ${SD_UI_BIND_IP:-0.0.0.0}
|
||||
uvicorn main:server_api --app-dir "$SD_UI_PATH" --port ${SD_UI_BIND_PORT:-9000} --host ${SD_UI_BIND_IP:-0.0.0.0} --log-level error
|
||||
|
||||
read -p "Press any key to continue"
|
||||
|
@ -19,4 +19,5 @@ which conda
|
||||
conda --version || exit 1
|
||||
|
||||
# Download the rest of the installer and UI
|
||||
chmod +x scripts/*.sh
|
||||
scripts/on_env_start.sh
|
||||
|
0
ui/easydiffusion/__init__.py
Normal file
165
ui/easydiffusion/app.py
Normal file
@ -0,0 +1,165 @@
|
||||
import os
|
||||
import socket
|
||||
import sys
|
||||
import json
|
||||
import traceback
|
||||
import logging
|
||||
from rich.logging import RichHandler
|
||||
|
||||
from sdkit.utils import log as sdkit_log # hack, so we can overwrite the log config
|
||||
|
||||
from easydiffusion import task_manager
|
||||
from easydiffusion.utils import log
|
||||
|
||||
# Remove all handlers associated with the root logger object.
|
||||
for handler in logging.root.handlers[:]:
|
||||
logging.root.removeHandler(handler)
|
||||
|
||||
LOG_FORMAT = '%(asctime)s.%(msecs)03d %(levelname)s %(threadName)s %(message)s'
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format=LOG_FORMAT,
|
||||
datefmt="%X",
|
||||
handlers=[RichHandler(markup=True, rich_tracebacks=False, show_time=False, show_level=False)],
|
||||
)
|
||||
|
||||
SD_DIR = os.getcwd()
|
||||
|
||||
SD_UI_DIR = os.getenv('SD_UI_PATH', None)
|
||||
sys.path.append(os.path.dirname(SD_UI_DIR))
|
||||
|
||||
CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, '..', 'scripts'))
|
||||
MODELS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'models'))
|
||||
|
||||
USER_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'plugins', 'ui'))
|
||||
CORE_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_UI_DIR, 'plugins', 'ui'))
|
||||
UI_PLUGINS_SOURCES = ((CORE_UI_PLUGINS_DIR, 'core'), (USER_UI_PLUGINS_DIR, 'user'))
|
||||
|
||||
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
|
||||
TASK_TTL = 15 * 60 # Discard last session's task timeout
|
||||
APP_CONFIG_DEFAULTS = {
|
||||
# auto: selects the cuda device with the most free memory, cuda: use the currently active cuda device.
|
||||
'render_devices': 'auto', # valid entries: 'auto', 'cpu' or 'cuda:N' (where N is a GPU index)
|
||||
'update_branch': 'main',
|
||||
'ui': {
|
||||
'open_browser_on_start': True,
|
||||
},
|
||||
}
|
||||
|
||||
def init():
|
||||
os.makedirs(USER_UI_PLUGINS_DIR, exist_ok=True)
|
||||
|
||||
update_render_threads()
|
||||
|
||||
def getConfig(default_val=APP_CONFIG_DEFAULTS):
|
||||
try:
|
||||
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
|
||||
if not os.path.exists(config_json_path):
|
||||
return default_val
|
||||
with open(config_json_path, 'r', encoding='utf-8') as f:
|
||||
config = json.load(f)
|
||||
if 'net' not in config:
|
||||
config['net'] = {}
|
||||
if os.getenv('SD_UI_BIND_PORT') is not None:
|
||||
config['net']['listen_port'] = int(os.getenv('SD_UI_BIND_PORT'))
|
||||
if os.getenv('SD_UI_BIND_IP') is not None:
|
||||
config['net']['listen_to_network'] = (os.getenv('SD_UI_BIND_IP') == '0.0.0.0')
|
||||
return config
|
||||
except Exception as e:
|
||||
log.warn(traceback.format_exc())
|
||||
return default_val
|
||||
|
||||
def setConfig(config):
|
||||
try: # config.json
|
||||
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
|
||||
with open(config_json_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(config, f)
|
||||
except:
|
||||
log.error(traceback.format_exc())
|
||||
|
||||
try: # config.bat
|
||||
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
|
||||
config_bat = []
|
||||
|
||||
if 'update_branch' in config:
|
||||
config_bat.append(f"@set update_branch={config['update_branch']}")
|
||||
|
||||
config_bat.append(f"@set SD_UI_BIND_PORT={config['net']['listen_port']}")
|
||||
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
|
||||
config_bat.append(f"@set SD_UI_BIND_IP={bind_ip}")
|
||||
|
||||
if len(config_bat) > 0:
|
||||
with open(config_bat_path, 'w', encoding='utf-8') as f:
|
||||
f.write('\r\n'.join(config_bat))
|
||||
except:
|
||||
log.error(traceback.format_exc())
|
||||
|
||||
try: # config.sh
|
||||
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
|
||||
config_sh = ['#!/bin/bash']
|
||||
|
||||
if 'update_branch' in config:
|
||||
config_sh.append(f"export update_branch={config['update_branch']}")
|
||||
|
||||
config_sh.append(f"export SD_UI_BIND_PORT={config['net']['listen_port']}")
|
||||
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
|
||||
config_sh.append(f"export SD_UI_BIND_IP={bind_ip}")
|
||||
|
||||
if len(config_sh) > 1:
|
||||
with open(config_sh_path, 'w', encoding='utf-8') as f:
|
||||
f.write('\n'.join(config_sh))
|
||||
except:
|
||||
log.error(traceback.format_exc())
|
||||
|
||||
def save_to_config(ckpt_model_name, vae_model_name, hypernetwork_model_name, vram_usage_level):
|
||||
config = getConfig()
|
||||
if 'model' not in config:
|
||||
config['model'] = {}
|
||||
|
||||
config['model']['stable-diffusion'] = ckpt_model_name
|
||||
config['model']['vae'] = vae_model_name
|
||||
config['model']['hypernetwork'] = hypernetwork_model_name
|
||||
|
||||
if vae_model_name is None or vae_model_name == "":
|
||||
del config['model']['vae']
|
||||
if hypernetwork_model_name is None or hypernetwork_model_name == "":
|
||||
del config['model']['hypernetwork']
|
||||
|
||||
config['vram_usage_level'] = vram_usage_level
|
||||
|
||||
setConfig(config)
|
||||
|
||||
def update_render_threads():
|
||||
config = getConfig()
|
||||
render_devices = config.get('render_devices', 'auto')
|
||||
active_devices = task_manager.get_devices()['active'].keys()
|
||||
|
||||
log.debug(f'requesting for render_devices: {render_devices}')
|
||||
task_manager.update_render_threads(render_devices, active_devices)
|
||||
|
||||
def getUIPlugins():
|
||||
plugins = []
|
||||
|
||||
for plugins_dir, dir_prefix in UI_PLUGINS_SOURCES:
|
||||
for file in os.listdir(plugins_dir):
|
||||
if file.endswith('.plugin.js'):
|
||||
plugins.append(f'/plugins/{dir_prefix}/{file}')
|
||||
|
||||
return plugins
|
||||
|
||||
def getIPConfig():
|
||||
try:
|
||||
ips = socket.gethostbyname_ex(socket.gethostname())
|
||||
ips[2].append(ips[0])
|
||||
return ips[2]
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
return []
|
||||
|
||||
def open_browser():
|
||||
config = getConfig()
|
||||
ui = config.get('ui', {})
|
||||
net = config.get('net', {'listen_port':9000})
|
||||
port = net.get('listen_port', 9000)
|
||||
if ui.get('open_browser_on_start', True):
|
||||
import webbrowser; webbrowser.open(f"http://localhost:{port}")
|
@ -3,6 +3,15 @@ import torch
|
||||
import traceback
|
||||
import re
|
||||
|
||||
from easydiffusion.utils import log
|
||||
|
||||
'''
|
||||
Set `FORCE_FULL_PRECISION` in the environment variables, or in `config.bat`/`config.sh` to set full precision (i.e. float32).
|
||||
Otherwise the models will load at half-precision (i.e. float16).
|
||||
|
||||
Half-precision is fine most of the time. Full precision is only needed for working around GPU bugs (like NVIDIA 16xx GPUs).
|
||||
'''
|
||||
|
||||
COMPARABLE_GPU_PERCENTILE = 0.65 # if a GPU's free_mem is within this % of the GPU with the most free_mem, it will be picked
|
||||
|
||||
mem_free_threshold = 0
|
||||
@ -34,7 +43,7 @@ def get_device_delta(render_devices, active_devices):
|
||||
if 'auto' in render_devices:
|
||||
render_devices = auto_pick_devices(active_devices)
|
||||
if 'cpu' in render_devices:
|
||||
print('WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!')
|
||||
log.warn('WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!')
|
||||
|
||||
active_devices = set(active_devices)
|
||||
render_devices = set(render_devices)
|
||||
@ -53,7 +62,7 @@ def auto_pick_devices(currently_active_devices):
|
||||
if device_count == 1:
|
||||
return ['cuda:0'] if is_device_compatible('cuda:0') else ['cpu']
|
||||
|
||||
print('Autoselecting GPU. Using most free memory.')
|
||||
log.debug('Autoselecting GPU. Using most free memory.')
|
||||
devices = []
|
||||
for device in range(device_count):
|
||||
device = f'cuda:{device}'
|
||||
@ -64,7 +73,7 @@ def auto_pick_devices(currently_active_devices):
|
||||
mem_free /= float(10**9)
|
||||
mem_total /= float(10**9)
|
||||
device_name = torch.cuda.get_device_name(device)
|
||||
print(f'{device} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb')
|
||||
log.debug(f'{device} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb')
|
||||
devices.append({'device': device, 'device_name': device_name, 'mem_free': mem_free})
|
||||
|
||||
devices.sort(key=lambda x:x['mem_free'], reverse=True)
|
||||
@ -82,7 +91,7 @@ def auto_pick_devices(currently_active_devices):
|
||||
devices = list(map(lambda x: x['device'], devices))
|
||||
return devices
|
||||
|
||||
def device_init(thread_data, device):
|
||||
def device_init(context, device):
|
||||
'''
|
||||
This function assumes the 'device' has already been verified to be compatible.
|
||||
`get_device_delta()` has already filtered out incompatible devices.
|
||||
@ -91,27 +100,45 @@ def device_init(thread_data, device):
|
||||
validate_device_id(device, log_prefix='device_init')
|
||||
|
||||
if device == 'cpu':
|
||||
thread_data.device = 'cpu'
|
||||
thread_data.device_name = get_processor_name()
|
||||
print('Render device CPU available as', thread_data.device_name)
|
||||
context.device = 'cpu'
|
||||
context.device_name = get_processor_name()
|
||||
context.half_precision = False
|
||||
log.debug(f'Render device CPU available as {context.device_name}')
|
||||
return
|
||||
|
||||
thread_data.device_name = torch.cuda.get_device_name(device)
|
||||
thread_data.device = device
|
||||
context.device_name = torch.cuda.get_device_name(device)
|
||||
context.device = device
|
||||
|
||||
# Force full precision on 1660 and 1650 NVIDIA cards to avoid creating green images
|
||||
device_name = thread_data.device_name.lower()
|
||||
thread_data.force_full_precision = (('nvidia' in device_name or 'geforce' in device_name) and (' 1660' in device_name or ' 1650' in device_name)) or ('Quadro T2000' in device_name)
|
||||
if thread_data.force_full_precision:
|
||||
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', thread_data.device_name)
|
||||
if needs_to_force_full_precision(context):
|
||||
log.warn(f'forcing full precision on this GPU, to avoid green images. GPU detected: {context.device_name}')
|
||||
# Apply force_full_precision now before models are loaded.
|
||||
thread_data.precision = 'full'
|
||||
context.half_precision = False
|
||||
|
||||
print(f'Setting {device} as active')
|
||||
log.info(f'Setting {device} as active, with precision: {"half" if context.half_precision else "full"}')
|
||||
torch.cuda.device(device)
|
||||
|
||||
return
|
||||
|
||||
def needs_to_force_full_precision(context):
|
||||
if 'FORCE_FULL_PRECISION' in os.environ:
|
||||
return True
|
||||
|
||||
device_name = context.device_name.lower()
|
||||
return (('nvidia' in device_name or 'geforce' in device_name or 'quadro' in device_name) and (' 1660' in device_name or ' 1650' in device_name or ' t400' in device_name or ' t500' in device_name or ' t550' in device_name or ' t600' in device_name or ' t1000' in device_name or ' t1200' in device_name or ' t2000' in device_name))
|
||||
|
||||
def get_max_vram_usage_level(device):
|
||||
if device != 'cpu':
|
||||
_, mem_total = torch.cuda.mem_get_info(device)
|
||||
mem_total /= float(10**9)
|
||||
|
||||
if mem_total < 4.5:
|
||||
return 'low'
|
||||
elif mem_total < 6.5:
|
||||
return 'balanced'
|
||||
|
||||
return 'high'
|
||||
|
||||
def validate_device_id(device, log_prefix=''):
|
||||
def is_valid():
|
||||
if not isinstance(device, str):
|
||||
@ -129,10 +156,12 @@ def is_device_compatible(device):
|
||||
'''
|
||||
Returns True/False, and prints any compatibility errors
|
||||
'''
|
||||
# static variable "history".
|
||||
is_device_compatible.history = getattr(is_device_compatible, 'history', {})
|
||||
try:
|
||||
validate_device_id(device, log_prefix='is_device_compatible')
|
||||
except:
|
||||
print(str(e))
|
||||
log.error(str(e))
|
||||
return False
|
||||
|
||||
if device == 'cpu': return True
|
||||
@ -141,10 +170,12 @@ def is_device_compatible(device):
|
||||
_, mem_total = torch.cuda.mem_get_info(device)
|
||||
mem_total /= float(10**9)
|
||||
if mem_total < 3.0:
|
||||
print(f'GPU {device} with less than 3 GB of VRAM is not compatible with Stable Diffusion')
|
||||
if is_device_compatible.history.get(device) == None:
|
||||
log.warn(f'GPU {device} with less than 3 GB of VRAM is not compatible with Stable Diffusion')
|
||||
is_device_compatible.history[device] = 1
|
||||
return False
|
||||
except RuntimeError as e:
|
||||
print(str(e))
|
||||
log.error(str(e))
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -164,5 +195,5 @@ def get_processor_name():
|
||||
if "model name" in line:
|
||||
return re.sub(".*model name.*:", "", line, 1).strip()
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
log.error(traceback.format_exc())
|
||||
return "cpu"
|
222
ui/easydiffusion/model_manager.py
Normal file
@ -0,0 +1,222 @@
|
||||
import os
|
||||
|
||||
from easydiffusion import app, device_manager
|
||||
from easydiffusion.types import TaskData
|
||||
from easydiffusion.utils import log
|
||||
|
||||
from sdkit import Context
|
||||
from sdkit.models import load_model, unload_model, get_model_info_from_db, scan_model
|
||||
from sdkit.utils import hash_file_quick
|
||||
|
||||
KNOWN_MODEL_TYPES = ['stable-diffusion', 'vae', 'hypernetwork', 'gfpgan', 'realesrgan']
|
||||
MODEL_EXTENSIONS = {
|
||||
'stable-diffusion': ['.ckpt', '.safetensors'],
|
||||
'vae': ['.vae.pt', '.ckpt', '.safetensors'],
|
||||
'hypernetwork': ['.pt', '.safetensors'],
|
||||
'gfpgan': ['.pth'],
|
||||
'realesrgan': ['.pth'],
|
||||
}
|
||||
DEFAULT_MODELS = {
|
||||
'stable-diffusion': [ # needed to support the legacy installations
|
||||
'custom-model', # only one custom model file was supported initially, creatively named 'custom-model'
|
||||
'sd-v1-4', # Default fallback.
|
||||
],
|
||||
'gfpgan': ['GFPGANv1.3'],
|
||||
'realesrgan': ['RealESRGAN_x4plus'],
|
||||
}
|
||||
MODELS_TO_LOAD_ON_START = ['stable-diffusion', 'vae', 'hypernetwork']
|
||||
|
||||
known_models = {}
|
||||
|
||||
def init():
|
||||
make_model_folders()
|
||||
getModels() # run this once, to cache the picklescan results
|
||||
|
||||
def load_default_models(context: Context):
|
||||
set_vram_optimizations(context)
|
||||
|
||||
# init default model paths
|
||||
for model_type in MODELS_TO_LOAD_ON_START:
|
||||
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type)
|
||||
try:
|
||||
load_model(context, model_type)
|
||||
except Exception as e:
|
||||
log.error(f'[red]Error while loading {model_type} model: {context.model_paths[model_type]}[/red]')
|
||||
log.error(f'[red]Error: {e}[/red]')
|
||||
log.error(f'[red]Consider removing the model from the model folder.[red]')
|
||||
|
||||
|
||||
def unload_all(context: Context):
|
||||
for model_type in KNOWN_MODEL_TYPES:
|
||||
unload_model(context, model_type)
|
||||
|
||||
def resolve_model_to_use(model_name:str=None, model_type:str=None):
|
||||
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
|
||||
default_models = DEFAULT_MODELS.get(model_type, [])
|
||||
config = app.getConfig()
|
||||
|
||||
model_dirs = [os.path.join(app.MODELS_DIR, model_type), app.SD_DIR]
|
||||
if not model_name: # When None try user configured model.
|
||||
# config = getConfig()
|
||||
if 'model' in config and model_type in config['model']:
|
||||
model_name = config['model'][model_type]
|
||||
|
||||
if model_name:
|
||||
# Check models directory
|
||||
models_dir_path = os.path.join(app.MODELS_DIR, model_type, model_name)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(models_dir_path + model_extension):
|
||||
return models_dir_path + model_extension
|
||||
if os.path.exists(model_name + model_extension):
|
||||
return os.path.abspath(model_name + model_extension)
|
||||
|
||||
# Default locations
|
||||
if model_name in default_models:
|
||||
default_model_path = os.path.join(app.SD_DIR, model_name)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(default_model_path + model_extension):
|
||||
return default_model_path + model_extension
|
||||
|
||||
# Can't find requested model, check the default paths.
|
||||
for default_model in default_models:
|
||||
for model_dir in model_dirs:
|
||||
default_model_path = os.path.join(model_dir, default_model)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(default_model_path + model_extension):
|
||||
if model_name is not None:
|
||||
log.warn(f'Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}')
|
||||
return default_model_path + model_extension
|
||||
|
||||
return None
|
||||
|
||||
def reload_models_if_necessary(context: Context, task_data: TaskData):
|
||||
model_paths_in_req = {
|
||||
'stable-diffusion': task_data.use_stable_diffusion_model,
|
||||
'vae': task_data.use_vae_model,
|
||||
'hypernetwork': task_data.use_hypernetwork_model,
|
||||
'gfpgan': task_data.use_face_correction,
|
||||
'realesrgan': task_data.use_upscale,
|
||||
}
|
||||
models_to_reload = {model_type: path for model_type, path in model_paths_in_req.items() if context.model_paths.get(model_type) != path}
|
||||
|
||||
if set_vram_optimizations(context): # reload SD
|
||||
models_to_reload['stable-diffusion'] = model_paths_in_req['stable-diffusion']
|
||||
|
||||
for model_type, model_path_in_req in models_to_reload.items():
|
||||
context.model_paths[model_type] = model_path_in_req
|
||||
|
||||
action_fn = unload_model if context.model_paths[model_type] is None else load_model
|
||||
action_fn(context, model_type, scan_model=False) # we've scanned them already
|
||||
|
||||
def resolve_model_paths(task_data: TaskData):
|
||||
task_data.use_stable_diffusion_model = resolve_model_to_use(task_data.use_stable_diffusion_model, model_type='stable-diffusion')
|
||||
task_data.use_vae_model = resolve_model_to_use(task_data.use_vae_model, model_type='vae')
|
||||
task_data.use_hypernetwork_model = resolve_model_to_use(task_data.use_hypernetwork_model, model_type='hypernetwork')
|
||||
|
||||
if task_data.use_face_correction: task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, 'gfpgan')
|
||||
if task_data.use_upscale: task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, 'realesrgan')
|
||||
|
||||
def set_vram_optimizations(context: Context):
|
||||
config = app.getConfig()
|
||||
vram_usage_level = config.get('vram_usage_level', 'balanced')
|
||||
|
||||
if vram_usage_level != context.vram_usage_level:
|
||||
context.vram_usage_level = vram_usage_level
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def make_model_folders():
|
||||
for model_type in KNOWN_MODEL_TYPES:
|
||||
model_dir_path = os.path.join(app.MODELS_DIR, model_type)
|
||||
|
||||
os.makedirs(model_dir_path, exist_ok=True)
|
||||
|
||||
help_file_name = f'Place your {model_type} model files here.txt'
|
||||
help_file_contents = f'Supported extensions: {" or ".join(MODEL_EXTENSIONS.get(model_type))}'
|
||||
|
||||
with open(os.path.join(model_dir_path, help_file_name), 'w', encoding='utf-8') as f:
|
||||
f.write(help_file_contents)
|
||||
|
||||
def is_malicious_model(file_path):
|
||||
try:
|
||||
scan_result = scan_model(file_path)
|
||||
if scan_result.issues_count > 0 or scan_result.infected_files > 0:
|
||||
log.warn(":warning: [bold red]Scan %s: %d scanned, %d issue, %d infected.[/bold red]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
|
||||
return True
|
||||
else:
|
||||
log.debug("Scan %s: [green]%d scanned, %d issue, %d infected.[/green]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
|
||||
return False
|
||||
except Exception as e:
|
||||
log.error(f'error while scanning: {file_path}, error: {e}')
|
||||
return False
|
||||
|
||||
def getModels():
|
||||
models = {
|
||||
'active': {
|
||||
'stable-diffusion': 'sd-v1-4',
|
||||
'vae': '',
|
||||
'hypernetwork': '',
|
||||
},
|
||||
'options': {
|
||||
'stable-diffusion': ['sd-v1-4'],
|
||||
'vae': [],
|
||||
'hypernetwork': [],
|
||||
},
|
||||
}
|
||||
|
||||
models_scanned = 0
|
||||
|
||||
class MaliciousModelException(Exception):
|
||||
"Raised when picklescan reports a problem with a model"
|
||||
pass
|
||||
|
||||
def scan_directory(directory, suffixes):
|
||||
nonlocal models_scanned
|
||||
tree = []
|
||||
for entry in os.scandir(directory):
|
||||
if entry.is_file():
|
||||
matching_suffix = list(filter(lambda s: entry.name.endswith(s), suffixes))
|
||||
if len(matching_suffix) == 0: continue
|
||||
matching_suffix = matching_suffix[0]
|
||||
|
||||
mtime = entry.stat().st_mtime
|
||||
mod_time = known_models[entry.path] if entry.path in known_models else -1
|
||||
if mod_time != mtime:
|
||||
models_scanned += 1
|
||||
if is_malicious_model(entry.path):
|
||||
raise MaliciousModelException(entry.path)
|
||||
known_models[entry.path] = mtime
|
||||
tree.append(entry.name[:-len(matching_suffix)])
|
||||
elif entry.is_dir():
|
||||
scan=scan_directory(entry.path, suffixes)
|
||||
if len(scan) != 0:
|
||||
tree.append( (entry.name, scan ) )
|
||||
return tree
|
||||
|
||||
def listModels(model_type):
|
||||
nonlocal models_scanned
|
||||
|
||||
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
|
||||
models_dir = os.path.join(app.MODELS_DIR, model_type)
|
||||
if not os.path.exists(models_dir):
|
||||
os.makedirs(models_dir)
|
||||
|
||||
try:
|
||||
models['options'][model_type] = scan_directory(models_dir, model_extensions)
|
||||
except MaliciousModelException as e:
|
||||
models['scan-error'] = e
|
||||
|
||||
# custom models
|
||||
listModels(model_type='stable-diffusion')
|
||||
listModels(model_type='vae')
|
||||
listModels(model_type='hypernetwork')
|
||||
|
||||
if models_scanned > 0: log.info(f'[green]Scanned {models_scanned} models. Nothing infected[/]')
|
||||
|
||||
# legacy
|
||||
custom_weight_path = os.path.join(app.SD_DIR, 'custom-model.ckpt')
|
||||
if os.path.exists(custom_weight_path):
|
||||
models['options']['stable-diffusion'].append('custom-model')
|
||||
|
||||
return models
|
137
ui/easydiffusion/renderer.py
Normal file
@ -0,0 +1,137 @@
|
||||
import queue
|
||||
import time
|
||||
import json
|
||||
import pprint
|
||||
|
||||
from easydiffusion import device_manager
|
||||
from easydiffusion.types import TaskData, Response, Image as ResponseImage, UserInitiatedStop, GenerateImageRequest
|
||||
from easydiffusion.utils import get_printable_request, save_images_to_disk, log
|
||||
|
||||
from sdkit import Context
|
||||
from sdkit.generate import generate_images
|
||||
from sdkit.filter import apply_filters
|
||||
from sdkit.utils import img_to_buffer, img_to_base64_str, latent_samples_to_images, gc
|
||||
|
||||
context = Context() # thread-local
|
||||
'''
|
||||
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
|
||||
'''
|
||||
|
||||
def init(device):
|
||||
'''
|
||||
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
|
||||
'''
|
||||
context.stop_processing = False
|
||||
context.temp_images = {}
|
||||
context.partial_x_samples = None
|
||||
|
||||
device_manager.device_init(context, device)
|
||||
|
||||
def make_images(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback):
|
||||
context.stop_processing = False
|
||||
print_task_info(req, task_data)
|
||||
|
||||
images, seeds = make_images_internal(req, task_data, data_queue, task_temp_images, step_callback)
|
||||
|
||||
res = Response(req, task_data, images=construct_response(images, seeds, task_data, base_seed=req.seed))
|
||||
res = res.json()
|
||||
data_queue.put(json.dumps(res))
|
||||
log.info('Task completed')
|
||||
|
||||
return res
|
||||
|
||||
def print_task_info(req: GenerateImageRequest, task_data: TaskData):
|
||||
req_str = pprint.pformat(get_printable_request(req)).replace("[","\[")
|
||||
task_str = pprint.pformat(task_data.dict()).replace("[","\[")
|
||||
log.info(f'request: {req_str}')
|
||||
log.info(f'task data: {task_str}')
|
||||
|
||||
def make_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback):
|
||||
images, user_stopped = generate_images_internal(req, task_data, data_queue, task_temp_images, step_callback, task_data.stream_image_progress)
|
||||
filtered_images = filter_images(task_data, images, user_stopped)
|
||||
|
||||
if task_data.save_to_disk_path is not None:
|
||||
save_images_to_disk(images, filtered_images, req, task_data)
|
||||
|
||||
seeds = [*range(req.seed, req.seed + len(images))]
|
||||
if task_data.show_only_filtered_image or filtered_images is images:
|
||||
return filtered_images, seeds
|
||||
else:
|
||||
return images + filtered_images, seeds + seeds
|
||||
|
||||
def generate_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
|
||||
context.temp_images.clear()
|
||||
|
||||
callback = make_step_callback(req, task_data, data_queue, task_temp_images, step_callback, stream_image_progress)
|
||||
|
||||
try:
|
||||
if req.init_image is not None: req.sampler_name = 'ddim'
|
||||
|
||||
images = generate_images(context, callback=callback, **req.dict())
|
||||
user_stopped = False
|
||||
except UserInitiatedStop:
|
||||
images = []
|
||||
user_stopped = True
|
||||
if context.partial_x_samples is not None:
|
||||
images = latent_samples_to_images(context, context.partial_x_samples)
|
||||
finally:
|
||||
if hasattr(context, 'partial_x_samples') and context.partial_x_samples is not None:
|
||||
del context.partial_x_samples
|
||||
context.partial_x_samples = None
|
||||
|
||||
return images, user_stopped
|
||||
|
||||
def filter_images(task_data: TaskData, images: list, user_stopped):
|
||||
if user_stopped or (task_data.use_face_correction is None and task_data.use_upscale is None):
|
||||
return images
|
||||
|
||||
filters_to_apply = []
|
||||
if task_data.use_face_correction and 'gfpgan' in task_data.use_face_correction.lower(): filters_to_apply.append('gfpgan')
|
||||
if task_data.use_upscale and 'realesrgan' in task_data.use_upscale.lower(): filters_to_apply.append('realesrgan')
|
||||
|
||||
return apply_filters(context, filters_to_apply, images, scale=task_data.upscale_amount)
|
||||
|
||||
def construct_response(images: list, seeds: list, task_data: TaskData, base_seed: int):
|
||||
return [
|
||||
ResponseImage(
|
||||
data=img_to_base64_str(img, task_data.output_format, task_data.output_quality),
|
||||
seed=seed,
|
||||
) for img, seed in zip(images, seeds)
|
||||
]
|
||||
|
||||
def make_step_callback(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
|
||||
n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength)
|
||||
last_callback_time = -1
|
||||
|
||||
def update_temp_img(x_samples, task_temp_images: list):
|
||||
partial_images = []
|
||||
images = latent_samples_to_images(context, x_samples)
|
||||
for i, img in enumerate(images):
|
||||
buf = img_to_buffer(img, output_format='JPEG')
|
||||
|
||||
context.temp_images[f"{task_data.request_id}/{i}"] = buf
|
||||
task_temp_images[i] = buf
|
||||
partial_images.append({'path': f"/image/tmp/{task_data.request_id}/{i}"})
|
||||
del images
|
||||
return partial_images
|
||||
|
||||
def on_image_step(x_samples, i):
|
||||
nonlocal last_callback_time
|
||||
|
||||
context.partial_x_samples = x_samples
|
||||
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
|
||||
last_callback_time = time.time()
|
||||
|
||||
progress = {"step": i, "step_time": step_time, "total_steps": n_steps}
|
||||
|
||||
if stream_image_progress and i % 5 == 0:
|
||||
progress['output'] = update_temp_img(x_samples, task_temp_images)
|
||||
|
||||
data_queue.put(json.dumps(progress))
|
||||
|
||||
step_callback()
|
||||
|
||||
if context.stop_processing:
|
||||
raise UserInitiatedStop("User requested that we stop processing")
|
||||
|
||||
return on_image_step
|
241
ui/easydiffusion/server.py
Normal file
@ -0,0 +1,241 @@
|
||||
"""server.py: FastAPI SD-UI Web Host.
|
||||
Notes:
|
||||
async endpoints always run on the main thread. Without they run on the thread pool.
|
||||
"""
|
||||
import os
|
||||
import traceback
|
||||
import datetime
|
||||
from typing import List, Union
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from easydiffusion import app, model_manager, task_manager
|
||||
from easydiffusion.types import TaskData, GenerateImageRequest, MergeRequest
|
||||
from easydiffusion.utils import log
|
||||
|
||||
log.info(f'started in {app.SD_DIR}')
|
||||
log.info(f'started at {datetime.datetime.now():%x %X}')
|
||||
|
||||
server_api = FastAPI()
|
||||
|
||||
NOCACHE_HEADERS={"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
|
||||
|
||||
class NoCacheStaticFiles(StaticFiles):
|
||||
def is_not_modified(self, response_headers, request_headers) -> bool:
|
||||
if 'content-type' in response_headers and ('javascript' in response_headers['content-type'] or 'css' in response_headers['content-type']):
|
||||
response_headers.update(NOCACHE_HEADERS)
|
||||
return False
|
||||
|
||||
return super().is_not_modified(response_headers, request_headers)
|
||||
|
||||
class SetAppConfigRequest(BaseModel):
|
||||
update_branch: str = None
|
||||
render_devices: Union[List[str], List[int], str, int] = None
|
||||
model_vae: str = None
|
||||
ui_open_browser_on_start: bool = None
|
||||
listen_to_network: bool = None
|
||||
listen_port: int = None
|
||||
|
||||
def init():
|
||||
server_api.mount('/media', NoCacheStaticFiles(directory=os.path.join(app.SD_UI_DIR, 'media')), name="media")
|
||||
|
||||
for plugins_dir, dir_prefix in app.UI_PLUGINS_SOURCES:
|
||||
server_api.mount(f'/plugins/{dir_prefix}', NoCacheStaticFiles(directory=plugins_dir), name=f"plugins-{dir_prefix}")
|
||||
|
||||
@server_api.post('/app_config')
|
||||
async def set_app_config(req : SetAppConfigRequest):
|
||||
return set_app_config_internal(req)
|
||||
|
||||
@server_api.get('/get/{key:path}')
|
||||
def read_web_data(key:str=None):
|
||||
return read_web_data_internal(key)
|
||||
|
||||
@server_api.get('/ping') # Get server and optionally session status.
|
||||
def ping(session_id:str=None):
|
||||
return ping_internal(session_id)
|
||||
|
||||
@server_api.post('/render')
|
||||
def render(req: dict):
|
||||
return render_internal(req)
|
||||
|
||||
@server_api.post('/model/merge')
|
||||
def model_merge(req: dict):
|
||||
print(req)
|
||||
return model_merge_internal(req)
|
||||
|
||||
@server_api.get('/image/stream/{task_id:int}')
|
||||
def stream(task_id:int):
|
||||
return stream_internal(task_id)
|
||||
|
||||
@server_api.get('/image/stop')
|
||||
def stop(task: int):
|
||||
return stop_internal(task)
|
||||
|
||||
@server_api.get('/image/tmp/{task_id:int}/{img_id:int}')
|
||||
def get_image(task_id: int, img_id: int):
|
||||
return get_image_internal(task_id, img_id)
|
||||
|
||||
@server_api.get('/')
|
||||
def read_root():
|
||||
return FileResponse(os.path.join(app.SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
|
||||
|
||||
@server_api.on_event("shutdown")
|
||||
def shutdown_event(): # Signal render thread to close on shutdown
|
||||
task_manager.current_state_error = SystemExit('Application shutting down.')
|
||||
|
||||
# API implementations
|
||||
def set_app_config_internal(req : SetAppConfigRequest):
|
||||
config = app.getConfig()
|
||||
if req.update_branch is not None:
|
||||
config['update_branch'] = req.update_branch
|
||||
if req.render_devices is not None:
|
||||
update_render_devices_in_config(config, req.render_devices)
|
||||
if req.ui_open_browser_on_start is not None:
|
||||
if 'ui' not in config:
|
||||
config['ui'] = {}
|
||||
config['ui']['open_browser_on_start'] = req.ui_open_browser_on_start
|
||||
if req.listen_to_network is not None:
|
||||
if 'net' not in config:
|
||||
config['net'] = {}
|
||||
config['net']['listen_to_network'] = bool(req.listen_to_network)
|
||||
if req.listen_port is not None:
|
||||
if 'net' not in config:
|
||||
config['net'] = {}
|
||||
config['net']['listen_port'] = int(req.listen_port)
|
||||
try:
|
||||
app.setConfig(config)
|
||||
|
||||
if req.render_devices:
|
||||
app.update_render_threads()
|
||||
|
||||
return JSONResponse({'status': 'OK'}, headers=NOCACHE_HEADERS)
|
||||
except Exception as e:
|
||||
log.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
def update_render_devices_in_config(config, render_devices):
|
||||
if render_devices not in ('cpu', 'auto') and not render_devices.startswith('cuda:'):
|
||||
raise HTTPException(status_code=400, detail=f'Invalid render device requested: {render_devices}')
|
||||
|
||||
if render_devices.startswith('cuda:'):
|
||||
render_devices = render_devices.split(',')
|
||||
|
||||
config['render_devices'] = render_devices
|
||||
|
||||
def read_web_data_internal(key:str=None):
|
||||
if not key: # /get without parameters, stable-diffusion easter egg.
|
||||
raise HTTPException(status_code=418, detail="StableDiffusion is drawing a teapot!") # HTTP418 I'm a teapot
|
||||
elif key == 'app_config':
|
||||
return JSONResponse(app.getConfig(), headers=NOCACHE_HEADERS)
|
||||
elif key == 'system_info':
|
||||
config = app.getConfig()
|
||||
system_info = {
|
||||
'devices': task_manager.get_devices(),
|
||||
'hosts': app.getIPConfig(),
|
||||
'default_output_dir': os.path.join(os.path.expanduser("~"), app.OUTPUT_DIRNAME),
|
||||
}
|
||||
system_info['devices']['config'] = config.get('render_devices', "auto")
|
||||
return JSONResponse(system_info, headers=NOCACHE_HEADERS)
|
||||
elif key == 'models':
|
||||
return JSONResponse(model_manager.getModels(), headers=NOCACHE_HEADERS)
|
||||
elif key == 'modifiers': return FileResponse(os.path.join(app.SD_UI_DIR, 'modifiers.json'), headers=NOCACHE_HEADERS)
|
||||
elif key == 'ui_plugins': return JSONResponse(app.getUIPlugins(), headers=NOCACHE_HEADERS)
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail=f'Request for unknown {key}') # HTTP404 Not Found
|
||||
|
||||
def ping_internal(session_id:str=None):
|
||||
if task_manager.is_alive() <= 0: # Check that render threads are alive.
|
||||
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
raise HTTPException(status_code=500, detail='Render thread is dead.')
|
||||
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
# Alive
|
||||
response = {'status': str(task_manager.current_state)}
|
||||
if session_id:
|
||||
session = task_manager.get_cached_session(session_id, update_ttl=True)
|
||||
response['tasks'] = {id(t): t.status for t in session.tasks}
|
||||
response['devices'] = task_manager.get_devices()
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
|
||||
def render_internal(req: dict):
|
||||
try:
|
||||
# separate out the request data into rendering and task-specific data
|
||||
render_req: GenerateImageRequest = GenerateImageRequest.parse_obj(req)
|
||||
task_data: TaskData = TaskData.parse_obj(req)
|
||||
|
||||
render_req.init_image_mask = req.get('mask') # hack: will rename this in the HTTP API in a future revision
|
||||
|
||||
app.save_to_config(task_data.use_stable_diffusion_model, task_data.use_vae_model, task_data.use_hypernetwork_model, task_data.vram_usage_level)
|
||||
|
||||
# enqueue the task
|
||||
new_task = task_manager.render(render_req, task_data)
|
||||
response = {
|
||||
'status': str(task_manager.current_state),
|
||||
'queue': len(task_manager.tasks_queue),
|
||||
'stream': f'/image/stream/{id(new_task)}',
|
||||
'task': id(new_task)
|
||||
}
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
except ChildProcessError as e: # Render thread is dead
|
||||
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
|
||||
except ConnectionRefusedError as e: # Unstarted task pending limit reached, deny queueing too many.
|
||||
raise HTTPException(status_code=503, detail=str(e)) # HTTP503 Service Unavailable
|
||||
except Exception as e:
|
||||
log.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
def model_merge_internal(req: dict):
|
||||
try:
|
||||
from sdkit.train import merge_models
|
||||
from easydiffusion.utils.save_utils import filename_regex
|
||||
mergeReq: MergeRequest = MergeRequest.parse_obj(req)
|
||||
|
||||
merge_models(model_manager.resolve_model_to_use(mergeReq.model0,'stable-diffusion'),
|
||||
model_manager.resolve_model_to_use(mergeReq.model1,'stable-diffusion'),
|
||||
mergeReq.ratio,
|
||||
os.path.join(app.MODELS_DIR, 'stable-diffusion', filename_regex.sub('_', mergeReq.out_path)),
|
||||
mergeReq.use_fp16
|
||||
)
|
||||
return JSONResponse({'status':'OK'}, headers=NOCACHE_HEADERS)
|
||||
except Exception as e:
|
||||
log.error(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
def stream_internal(task_id:int):
|
||||
#TODO Move to WebSockets ??
|
||||
task = task_manager.get_cached_task(task_id, update_ttl=True)
|
||||
if not task: raise HTTPException(status_code=404, detail=f'Request {task_id} not found.') # HTTP404 NotFound
|
||||
#if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
|
||||
if task.buffer_queue.empty() and not task.lock.locked():
|
||||
if task.response:
|
||||
#log.info(f'Session {session_id} sending cached response')
|
||||
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
|
||||
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
|
||||
#log.info(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
|
||||
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
|
||||
|
||||
def stop_internal(task: int):
|
||||
if not task:
|
||||
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
|
||||
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
|
||||
task_manager.current_state_error = StopAsyncIteration('')
|
||||
return {'OK'}
|
||||
task_id = task
|
||||
task = task_manager.get_cached_task(task_id, update_ttl=False)
|
||||
if not task: raise HTTPException(status_code=404, detail=f'Task {task_id} was not found.') # HTTP404 Not Found
|
||||
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Task {task_id} is already stopped.') # HTTP409 Conflict
|
||||
task.error = StopAsyncIteration(f'Task {task_id} stop requested.')
|
||||
return {'OK'}
|
||||
|
||||
def get_image_internal(task_id: int, img_id: int):
|
||||
task = task_manager.get_cached_task(task_id, update_ttl=True)
|
||||
if not task: raise HTTPException(status_code=410, detail=f'Task {task_id} could not be found.') # HTTP404 NotFound
|
||||
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
|
||||
try:
|
||||
img_data = task.temp_images[img_id]
|
||||
img_data.seek(0)
|
||||
return StreamingResponse(img_data, media_type='image/jpeg')
|
||||
except KeyError as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
@ -11,12 +11,15 @@ TASK_TTL = 15 * 60 # seconds, Discard last session's task timeout
|
||||
|
||||
import torch
|
||||
import queue, threading, time, weakref
|
||||
from typing import Any, Generator, Hashable, Optional, Union
|
||||
from typing import Any, Hashable
|
||||
|
||||
from pydantic import BaseModel
|
||||
from sd_internal import Request, Response, runtime, device_manager
|
||||
from easydiffusion import device_manager
|
||||
from easydiffusion.types import TaskData, GenerateImageRequest
|
||||
from easydiffusion.utils import log
|
||||
|
||||
THREAD_NAME_PREFIX = 'Runtime-Render/'
|
||||
from sdkit.utils import gc
|
||||
|
||||
THREAD_NAME_PREFIX = ''
|
||||
ERR_LOCK_FAILED = ' failed to acquire lock within timeout.'
|
||||
LOCK_TIMEOUT = 15 # Maximum locking time in seconds before failing a task.
|
||||
# It's better to get an exception than a deadlock... ALWAYS use timeout in critical paths.
|
||||
@ -36,12 +39,13 @@ class ServerStates:
|
||||
class Unavailable(Symbol): pass
|
||||
|
||||
class RenderTask(): # Task with output queue and completion lock.
|
||||
def __init__(self, req: Request):
|
||||
req.request_id = id(self)
|
||||
self.request: Request = req # Initial Request
|
||||
def __init__(self, req: GenerateImageRequest, task_data: TaskData):
|
||||
task_data.request_id = id(self)
|
||||
self.render_request: GenerateImageRequest = req # Initial Request
|
||||
self.task_data: TaskData = task_data
|
||||
self.response: Any = None # Copy of the last reponse
|
||||
self.render_device = None # Select the task affinity. (Not used to change active devices).
|
||||
self.temp_images:list = [None] * req.num_outputs * (1 if req.show_only_filtered_image else 2)
|
||||
self.temp_images:list = [None] * req.num_outputs * (1 if task_data.show_only_filtered_image else 2)
|
||||
self.error: Exception = None
|
||||
self.lock: threading.Lock = threading.Lock() # Locks at task start and unlocks when task is completed
|
||||
self.buffer_queue: queue.Queue = queue.Queue() # Queue of JSON string segments
|
||||
@ -69,54 +73,6 @@ class RenderTask(): # Task with output queue and completion lock.
|
||||
def is_pending(self):
|
||||
return bool(not self.response and not self.error)
|
||||
|
||||
# defaults from https://huggingface.co/blog/stable_diffusion
|
||||
class ImageRequest(BaseModel):
|
||||
session_id: str = "session"
|
||||
prompt: str = ""
|
||||
negative_prompt: str = ""
|
||||
init_image: str = None # base64
|
||||
mask: str = None # base64
|
||||
num_outputs: int = 1
|
||||
num_inference_steps: int = 50
|
||||
guidance_scale: float = 7.5
|
||||
width: int = 512
|
||||
height: int = 512
|
||||
seed: int = 42
|
||||
prompt_strength: float = 0.8
|
||||
sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
|
||||
# allow_nsfw: bool = False
|
||||
save_to_disk_path: str = None
|
||||
turbo: bool = True
|
||||
use_cpu: bool = False ##TODO Remove after UI and plugins transition.
|
||||
render_device: str = None # Select the task affinity. (Not used to change active devices).
|
||||
use_full_precision: bool = False
|
||||
use_face_correction: str = None # or "GFPGANv1.3"
|
||||
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
|
||||
use_stable_diffusion_model: str = "sd-v1-4"
|
||||
use_vae_model: str = None
|
||||
use_hypernetwork_model: str = None
|
||||
hypernetwork_strength: float = None
|
||||
show_only_filtered_image: bool = False
|
||||
output_format: str = "jpeg" # or "png"
|
||||
output_quality: int = 75
|
||||
|
||||
stream_progress_updates: bool = False
|
||||
stream_image_progress: bool = False
|
||||
|
||||
class FilterRequest(BaseModel):
|
||||
session_id: str = "session"
|
||||
model: str = None
|
||||
name: str = ""
|
||||
init_image: str = None # base64
|
||||
width: int = 512
|
||||
height: int = 512
|
||||
save_to_disk_path: str = None
|
||||
turbo: bool = True
|
||||
render_device: str = None
|
||||
use_full_precision: bool = False
|
||||
output_format: str = "jpeg" # or "png"
|
||||
output_quality: int = 75
|
||||
|
||||
# Temporary cache to allow to query tasks results for a short time after they are completed.
|
||||
class DataCache():
|
||||
def __init__(self):
|
||||
@ -139,11 +95,11 @@ class DataCache():
|
||||
for key in to_delete:
|
||||
(_, val) = self._base[key]
|
||||
if isinstance(val, RenderTask):
|
||||
print(f'RenderTask {key} expired. Data removed.')
|
||||
log.debug(f'RenderTask {key} expired. Data removed.')
|
||||
elif isinstance(val, SessionState):
|
||||
print(f'Session {key} expired. Data removed.')
|
||||
log.debug(f'Session {key} expired. Data removed.')
|
||||
else:
|
||||
print(f'Key {key} expired. Data removed.')
|
||||
log.debug(f'Key {key} expired. Data removed.')
|
||||
del self._base[key]
|
||||
finally:
|
||||
self._lock.release()
|
||||
@ -177,8 +133,7 @@ class DataCache():
|
||||
self._get_ttl_time(ttl), value
|
||||
)
|
||||
except Exception as e:
|
||||
print(str(e))
|
||||
print(traceback.format_exc())
|
||||
log.error(traceback.format_exc())
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
@ -189,7 +144,7 @@ class DataCache():
|
||||
try:
|
||||
ttl, value = self._base.get(key, (None, None))
|
||||
if ttl is not None and self._is_expired(ttl):
|
||||
print(f'Session {key} expired. Discarding data.')
|
||||
log.debug(f'Session {key} expired. Discarding data.')
|
||||
del self._base[key]
|
||||
return None
|
||||
return value
|
||||
@ -200,15 +155,9 @@ manager_lock = threading.RLock()
|
||||
render_threads = []
|
||||
current_state = ServerStates.Init
|
||||
current_state_error:Exception = None
|
||||
current_model_path = None
|
||||
current_vae_path = None
|
||||
current_hypernetwork_path = None
|
||||
tasks_queue = []
|
||||
session_cache = DataCache()
|
||||
task_cache = DataCache()
|
||||
default_model_to_load = None
|
||||
default_vae_to_load = None
|
||||
default_hypernetwork_to_load = None
|
||||
weak_thread_data = weakref.WeakKeyDictionary()
|
||||
idle_event: threading.Event = threading.Event()
|
||||
|
||||
@ -236,40 +185,10 @@ class SessionState():
|
||||
self._tasks_ids.pop(0)
|
||||
return True
|
||||
|
||||
def preload_model(ckpt_file_path=None, vae_file_path=None, hypernetwork_file_path=None):
|
||||
global current_state, current_state_error, current_model_path, current_vae_path, current_hypernetwork_path
|
||||
if ckpt_file_path == None:
|
||||
ckpt_file_path = default_model_to_load
|
||||
if vae_file_path == None:
|
||||
vae_file_path = default_vae_to_load
|
||||
if hypernetwork_file_path == None:
|
||||
hypernetwork_file_path = default_hypernetwork_to_load
|
||||
if ckpt_file_path == current_model_path and vae_file_path == current_vae_path:
|
||||
return
|
||||
current_state = ServerStates.LoadingModel
|
||||
try:
|
||||
from . import runtime
|
||||
runtime.thread_data.hypernetwork_file = hypernetwork_file_path
|
||||
runtime.thread_data.ckpt_file = ckpt_file_path
|
||||
runtime.thread_data.vae_file = vae_file_path
|
||||
runtime.load_model_ckpt()
|
||||
runtime.load_hypernetwork()
|
||||
current_model_path = ckpt_file_path
|
||||
current_vae_path = vae_file_path
|
||||
current_hypernetwork_path = hypernetwork_file_path
|
||||
current_state_error = None
|
||||
current_state = ServerStates.Online
|
||||
except Exception as e:
|
||||
current_model_path = None
|
||||
current_vae_path = None
|
||||
current_state_error = e
|
||||
current_state = ServerStates.Unavailable
|
||||
print(traceback.format_exc())
|
||||
|
||||
def thread_get_next_task():
|
||||
from . import runtime
|
||||
from easydiffusion import renderer
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
|
||||
print('Render thread on device', runtime.thread_data.device, 'failed to acquire manager lock.')
|
||||
log.warn(f'Render thread on device: {renderer.context.device} failed to acquire manager lock.')
|
||||
return None
|
||||
if len(tasks_queue) <= 0:
|
||||
manager_lock.release()
|
||||
@ -277,7 +196,7 @@ def thread_get_next_task():
|
||||
task = None
|
||||
try: # Select a render task.
|
||||
for queued_task in tasks_queue:
|
||||
if queued_task.render_device and runtime.thread_data.device != queued_task.render_device:
|
||||
if queued_task.render_device and renderer.context.device != queued_task.render_device:
|
||||
# Is asking for a specific render device.
|
||||
if is_alive(queued_task.render_device) > 0:
|
||||
continue # requested device alive, skip current one.
|
||||
@ -286,7 +205,7 @@ def thread_get_next_task():
|
||||
queued_task.error = Exception(queued_task.render_device + ' is not currently active.')
|
||||
task = queued_task
|
||||
break
|
||||
if not queued_task.render_device and runtime.thread_data.device == 'cpu' and is_alive() > 1:
|
||||
if not queued_task.render_device and renderer.context.device == 'cpu' and is_alive() > 1:
|
||||
# not asking for any specific devices, cpu want to grab task but other render devices are alive.
|
||||
continue # Skip Tasks, don't run on CPU unless there is nothing else or user asked for it.
|
||||
task = queued_task
|
||||
@ -298,31 +217,36 @@ def thread_get_next_task():
|
||||
manager_lock.release()
|
||||
|
||||
def thread_render(device):
|
||||
global current_state, current_state_error, current_model_path, current_vae_path, current_hypernetwork_path
|
||||
from . import runtime
|
||||
global current_state, current_state_error
|
||||
|
||||
from easydiffusion import renderer, model_manager
|
||||
try:
|
||||
runtime.thread_init(device)
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
renderer.init(device)
|
||||
|
||||
weak_thread_data[threading.current_thread()] = {
|
||||
'error': e
|
||||
'device': renderer.context.device,
|
||||
'device_name': renderer.context.device_name,
|
||||
'alive': True
|
||||
}
|
||||
|
||||
current_state = ServerStates.LoadingModel
|
||||
model_manager.load_default_models(renderer.context)
|
||||
|
||||
current_state = ServerStates.Online
|
||||
except Exception as e:
|
||||
log.error(traceback.format_exc())
|
||||
weak_thread_data[threading.current_thread()] = {
|
||||
'error': e,
|
||||
'alive': False
|
||||
}
|
||||
return
|
||||
weak_thread_data[threading.current_thread()] = {
|
||||
'device': runtime.thread_data.device,
|
||||
'device_name': runtime.thread_data.device_name,
|
||||
'alive': True
|
||||
}
|
||||
if runtime.thread_data.device != 'cpu' or is_alive() == 1:
|
||||
preload_model()
|
||||
current_state = ServerStates.Online
|
||||
|
||||
while True:
|
||||
session_cache.clean()
|
||||
task_cache.clean()
|
||||
if not weak_thread_data[threading.current_thread()]['alive']:
|
||||
print(f'Shutting down thread for device {runtime.thread_data.device}')
|
||||
runtime.unload_models()
|
||||
runtime.unload_filters()
|
||||
log.info(f'Shutting down thread for device {renderer.context.device}')
|
||||
model_manager.unload_all(renderer.context)
|
||||
return
|
||||
if isinstance(current_state_error, SystemExit):
|
||||
current_state = ServerStates.Unavailable
|
||||
@ -333,7 +257,7 @@ def thread_render(device):
|
||||
idle_event.wait(timeout=1)
|
||||
continue
|
||||
if task.error is not None:
|
||||
print(task.error)
|
||||
log.error(task.error)
|
||||
task.response = {"status": 'failed', "detail": str(task.error)}
|
||||
task.buffer_queue.put(json.dumps(task.response))
|
||||
continue
|
||||
@ -342,51 +266,44 @@ def thread_render(device):
|
||||
task.response = {"status": 'failed', "detail": str(task.error)}
|
||||
task.buffer_queue.put(json.dumps(task.response))
|
||||
continue
|
||||
print(f'Session {task.request.session_id} starting task {id(task)} on {runtime.thread_data.device_name}')
|
||||
log.info(f'Session {task.task_data.session_id} starting task {id(task)} on {renderer.context.device_name}')
|
||||
if not task.lock.acquire(blocking=False): raise Exception('Got locked task from queue.')
|
||||
try:
|
||||
if runtime.is_hypernetwork_reload_necessary(task.request):
|
||||
runtime.reload_hypernetwork()
|
||||
current_hypernetwork_path = task.request.use_hypernetwork_model
|
||||
|
||||
if runtime.is_model_reload_necessary(task.request):
|
||||
current_state = ServerStates.LoadingModel
|
||||
runtime.reload_model()
|
||||
current_model_path = task.request.use_stable_diffusion_model
|
||||
current_vae_path = task.request.use_vae_model
|
||||
|
||||
def step_callback():
|
||||
global current_state_error
|
||||
|
||||
if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration):
|
||||
runtime.thread_data.stop_processing = True
|
||||
renderer.context.stop_processing = True
|
||||
if isinstance(current_state_error, StopAsyncIteration):
|
||||
task.error = current_state_error
|
||||
current_state_error = None
|
||||
print(f'Session {task.request.session_id} sent cancel signal for task {id(task)}')
|
||||
log.info(f'Session {task.task_data.session_id} sent cancel signal for task {id(task)}')
|
||||
|
||||
current_state = ServerStates.LoadingModel
|
||||
model_manager.resolve_model_paths(task.task_data)
|
||||
model_manager.reload_models_if_necessary(renderer.context, task.task_data)
|
||||
|
||||
current_state = ServerStates.Rendering
|
||||
task.response = runtime.mk_img(task.request, task.buffer_queue, task.temp_images, step_callback)
|
||||
task.response = renderer.make_images(task.render_request, task.task_data, task.buffer_queue, task.temp_images, step_callback)
|
||||
# Before looping back to the generator, mark cache as still alive.
|
||||
task_cache.keep(id(task), TASK_TTL)
|
||||
session_cache.keep(task.request.session_id, TASK_TTL)
|
||||
session_cache.keep(task.task_data.session_id, TASK_TTL)
|
||||
except Exception as e:
|
||||
task.error = e
|
||||
task.error = str(e)
|
||||
task.response = {"status": 'failed', "detail": str(task.error)}
|
||||
task.buffer_queue.put(json.dumps(task.response))
|
||||
print(traceback.format_exc())
|
||||
continue
|
||||
log.error(traceback.format_exc())
|
||||
finally:
|
||||
# Task completed
|
||||
gc(renderer.context)
|
||||
task.lock.release()
|
||||
task_cache.keep(id(task), TASK_TTL)
|
||||
session_cache.keep(task.request.session_id, TASK_TTL)
|
||||
session_cache.keep(task.task_data.session_id, TASK_TTL)
|
||||
if isinstance(task.error, StopAsyncIteration):
|
||||
print(f'Session {task.request.session_id} task {id(task)} cancelled!')
|
||||
log.info(f'Session {task.task_data.session_id} task {id(task)} cancelled!')
|
||||
elif task.error is not None:
|
||||
print(f'Session {task.request.session_id} task {id(task)} failed!')
|
||||
log.info(f'Session {task.task_data.session_id} task {id(task)} failed!')
|
||||
else:
|
||||
print(f'Session {task.request.session_id} task {id(task)} completed by {runtime.thread_data.device_name}.')
|
||||
log.info(f'Session {task.task_data.session_id} task {id(task)} completed by {renderer.context.device_name}.')
|
||||
current_state = ServerStates.Online
|
||||
|
||||
def get_cached_task(task_id:str, update_ttl:bool=False):
|
||||
@ -423,6 +340,7 @@ def get_devices():
|
||||
'name': torch.cuda.get_device_name(device),
|
||||
'mem_free': mem_free,
|
||||
'mem_total': mem_total,
|
||||
'max_vram_usage_level': device_manager.get_max_vram_usage_level(device),
|
||||
}
|
||||
|
||||
# list the compatible devices
|
||||
@ -472,7 +390,7 @@ def is_alive(device=None):
|
||||
|
||||
def start_render_thread(device):
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('start_render_thread' + ERR_LOCK_FAILED)
|
||||
print('Start new Rendering Thread on device', device)
|
||||
log.info(f'Start new Rendering Thread on device: {device}')
|
||||
try:
|
||||
rthread = threading.Thread(target=thread_render, kwargs={'device': device})
|
||||
rthread.daemon = True
|
||||
@ -484,7 +402,7 @@ def start_render_thread(device):
|
||||
timeout = DEVICE_START_TIMEOUT
|
||||
while not rthread.is_alive() or not rthread in weak_thread_data or not 'device' in weak_thread_data[rthread]:
|
||||
if rthread in weak_thread_data and 'error' in weak_thread_data[rthread]:
|
||||
print(rthread, device, 'error:', weak_thread_data[rthread]['error'])
|
||||
log.error(f"{rthread}, {device}, error: {weak_thread_data[rthread]['error']}")
|
||||
return False
|
||||
if timeout <= 0:
|
||||
return False
|
||||
@ -496,11 +414,11 @@ def stop_render_thread(device):
|
||||
try:
|
||||
device_manager.validate_device_id(device, log_prefix='stop_render_thread')
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
log.error(traceback.format_exc())
|
||||
return False
|
||||
|
||||
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('stop_render_thread' + ERR_LOCK_FAILED)
|
||||
print('Stopping Rendering Thread on device', device)
|
||||
log.info(f'Stopping Rendering Thread on device: {device}')
|
||||
|
||||
try:
|
||||
thread_to_remove = None
|
||||
@ -523,79 +441,44 @@ def stop_render_thread(device):
|
||||
|
||||
def update_render_threads(render_devices, active_devices):
|
||||
devices_to_start, devices_to_stop = device_manager.get_device_delta(render_devices, active_devices)
|
||||
print('devices_to_start', devices_to_start)
|
||||
print('devices_to_stop', devices_to_stop)
|
||||
log.debug(f'devices_to_start: {devices_to_start}')
|
||||
log.debug(f'devices_to_stop: {devices_to_stop}')
|
||||
|
||||
for device in devices_to_stop:
|
||||
if is_alive(device) <= 0:
|
||||
print(device, 'is not alive')
|
||||
log.debug(f'{device} is not alive')
|
||||
continue
|
||||
if not stop_render_thread(device):
|
||||
print(device, 'could not stop render thread')
|
||||
log.warn(f'{device} could not stop render thread')
|
||||
|
||||
for device in devices_to_start:
|
||||
if is_alive(device) >= 1:
|
||||
print(device, 'already registered.')
|
||||
log.debug(f'{device} already registered.')
|
||||
continue
|
||||
if not start_render_thread(device):
|
||||
print(device, 'failed to start.')
|
||||
log.warn(f'{device} failed to start.')
|
||||
|
||||
if is_alive() <= 0: # No running devices, probably invalid user config.
|
||||
raise EnvironmentError('ERROR: No active render devices! Please verify the "render_devices" value in config.json')
|
||||
|
||||
print('active devices', get_devices()['active'])
|
||||
log.debug(f"active devices: {get_devices()['active']}")
|
||||
|
||||
def shutdown_event(): # Signal render thread to close on shutdown
|
||||
global current_state_error
|
||||
current_state_error = SystemExit('Application shutting down.')
|
||||
|
||||
def render(req : ImageRequest):
|
||||
def render(render_req: GenerateImageRequest, task_data: TaskData):
|
||||
current_thread_count = is_alive()
|
||||
if current_thread_count <= 0: # Render thread is dead
|
||||
raise ChildProcessError('Rendering thread has died.')
|
||||
|
||||
# Alive, check if task in cache
|
||||
session = get_cached_session(req.session_id, update_ttl=True)
|
||||
session = get_cached_session(task_data.session_id, update_ttl=True)
|
||||
pending_tasks = list(filter(lambda t: t.is_pending, session.tasks))
|
||||
if current_thread_count < len(pending_tasks):
|
||||
raise ConnectionRefusedError(f'Session {req.session_id} already has {len(pending_tasks)} pending tasks out of {current_thread_count}.')
|
||||
raise ConnectionRefusedError(f'Session {task_data.session_id} already has {len(pending_tasks)} pending tasks out of {current_thread_count}.')
|
||||
|
||||
from . import runtime
|
||||
r = Request()
|
||||
r.session_id = req.session_id
|
||||
r.prompt = req.prompt
|
||||
r.negative_prompt = req.negative_prompt
|
||||
r.init_image = req.init_image
|
||||
r.mask = req.mask
|
||||
r.num_outputs = req.num_outputs
|
||||
r.num_inference_steps = req.num_inference_steps
|
||||
r.guidance_scale = req.guidance_scale
|
||||
r.width = req.width
|
||||
r.height = req.height
|
||||
r.seed = req.seed
|
||||
r.prompt_strength = req.prompt_strength
|
||||
r.sampler = req.sampler
|
||||
# r.allow_nsfw = req.allow_nsfw
|
||||
r.turbo = req.turbo
|
||||
r.use_full_precision = req.use_full_precision
|
||||
r.save_to_disk_path = req.save_to_disk_path
|
||||
r.use_upscale: str = req.use_upscale
|
||||
r.use_face_correction = req.use_face_correction
|
||||
r.use_stable_diffusion_model = req.use_stable_diffusion_model
|
||||
r.use_vae_model = req.use_vae_model
|
||||
r.use_hypernetwork_model = req.use_hypernetwork_model
|
||||
r.hypernetwork_strength = req.hypernetwork_strength
|
||||
r.show_only_filtered_image = req.show_only_filtered_image
|
||||
r.output_format = req.output_format
|
||||
r.output_quality = req.output_quality
|
||||
|
||||
r.stream_progress_updates = True # the underlying implementation only supports streaming
|
||||
r.stream_image_progress = req.stream_image_progress
|
||||
|
||||
if not req.stream_progress_updates:
|
||||
r.stream_image_progress = False
|
||||
|
||||
new_task = RenderTask(r)
|
||||
new_task = RenderTask(render_req, task_data)
|
||||
if session.put(new_task, TASK_TTL):
|
||||
# Use twice the normal timeout for adding user requests.
|
||||
# Tries to force session.put to fail before tasks_queue.put would.
|
95
ui/easydiffusion/types.py
Normal file
@ -0,0 +1,95 @@
|
||||
from pydantic import BaseModel
|
||||
from typing import Any
|
||||
|
||||
class GenerateImageRequest(BaseModel):
|
||||
prompt: str = ""
|
||||
negative_prompt: str = ""
|
||||
|
||||
seed: int = 42
|
||||
width: int = 512
|
||||
height: int = 512
|
||||
|
||||
num_outputs: int = 1
|
||||
num_inference_steps: int = 50
|
||||
guidance_scale: float = 7.5
|
||||
|
||||
init_image: Any = None
|
||||
init_image_mask: Any = None
|
||||
prompt_strength: float = 0.8
|
||||
preserve_init_image_color_profile = False
|
||||
|
||||
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
|
||||
hypernetwork_strength: float = 0
|
||||
|
||||
class TaskData(BaseModel):
|
||||
request_id: str = None
|
||||
session_id: str = "session"
|
||||
save_to_disk_path: str = None
|
||||
vram_usage_level: str = "balanced" # or "low" or "medium"
|
||||
|
||||
use_face_correction: str = None # or "GFPGANv1.3"
|
||||
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
|
||||
upscale_amount: int = 4 # or 2
|
||||
use_stable_diffusion_model: str = "sd-v1-4"
|
||||
# use_stable_diffusion_config: str = "v1-inference"
|
||||
use_vae_model: str = None
|
||||
use_hypernetwork_model: str = None
|
||||
|
||||
show_only_filtered_image: bool = False
|
||||
output_format: str = "jpeg" # or "png"
|
||||
output_quality: int = 75
|
||||
metadata_output_format: str = "txt" # or "json"
|
||||
stream_image_progress: bool = False
|
||||
|
||||
class MergeRequest(BaseModel):
|
||||
model0: str = None
|
||||
model1: str = None
|
||||
ratio: float = None
|
||||
out_path: str = "mix"
|
||||
use_fp16 = True
|
||||
|
||||
class Image:
|
||||
data: str # base64
|
||||
seed: int
|
||||
is_nsfw: bool
|
||||
path_abs: str = None
|
||||
|
||||
def __init__(self, data, seed):
|
||||
self.data = data
|
||||
self.seed = seed
|
||||
|
||||
def json(self):
|
||||
return {
|
||||
"data": self.data,
|
||||
"seed": self.seed,
|
||||
"path_abs": self.path_abs,
|
||||
}
|
||||
|
||||
class Response:
|
||||
render_request: GenerateImageRequest
|
||||
task_data: TaskData
|
||||
images: list
|
||||
|
||||
def __init__(self, render_request: GenerateImageRequest, task_data: TaskData, images: list):
|
||||
self.render_request = render_request
|
||||
self.task_data = task_data
|
||||
self.images = images
|
||||
|
||||
def json(self):
|
||||
del self.render_request.init_image
|
||||
del self.render_request.init_image_mask
|
||||
|
||||
res = {
|
||||
"status": 'succeeded',
|
||||
"render_request": self.render_request.dict(),
|
||||
"task_data": self.task_data.dict(),
|
||||
"output": [],
|
||||
}
|
||||
|
||||
for image in self.images:
|
||||
res["output"].append(image.json())
|
||||
|
||||
return res
|
||||
|
||||
class UserInitiatedStop(Exception):
|
||||
pass
|
8
ui/easydiffusion/utils/__init__.py
Normal file
@ -0,0 +1,8 @@
|
||||
import logging
|
||||
|
||||
log = logging.getLogger('easydiffusion')
|
||||
|
||||
from .save_utils import (
|
||||
save_images_to_disk,
|
||||
get_printable_request,
|
||||
)
|
88
ui/easydiffusion/utils/save_utils.py
Normal file
@ -0,0 +1,88 @@
|
||||
import os
|
||||
import time
|
||||
import base64
|
||||
import re
|
||||
|
||||
from easydiffusion.types import TaskData, GenerateImageRequest
|
||||
|
||||
from sdkit.utils import save_images, save_dicts
|
||||
|
||||
filename_regex = re.compile('[^a-zA-Z0-9._-]')
|
||||
|
||||
# keep in sync with `ui/media/js/dnd.js`
|
||||
TASK_TEXT_MAPPING = {
|
||||
'prompt': 'Prompt',
|
||||
'width': 'Width',
|
||||
'height': 'Height',
|
||||
'seed': 'Seed',
|
||||
'num_inference_steps': 'Steps',
|
||||
'guidance_scale': 'Guidance Scale',
|
||||
'prompt_strength': 'Prompt Strength',
|
||||
'use_face_correction': 'Use Face Correction',
|
||||
'use_upscale': 'Use Upscaling',
|
||||
'upscale_amount': 'Upscale By',
|
||||
'sampler_name': 'Sampler',
|
||||
'negative_prompt': 'Negative Prompt',
|
||||
'use_stable_diffusion_model': 'Stable Diffusion model',
|
||||
'use_hypernetwork_model': 'Hypernetwork model',
|
||||
'hypernetwork_strength': 'Hypernetwork Strength'
|
||||
}
|
||||
|
||||
def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData):
|
||||
now = time.time()
|
||||
save_dir_path = os.path.join(task_data.save_to_disk_path, filename_regex.sub('_', task_data.session_id))
|
||||
metadata_entries = get_metadata_entries_for_request(req, task_data)
|
||||
make_filename = make_filename_callback(req, now=now)
|
||||
|
||||
if task_data.show_only_filtered_image or filtered_images is images:
|
||||
save_images(filtered_images, save_dir_path, file_name=make_filename, output_format=task_data.output_format, output_quality=task_data.output_quality)
|
||||
save_dicts(metadata_entries, save_dir_path, file_name=make_filename, output_format=task_data.metadata_output_format)
|
||||
else:
|
||||
make_filter_filename = make_filename_callback(req, now=now, suffix='filtered')
|
||||
|
||||
save_images(images, save_dir_path, file_name=make_filename, output_format=task_data.output_format, output_quality=task_data.output_quality)
|
||||
save_images(filtered_images, save_dir_path, file_name=make_filter_filename, output_format=task_data.output_format, output_quality=task_data.output_quality)
|
||||
save_dicts(metadata_entries, save_dir_path, file_name=make_filter_filename, output_format=task_data.metadata_output_format)
|
||||
|
||||
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData):
|
||||
metadata = get_printable_request(req)
|
||||
metadata.update({
|
||||
'use_stable_diffusion_model': task_data.use_stable_diffusion_model,
|
||||
'use_vae_model': task_data.use_vae_model,
|
||||
'use_hypernetwork_model': task_data.use_hypernetwork_model,
|
||||
'use_face_correction': task_data.use_face_correction,
|
||||
'use_upscale': task_data.use_upscale,
|
||||
})
|
||||
if metadata['use_upscale'] is not None:
|
||||
metadata['upscale_amount'] = task_data.upscale_amount
|
||||
|
||||
# if text, format it in the text format expected by the UI
|
||||
is_txt_format = (task_data.metadata_output_format.lower() == 'txt')
|
||||
if is_txt_format:
|
||||
metadata = {TASK_TEXT_MAPPING[key]: val for key, val in metadata.items() if key in TASK_TEXT_MAPPING}
|
||||
|
||||
entries = [metadata.copy() for _ in range(req.num_outputs)]
|
||||
for i, entry in enumerate(entries):
|
||||
entry['Seed' if is_txt_format else 'seed'] = req.seed + i
|
||||
|
||||
return entries
|
||||
|
||||
def get_printable_request(req: GenerateImageRequest):
|
||||
metadata = req.dict()
|
||||
del metadata['init_image']
|
||||
del metadata['init_image_mask']
|
||||
return metadata
|
||||
|
||||
def make_filename_callback(req: GenerateImageRequest, suffix=None, now=None):
|
||||
if now is None:
|
||||
now = time.time()
|
||||
def make_filename(i):
|
||||
img_id = base64.b64encode(int(now+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
|
||||
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
|
||||
|
||||
prompt_flattened = filename_regex.sub('_', req.prompt)[:50]
|
||||
name = f"{prompt_flattened}_{img_id}"
|
||||
name = name if suffix is None else f'{name}_{suffix}'
|
||||
return name
|
||||
|
||||
return make_filename
|
@ -1,11 +1,12 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<title>Stable Diffusion UI</title>
|
||||
<title>Easy Diffusion</title>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="theme-color" content="#673AB6">
|
||||
<link rel="icon" type="image/png" href="/media/images/favicon-16x16.png" sizes="16x16">
|
||||
<link rel="icon" type="image/png" href="/media/images/favicon-32x32.png" sizes="32x32">
|
||||
<link rel="stylesheet" href="/media/css/jquery-confirm.min.css">
|
||||
<link rel="stylesheet" href="/media/css/fonts.css">
|
||||
<link rel="stylesheet" href="/media/css/themes.css">
|
||||
<link rel="stylesheet" href="/media/css/main.css">
|
||||
@ -13,7 +14,6 @@
|
||||
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css">
|
||||
<link rel="stylesheet" href="/media/css/fontawesome-all.min.css">
|
||||
<link rel="stylesheet" href="/media/css/image-editor.css">
|
||||
<link rel="stylesheet" href="/media/css/jquery-confirm.min.css">
|
||||
<link rel="manifest" href="/media/manifest.webmanifest">
|
||||
<script src="/media/js/jquery-3.6.1.min.js"></script>
|
||||
<script src="/media/js/jquery-confirm.min.js"></script>
|
||||
@ -24,15 +24,15 @@
|
||||
<div id="top-nav">
|
||||
<div id="logo">
|
||||
<h1>
|
||||
Stable Diffusion UI
|
||||
<small>v2.4.24 <span id="updateBranchLabel"></span></small>
|
||||
Easy Diffusion
|
||||
<small>v2.5.15 <span id="updateBranchLabel"></span></small>
|
||||
</h1>
|
||||
</div>
|
||||
<div id="server-status">
|
||||
<div id="server-status-color">●</div>
|
||||
<span id="server-status-msg">Stable Diffusion is starting..</span>
|
||||
</div>
|
||||
<div id="tab-container">
|
||||
<div id="tab-container" class="tab-container">
|
||||
<span id="tab-main" class="tab active">
|
||||
<span><i class="fa fa-image icon"></i> Generate</span>
|
||||
</span>
|
||||
@ -55,7 +55,7 @@
|
||||
<input id="prompt_from_file" name="prompt_from_file" type="file" /> <!-- hidden -->
|
||||
<label for="negative_prompt" class="collapsible" id="negative_prompt_handle">
|
||||
Negative Prompt
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about Negative Prompts</span></i></a>
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top">Click to learn more about Negative Prompts</span></i></a>
|
||||
<small>(optional)</small>
|
||||
</label>
|
||||
<div class="collapsible-content">
|
||||
@ -92,10 +92,12 @@
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="apply_color_correction_setting" class="pl-5"><input id="apply_color_correction" name="apply_color_correction" type="checkbox"> <label for="apply_color_correction">Preserve color profile <small>(helps during inpainting)</small></label></div>
|
||||
|
||||
</div>
|
||||
|
||||
<div id="editor-inputs-tags-container" class="row">
|
||||
<label>Image Modifiers <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">click an Image Modifier to remove it, use Ctrl+Mouse Wheel to adjust its weight</span></i></label>
|
||||
<label>Image Modifiers <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">click an Image Modifier to remove it, right-click to temporarily disable it, use Ctrl+Mouse Wheel to adjust its weight</span></i></label>
|
||||
<div id="editor-inputs-tags-list"></div>
|
||||
</div>
|
||||
|
||||
@ -129,22 +131,32 @@
|
||||
</select>
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about custom models</span></i></a>
|
||||
</td></tr>
|
||||
<!-- <tr id="modelConfigSelection" class="pl-5"><td><label for="model_config">Model Config:</i></label></td><td>
|
||||
<select id="model_config" name="model_config">
|
||||
</select>
|
||||
</td></tr> -->
|
||||
<tr class="pl-5"><td><label for="vae_model">Custom VAE:</i></label></td><td>
|
||||
<select id="vae_model" name="vae_model">
|
||||
<!-- <option value="" selected>None</option> -->
|
||||
</select>
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about VAEs</span></i></a>
|
||||
</td></tr>
|
||||
<tr id="samplerSelection" class="pl-5"><td><label for="sampler">Sampler:</label></td><td>
|
||||
<select id="sampler" name="sampler">
|
||||
<option value="plms">plms</option>
|
||||
<option value="ddim">ddim</option>
|
||||
<option value="heun">heun</option>
|
||||
<option value="euler">euler</option>
|
||||
<option value="euler_a" selected>euler_a</option>
|
||||
<option value="dpm2">dpm2</option>
|
||||
<option value="dpm2_a">dpm2_a</option>
|
||||
<option value="lms">lms</option>
|
||||
<tr id="samplerSelection" class="pl-5"><td><label for="sampler_name">Sampler:</label></td><td>
|
||||
<select id="sampler_name" name="sampler_name">
|
||||
<option value="plms">PLMS</option>
|
||||
<option value="ddim">DDIM</option>
|
||||
<option value="heun">Heun</option>
|
||||
<option value="euler">Euler</option>
|
||||
<option value="euler_a" selected>Euler Ancestral</option>
|
||||
<option value="dpm2">DPM2</option>
|
||||
<option value="dpm2_a">DPM2 Ancestral</option>
|
||||
<option value="lms">LMS</option>
|
||||
<option value="dpm_solver_stability">DPM Solver (Stability AI)</option>
|
||||
<option value="dpmpp_2s_a">DPM++ 2s Ancestral</option>
|
||||
<option value="dpmpp_2m">DPM++ 2m</option>
|
||||
<option value="dpmpp_sde">DPM++ SDE</option>
|
||||
<option value="dpm_fast">DPM Fast</option>
|
||||
<option value="dpm_adaptive">DPM Adaptive</option>
|
||||
</select>
|
||||
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about samplers</span></i></a>
|
||||
</td></tr>
|
||||
@ -222,7 +234,12 @@
|
||||
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slower images)</small></label></li>
|
||||
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes <small>(uses GFPGAN)</small></label></li>
|
||||
<li class="pl-5">
|
||||
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Upscale image by 4x with </label>
|
||||
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Scale up by</label>
|
||||
<select id="upscale_amount" name="upscale_amount">
|
||||
<option value="2">2x</option>
|
||||
<option value="4" selected>4x</option>
|
||||
</select>
|
||||
with
|
||||
<select id="upscale_model" name="upscale_model">
|
||||
<option value="RealESRGAN_x4plus" selected>RealESRGAN_x4plus</option>
|
||||
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
|
||||
@ -416,7 +433,6 @@
|
||||
async function init() {
|
||||
await initSettings()
|
||||
await getModels()
|
||||
await getDiskPath()
|
||||
await getAppConfig()
|
||||
await loadUIPlugins()
|
||||
await loadModifiers()
|
||||
|
10
ui/main.py
Normal file
@ -0,0 +1,10 @@
|
||||
from easydiffusion import model_manager, app, server
|
||||
from easydiffusion.server import server_api # required for uvicorn
|
||||
|
||||
# Init the app
|
||||
model_manager.init()
|
||||
app.init()
|
||||
server.init()
|
||||
|
||||
# start the browser ui
|
||||
app.open_browser()
|
@ -2,12 +2,12 @@
|
||||
padding-left: 32px;
|
||||
text-align: left;
|
||||
padding-bottom: 20px;
|
||||
max-width: min-content;
|
||||
}
|
||||
|
||||
.editor-options-container {
|
||||
display: flex;
|
||||
row-gap: 10px;
|
||||
max-width: 210px;
|
||||
}
|
||||
|
||||
.editor-options-container > * {
|
||||
|
@ -107,6 +107,7 @@ code {
|
||||
.imgContainer {
|
||||
display: flex;
|
||||
justify-content: flex-end;
|
||||
position: relative;
|
||||
}
|
||||
.imgItemInfo {
|
||||
padding-bottom: 0.5em;
|
||||
@ -114,16 +115,29 @@ code {
|
||||
align-items: flex-end;
|
||||
flex-direction: column;
|
||||
position: absolute;
|
||||
padding: 5px;
|
||||
padding-right: 5pt;
|
||||
padding-top: 6pt;
|
||||
opacity: 0;
|
||||
transition: 0.1s all;
|
||||
}
|
||||
.imgPreviewItemClearBtn {
|
||||
opacity: 0;
|
||||
}
|
||||
.imgPreviewItemClearBtn:hover {
|
||||
background: rgb(177, 27, 0);
|
||||
}
|
||||
.imgContainer:hover > .imgItemInfo {
|
||||
opacity: 1;
|
||||
}
|
||||
.imgContainer:hover > .imgPreviewItemClearBtn {
|
||||
opacity: 1;
|
||||
}
|
||||
.imgItemInfo * {
|
||||
margin-bottom: 7px;
|
||||
}
|
||||
.imgItem .image_clear_btn {
|
||||
transform: translate(40%, -50%);
|
||||
}
|
||||
#container {
|
||||
min-height: 100vh;
|
||||
width: 100%;
|
||||
@ -251,6 +265,11 @@ button#resume {
|
||||
img {
|
||||
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
|
||||
}
|
||||
div.img-preview img {
|
||||
width:100%;
|
||||
height: 100%;
|
||||
max-height: 70vh;
|
||||
}
|
||||
.line-separator {
|
||||
background: var(--background-color3);
|
||||
height: 1pt;
|
||||
@ -876,10 +895,11 @@ input::file-selector-button {
|
||||
font-size: 12px;
|
||||
background-color: var(--background-color3);
|
||||
|
||||
visibility: hidden;
|
||||
visibility: hidden;
|
||||
opacity: 0;
|
||||
position: absolute;
|
||||
white-space: nowrap;
|
||||
width: max-content;
|
||||
max-width: 300px;
|
||||
padding: 8px 12px;
|
||||
transition: 0.3s all;
|
||||
|
||||
@ -895,7 +915,7 @@ input::file-selector-button {
|
||||
.simple-tooltip.right {
|
||||
right: 0px;
|
||||
top: 50%;
|
||||
transform: translate(calc(100% - 15%), -50%);
|
||||
transform: translate(100%, -50%);
|
||||
}
|
||||
:hover > .simple-tooltip.right {
|
||||
transform: translate(100%, -50%);
|
||||
@ -1023,7 +1043,7 @@ input::file-selector-button {
|
||||
}
|
||||
|
||||
/* TABS */
|
||||
#tab-container {
|
||||
.tab-container {
|
||||
display: flex;
|
||||
align-items: flex-end;
|
||||
}
|
||||
@ -1099,11 +1119,11 @@ button:active {
|
||||
|
||||
div.task-initimg > img {
|
||||
margin-right: 6px;
|
||||
display: block;
|
||||
display: block;
|
||||
}
|
||||
div.task-fs-initimage {
|
||||
display: none;
|
||||
# position: absolute;
|
||||
display: none;
|
||||
position: absolute;
|
||||
}
|
||||
div.task-initimg:hover div.task-fs-initimage {
|
||||
display: block;
|
||||
@ -1111,6 +1131,8 @@ div.task-initimg:hover div.task-fs-initimage {
|
||||
z-index: 9999;
|
||||
box-shadow: 0 0 30px #000;
|
||||
margin-top:-64px;
|
||||
max-width: 75vw;
|
||||
max-height: 75vh;
|
||||
}
|
||||
div.top-right {
|
||||
position: absolute;
|
||||
@ -1174,3 +1196,10 @@ body.wait-pause {
|
||||
50% { border: solid 12px var(--background-color1); }
|
||||
100% { border: solid 12px var(--accent-color); }
|
||||
}
|
||||
|
||||
.jconfirm.jconfirm-modern .jconfirm-box div.jconfirm-title-c {
|
||||
color: var(--button-text-color);
|
||||
}
|
||||
.jconfirm.jconfirm-modern .jconfirm-box {
|
||||
background-color: var(--background-color1);
|
||||
}
|
||||
|
4
ui/media/images/fa-eraser.svg
Normal file
@ -0,0 +1,4 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 576" width="24" height="24">
|
||||
<!--! Font Awesome Pro 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2022 Fonticons, Inc.-->
|
||||
<path style="filter: drop-shadow(0px 0px 20px white)" d="M290.7 57.4 57.4 290.7c-25 25-25 65.5 0 90.5l80 80c12 12 28.3 18.7 45.3 18.7H512c17.7 0 32-14.3 32-32s-14.3-32-32-32H387.9l130.7-130.6c25-25 25-65.5 0-90.5L381.3 57.4c-25-25-65.5-25-90.5 0zm6.7 358.6H182.6l-80-80 124.7-124.7 137.4 137.4-67.3 67.3z"/>
|
||||
</svg>
|
After Width: | Height: | Size: 571 B |
4
ui/media/images/fa-eye-dropper.svg
Normal file
@ -0,0 +1,4 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" width="24" height="24">
|
||||
<!--! Font Awesome Pro 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2022 Fonticons, Inc.-->
|
||||
<path style="filter: drop-shadow(0px 0px 20px white)" d="M341.6 29.2 240.1 130.8l-9.4-9.4c-12.5-12.5-32.8-12.5-45.3 0s-12.5 32.8 0 45.3l160 160c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3l-9.4-9.4 101.5-101.6c39-39 39-102.2 0-141.1s-102.2-39-141.1 0zM55.4 323.3c-15 15-23.4 35.4-23.4 56.6v42.4L5.4 462.2c-8.5 12.7-6.8 29.6 4 40.4s27.7 12.5 40.4 4L89.7 480h42.4c21.2 0 41.6-8.4 56.6-23.4l120.7-120.7-45.3-45.3-120.7 120.7c-3 3-7.1 4.7-11.3 4.7H96v-36.1c0-4.2 1.7-8.3 4.7-11.3l120.7-120.7-45.3-45.3L55.4 323.3z"/>
|
||||
</svg>
|
After Width: | Height: | Size: 775 B |
4
ui/media/images/fa-fill.svg
Normal file
@ -0,0 +1,4 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 576 576" width="24" height="24">
|
||||
<!--! Font Awesome Pro 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2022 Fonticons, Inc.-->
|
||||
<path style="filter: drop-shadow(0px 0px 20px white)" d="M118.6 9.4c-12.5-12.5-32.7-12.5-45.2 0s-12.5 32.8 0 45.3l81.3 81.3-92.1 92.1c-37.5 37.5-37.5 98.3 0 135.8l117.5 117.5c37.5 37.5 98.3 37.5 135.8 0l190.4-190.5c28.1-28.1 28.1-73.7 0-101.8L354.9 37.7c-28.1-28.1-73.7-28.1-101.8 0l-53.1 53-81.4-81.3zM200 181.3l49.4 49.4c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L245.3 136l53.1-53.1c3.1-3.1 8.2-3.1 11.3 0l151.4 151.4c3.1 3.1 3.1 8.2 0 11.3L418.7 288H99.5c1.4-5.4 4.2-10.4 8.4-14.6l92.1-92.1z"/>
|
||||
</svg>
|
After Width: | Height: | Size: 763 B |
4
ui/media/images/fa-pencil.svg
Normal file
@ -0,0 +1,4 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" width="24" height="24">
|
||||
<!--! Font Awesome Pro 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license (Commercial License) Copyright 2022 Fonticons, Inc.-->
|
||||
<path style="filter: drop-shadow(0px 0px 20px white)" d="m410.3 231 11.3-11.3-33.9-33.9-62.1-62.1-33.9-33.9-11.3 11.3-22.6 22.6L58.6 322.9c-10.4 10.4-18 23.3-22.2 37.4L1 480.7c-2.5 8.4-.2 17.5 6.1 23.7s15.3 8.5 23.7 6.1l120.3-35.4c14.1-4.2 27-11.8 37.4-22.2l199.2-199.2 22.6-22.7zM160 399.4l-9.1 22.7c-4 3.1-8.5 5.4-13.3 6.9l-78.2 23 23-78.1c1.4-4.9 3.8-9.4 6.9-13.3l22.7-9.1v32c0 8.8 7.2 16 16 16h32zM362.7 18.7l-14.4 14.5-22.6 22.6-11.4 11.3 33.9 33.9 62.1 62.1 33.9 33.9 11.3-11.3 22.6-22.6 14.5-14.5c25-25 25-65.5 0-90.5l-39.3-39.4c-25-25-65.5-25-90.5 0zm-47.4 168-144 144c-6.2 6.2-16.4 6.2-22.6 0s-6.2-16.4 0-22.6l144-144c6.2-6.2 16.4-6.2 22.6 0s6.2 16.4 0 22.6z"/>
|
||||
</svg>
|
After Width: | Height: | Size: 934 B |
Before Width: | Height: | Size: 466 B After Width: | Height: | Size: 1.4 KiB |
Before Width: | Height: | Size: 973 B After Width: | Height: | Size: 3.2 KiB |
BIN
ui/media/images/icon-512x512.png
Normal file
After Width: | Height: | Size: 329 KiB |
@ -15,7 +15,7 @@ const SETTINGS_IDS_LIST = [
|
||||
"stable_diffusion_model",
|
||||
"vae_model",
|
||||
"hypernetwork_model",
|
||||
"sampler",
|
||||
"sampler_name",
|
||||
"width",
|
||||
"height",
|
||||
"num_inference_steps",
|
||||
@ -28,6 +28,7 @@ const SETTINGS_IDS_LIST = [
|
||||
"stream_image_progress",
|
||||
"use_face_correction",
|
||||
"use_upscale",
|
||||
"upscale_amount",
|
||||
"show_only_filtered_image",
|
||||
"upscale_model",
|
||||
"preview-image",
|
||||
@ -36,10 +37,12 @@ const SETTINGS_IDS_LIST = [
|
||||
"save_to_disk",
|
||||
"diskPath",
|
||||
"sound_toggle",
|
||||
"turbo",
|
||||
"use_full_precision",
|
||||
"vram_usage_level",
|
||||
"confirm_dangerous_actions",
|
||||
"auto_save_settings"
|
||||
"metadata_output_format",
|
||||
"auto_save_settings",
|
||||
"apply_color_correction",
|
||||
"process_order_toggle"
|
||||
]
|
||||
|
||||
const IGNORE_BY_DEFAULT = [
|
||||
@ -259,10 +262,12 @@ function tryLoadOldSettings() {
|
||||
var saved_settings = JSON.parse(saved_settings_text)
|
||||
Object.keys(saved_settings.should_save).forEach(key => {
|
||||
key = key in old_map ? old_map[key] : key
|
||||
if (!(key in SETTINGS)) return
|
||||
SETTINGS[key].ignore = !saved_settings.should_save[key]
|
||||
});
|
||||
Object.keys(saved_settings.values).forEach(key => {
|
||||
key = key in old_map ? old_map[key] : key
|
||||
if (!(key in SETTINGS)) return
|
||||
var setting = SETTINGS[key]
|
||||
if (!setting.ignore) {
|
||||
setting.value = saved_settings.values[key]
|
||||
@ -277,8 +282,6 @@ function tryLoadOldSettings() {
|
||||
"soundEnabled": "sound_toggle",
|
||||
"saveToDisk": "save_to_disk",
|
||||
"useCPU": "use_cpu",
|
||||
"useFullPrecision": "use_full_precision",
|
||||
"useTurboMode": "turbo",
|
||||
"diskPath": "diskPath",
|
||||
"useFaceCorrection": "use_face_correction",
|
||||
"useUpscaling": "use_upscale",
|
||||
|
@ -25,6 +25,7 @@ function parseBoolean(stringValue) {
|
||||
case "no":
|
||||
case "off":
|
||||
case "0":
|
||||
case "none":
|
||||
case null:
|
||||
case undefined:
|
||||
return false;
|
||||
@ -58,6 +59,13 @@ const TASK_MAPPING = {
|
||||
readUI: () => activeTags.map(x => x.name),
|
||||
parse: (val) => val
|
||||
},
|
||||
inactive_tags: { name: "Inactive Image Modifiers",
|
||||
setUI: (inactive_tags) => {
|
||||
refreshInactiveTags(inactive_tags)
|
||||
},
|
||||
readUI: () => activeTags.filter(tag => tag.inactive === true).map(x => x.name),
|
||||
parse: (val) => val
|
||||
},
|
||||
width: { name: 'Width',
|
||||
setUI: (width) => {
|
||||
const oldVal = widthField.value
|
||||
@ -136,7 +144,14 @@ const TASK_MAPPING = {
|
||||
readUI: () => (maskSetting.checked ? imageInpainter.getImg() : undefined),
|
||||
parse: (val) => val
|
||||
},
|
||||
|
||||
preserve_init_image_color_profile: { name: 'Preserve Color Profile',
|
||||
setUI: (preserve_init_image_color_profile) => {
|
||||
applyColorCorrectionField.checked = parseBoolean(preserve_init_image_color_profile)
|
||||
},
|
||||
readUI: () => applyColorCorrectionField.checked,
|
||||
parse: (val) => parseBoolean(val)
|
||||
},
|
||||
|
||||
use_face_correction: { name: 'Use Face Correction',
|
||||
setUI: (use_face_correction) => {
|
||||
useFaceCorrectionField.checked = parseBoolean(use_face_correction)
|
||||
@ -147,12 +162,14 @@ const TASK_MAPPING = {
|
||||
use_upscale: { name: 'Use Upscaling',
|
||||
setUI: (use_upscale) => {
|
||||
const oldVal = upscaleModelField.value
|
||||
upscaleModelField.value = use_upscale
|
||||
upscaleModelField.value = getModelPath(use_upscale, ['.pth'])
|
||||
if (upscaleModelField.value) { // Is a valid value for the field.
|
||||
useUpscalingField.checked = true
|
||||
upscaleModelField.disabled = false
|
||||
upscaleAmountField.disabled = false
|
||||
} else { // Not a valid value, restore the old value and disable the filter.
|
||||
upscaleModelField.disabled = true
|
||||
upscaleAmountField.disabled = true
|
||||
upscaleModelField.value = oldVal
|
||||
useUpscalingField.checked = false
|
||||
}
|
||||
@ -160,9 +177,16 @@ const TASK_MAPPING = {
|
||||
readUI: () => (useUpscalingField.checked ? upscaleModelField.value : undefined),
|
||||
parse: (val) => val
|
||||
},
|
||||
sampler: { name: 'Sampler',
|
||||
setUI: (sampler) => {
|
||||
samplerField.value = sampler
|
||||
upscale_amount: { name: 'Upscale By',
|
||||
setUI: (upscale_amount) => {
|
||||
upscaleAmountField.value = upscale_amount
|
||||
},
|
||||
readUI: () => upscaleAmountField.value,
|
||||
parse: (val) => val
|
||||
},
|
||||
sampler_name: { name: 'Sampler',
|
||||
setUI: (sampler_name) => {
|
||||
samplerField.value = sampler_name
|
||||
},
|
||||
readUI: () => samplerField.value,
|
||||
parse: (val) => val
|
||||
@ -171,7 +195,7 @@ const TASK_MAPPING = {
|
||||
setUI: (use_stable_diffusion_model) => {
|
||||
const oldVal = stableDiffusionModelField.value
|
||||
|
||||
use_stable_diffusion_model = getModelPath(use_stable_diffusion_model, ['.ckpt'])
|
||||
use_stable_diffusion_model = getModelPath(use_stable_diffusion_model, ['.ckpt', '.safetensors'])
|
||||
stableDiffusionModelField.value = use_stable_diffusion_model
|
||||
|
||||
if (!stableDiffusionModelField.value) {
|
||||
@ -184,6 +208,7 @@ const TASK_MAPPING = {
|
||||
use_vae_model: { name: 'VAE model',
|
||||
setUI: (use_vae_model) => {
|
||||
const oldVal = vaeModelField.value
|
||||
use_vae_model = (use_vae_model === undefined || use_vae_model === null || use_vae_model === 'None' ? '' : use_vae_model)
|
||||
|
||||
if (use_vae_model !== '') {
|
||||
use_vae_model = getModelPath(use_vae_model, ['.vae.pt', '.ckpt'])
|
||||
@ -197,6 +222,7 @@ const TASK_MAPPING = {
|
||||
use_hypernetwork_model: { name: 'Hypernetwork model',
|
||||
setUI: (use_hypernetwork_model) => {
|
||||
const oldVal = hypernetworkModelField.value
|
||||
use_hypernetwork_model = (use_hypernetwork_model === undefined || use_hypernetwork_model === null || use_hypernetwork_model === 'None' ? '' : use_hypernetwork_model)
|
||||
|
||||
if (use_hypernetwork_model !== '') {
|
||||
use_hypernetwork_model = getModelPath(use_hypernetwork_model, ['.pt'])
|
||||
@ -232,20 +258,6 @@ const TASK_MAPPING = {
|
||||
readUI: () => useCPUField.checked,
|
||||
parse: (val) => val
|
||||
},
|
||||
turbo: { name: 'Turbo',
|
||||
setUI: (turbo) => {
|
||||
turboField.checked = turbo
|
||||
},
|
||||
readUI: () => turboField.checked,
|
||||
parse: (val) => Boolean(val)
|
||||
},
|
||||
use_full_precision: { name: 'Use Full Precision',
|
||||
setUI: (use_full_precision) => {
|
||||
useFullPrecisionField.checked = use_full_precision
|
||||
},
|
||||
readUI: () => useFullPrecisionField.checked,
|
||||
parse: (val) => Boolean(val)
|
||||
},
|
||||
|
||||
stream_image_progress: { name: 'Stream Image Progress',
|
||||
setUI: (stream_image_progress) => {
|
||||
@ -277,6 +289,7 @@ const TASK_MAPPING = {
|
||||
parse: (val) => val
|
||||
}
|
||||
}
|
||||
|
||||
function restoreTaskToUI(task, fieldsToSkip) {
|
||||
fieldsToSkip = fieldsToSkip || []
|
||||
|
||||
@ -296,9 +309,18 @@ function restoreTaskToUI(task, fieldsToSkip) {
|
||||
}
|
||||
}
|
||||
|
||||
// restore the original tag
|
||||
promptField.value = task.reqBody.original_prompt || task.reqBody.prompt
|
||||
// properly reset fields not present in the task
|
||||
if (!('use_hypernetwork_model' in task.reqBody)) {
|
||||
hypernetworkModelField.value = ""
|
||||
hypernetworkModelField.dispatchEvent(new Event("change"))
|
||||
}
|
||||
|
||||
// restore the original prompt if provided (e.g. use settings), fallback to prompt as needed (e.g. copy/paste or d&d)
|
||||
promptField.value = task.reqBody.original_prompt
|
||||
if (!('original_prompt' in task.reqBody)) {
|
||||
promptField.value = task.reqBody.prompt
|
||||
}
|
||||
|
||||
// properly reset checkboxes
|
||||
if (!('use_face_correction' in task.reqBody)) {
|
||||
useFaceCorrectionField.checked = false
|
||||
@ -306,19 +328,26 @@ function restoreTaskToUI(task, fieldsToSkip) {
|
||||
if (!('use_upscale' in task.reqBody)) {
|
||||
useUpscalingField.checked = false
|
||||
}
|
||||
if (!('mask' in task.reqBody)) {
|
||||
if (!('mask' in task.reqBody) && maskSetting.checked) {
|
||||
maskSetting.checked = false
|
||||
maskSetting.dispatchEvent(new Event("click"))
|
||||
}
|
||||
upscaleModelField.disabled = !useUpscalingField.checked
|
||||
upscaleAmountField.disabled = !useUpscalingField.checked
|
||||
|
||||
// Show the source picture if present
|
||||
initImagePreview.src = (task.reqBody.init_image == undefined ? '' : task.reqBody.init_image)
|
||||
if (IMAGE_REGEX.test(initImagePreview.src)) {
|
||||
if (Boolean(task.reqBody.mask)) {
|
||||
setTimeout(() => { // add a delay to insure this happens AFTER the main image loads (which reloads the inpainter)
|
||||
// hide/show source picture as needed
|
||||
if (IMAGE_REGEX.test(initImagePreview.src) && task.reqBody.init_image == undefined) {
|
||||
// hide source image
|
||||
initImageClearBtn.dispatchEvent(new Event("click"))
|
||||
}
|
||||
else if (task.reqBody.init_image !== undefined) {
|
||||
// listen for inpainter loading event, which happens AFTER the main image loads (which reloads the inpainter)
|
||||
initImagePreview.addEventListener('load', function() {
|
||||
if (Boolean(task.reqBody.mask)) {
|
||||
imageInpainter.setImg(task.reqBody.mask)
|
||||
}, 250)
|
||||
}
|
||||
}
|
||||
}, { once: true })
|
||||
initImagePreview.src = task.reqBody.init_image
|
||||
}
|
||||
}
|
||||
function readUI() {
|
||||
@ -350,6 +379,7 @@ function getModelPath(filename, extensions)
|
||||
}
|
||||
|
||||
const TASK_TEXT_MAPPING = {
|
||||
prompt: 'Prompt',
|
||||
width: 'Width',
|
||||
height: 'Height',
|
||||
seed: 'Seed',
|
||||
@ -358,26 +388,39 @@ const TASK_TEXT_MAPPING = {
|
||||
prompt_strength: 'Prompt Strength',
|
||||
use_face_correction: 'Use Face Correction',
|
||||
use_upscale: 'Use Upscaling',
|
||||
sampler: 'Sampler',
|
||||
upscale_amount: 'Upscale By',
|
||||
sampler_name: 'Sampler',
|
||||
negative_prompt: 'Negative Prompt',
|
||||
use_stable_diffusion_model: 'Stable Diffusion model',
|
||||
use_hypernetwork_model: 'Hypernetwork model',
|
||||
hypernetwork_strength: 'Hypernetwork Strength'
|
||||
}
|
||||
const afterPromptRe = /^\s*Width\s*:\s*\d+\s*(?:\r\n|\r|\n)+\s*Height\s*:\s*\d+\s*(\r\n|\r|\n)+Seed\s*:\s*\d+\s*$/igm
|
||||
function parseTaskFromText(str) {
|
||||
const taskReqBody = {}
|
||||
|
||||
const lines = str.split('\n')
|
||||
if (lines.length === 0) {
|
||||
return
|
||||
}
|
||||
|
||||
// Prompt
|
||||
afterPromptRe.lastIndex = 0
|
||||
const match = afterPromptRe.exec(str)
|
||||
if (match) {
|
||||
let prompt = str.slice(0, match.index)
|
||||
str = str.slice(prompt.length)
|
||||
taskReqBody.prompt = prompt.trim()
|
||||
let knownKeyOnFirstLine = false
|
||||
for (let key in TASK_TEXT_MAPPING) {
|
||||
if (lines[0].startsWith(TASK_TEXT_MAPPING[key] + ':')) {
|
||||
knownKeyOnFirstLine = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if (!knownKeyOnFirstLine) {
|
||||
taskReqBody.prompt = lines[0]
|
||||
console.log('Prompt:', taskReqBody.prompt)
|
||||
}
|
||||
|
||||
for (const key in TASK_TEXT_MAPPING) {
|
||||
if (key in taskReqBody) {
|
||||
continue
|
||||
}
|
||||
|
||||
const name = TASK_TEXT_MAPPING[key];
|
||||
let val = undefined
|
||||
|
||||
@ -410,6 +453,9 @@ async function parseContent(text) {
|
||||
if (text.startsWith('{') && text.endsWith('}')) {
|
||||
try {
|
||||
const task = JSON.parse(text)
|
||||
if (!('reqBody' in task)) { // support the format saved to the disk, by the UI
|
||||
task.reqBody = Object.assign({}, task)
|
||||
}
|
||||
restoreTaskToUI(task)
|
||||
return true
|
||||
} catch (e) {
|
||||
@ -419,7 +465,7 @@ async function parseContent(text) {
|
||||
}
|
||||
// Normal txt file.
|
||||
const task = parseTaskFromText(text)
|
||||
if (task) {
|
||||
if (text.toLowerCase().includes('seed:') && task) { // only parse valid task content
|
||||
restoreTaskToUI(task)
|
||||
return true
|
||||
} else {
|
||||
@ -476,8 +522,6 @@ document.addEventListener("dragover", dragOverHandler)
|
||||
|
||||
const TASK_REQ_NO_EXPORT = [
|
||||
"use_cpu",
|
||||
"turbo",
|
||||
"use_full_precision",
|
||||
"save_to_disk_path"
|
||||
]
|
||||
const resetSettings = document.getElementById('reset-image-settings')
|
||||
|
@ -718,7 +718,7 @@
|
||||
"height": 'number',
|
||||
"seed": 'number',
|
||||
|
||||
"sampler": 'string',
|
||||
"sampler_name": 'string',
|
||||
"use_stable_diffusion_model": 'string',
|
||||
"num_inference_steps": 'number',
|
||||
"guidance_scale": 'number',
|
||||
@ -727,13 +727,11 @@
|
||||
"stream_progress_updates": 'boolean',
|
||||
"stream_image_progress": 'boolean',
|
||||
"show_only_filtered_image": 'boolean',
|
||||
"turbo": 'boolean',
|
||||
"use_full_precision": 'boolean',
|
||||
"output_format": 'string',
|
||||
"output_quality": 'number',
|
||||
}
|
||||
const TASK_DEFAULTS = {
|
||||
"sampler": "plms",
|
||||
"sampler_name": "plms",
|
||||
"use_stable_diffusion_model": "sd-v1-4",
|
||||
"num_inference_steps": 50,
|
||||
"guidance_scale": 7.5,
|
||||
@ -743,8 +741,6 @@
|
||||
"stream_progress_updates": true,
|
||||
"stream_image_progress": true,
|
||||
"show_only_filtered_image": true,
|
||||
"turbo": false,
|
||||
"use_full_precision": false,
|
||||
"output_format": "png",
|
||||
"output_quality": 75,
|
||||
}
|
||||
|
@ -36,13 +36,14 @@ const defaultToolEnd = (editor, ctx, x, y, is_overlay = false) => {
|
||||
ctx.clearRect(0, 0, editor.width, editor.height)
|
||||
}
|
||||
}
|
||||
const toolDoNothing = (editor, ctx, x, y, is_overlay = false) => {}
|
||||
|
||||
const IMAGE_EDITOR_TOOLS = [
|
||||
{
|
||||
id: "draw",
|
||||
name: "Draw",
|
||||
icon: "fa-solid fa-pencil",
|
||||
cursor: "url(/media/images/fa-pencil.png) 0 24, pointer",
|
||||
cursor: "url(/media/images/fa-pencil.svg) 0 24, pointer",
|
||||
begin: defaultToolBegin,
|
||||
move: defaultToolMove,
|
||||
end: defaultToolEnd
|
||||
@ -51,7 +52,7 @@ const IMAGE_EDITOR_TOOLS = [
|
||||
id: "erase",
|
||||
name: "Erase",
|
||||
icon: "fa-solid fa-eraser",
|
||||
cursor: "url(/media/images/fa-eraser.png) 0 18, pointer",
|
||||
cursor: "url(/media/images/fa-eraser.svg) 0 14, pointer",
|
||||
begin: defaultToolBegin,
|
||||
move: (editor, ctx, x, y, is_overlay = false) => {
|
||||
ctx.lineTo(x, y)
|
||||
@ -78,27 +79,56 @@ const IMAGE_EDITOR_TOOLS = [
|
||||
}
|
||||
},
|
||||
{
|
||||
id: "colorpicker",
|
||||
name: "Color Picker",
|
||||
icon: "fa-solid fa-eye-dropper",
|
||||
cursor: "url(/media/images/fa-eye-dropper.png) 0 24, pointer",
|
||||
id: "fill",
|
||||
name: "Fill",
|
||||
icon: "fa-solid fa-fill",
|
||||
cursor: "url(/media/images/fa-fill.svg) 20 6, pointer",
|
||||
begin: (editor, ctx, x, y, is_overlay = false) => {
|
||||
var img_rgb = editor.layers.background.ctx.getImageData(x, y, 1, 1).data
|
||||
var drawn_rgb = editor.ctx_current.getImageData(x, y, 1, 1).data
|
||||
var drawn_opacity = drawn_rgb[3] / 255
|
||||
editor.custom_color_input.value = rgbToHex({
|
||||
r: (drawn_rgb[0] * drawn_opacity) + (img_rgb[0] * (1 - drawn_opacity)),
|
||||
g: (drawn_rgb[1] * drawn_opacity) + (img_rgb[1] * (1 - drawn_opacity)),
|
||||
b: (drawn_rgb[2] * drawn_opacity) + (img_rgb[2] * (1 - drawn_opacity)),
|
||||
})
|
||||
editor.custom_color_input.dispatchEvent(new Event("change"))
|
||||
if (!is_overlay) {
|
||||
var color = hexToRgb(ctx.fillStyle)
|
||||
color.a = parseInt(ctx.globalAlpha * 255) // layer.ctx.globalAlpha
|
||||
flood_fill(editor, ctx, parseInt(x), parseInt(y), color)
|
||||
}
|
||||
},
|
||||
move: (editor, ctx, x, y, is_overlay = false) => {},
|
||||
end: (editor, ctx, x, y, is_overlay = false) => {}
|
||||
move: toolDoNothing,
|
||||
end: toolDoNothing
|
||||
},
|
||||
{
|
||||
id: "colorpicker",
|
||||
name: "Picker",
|
||||
icon: "fa-solid fa-eye-dropper",
|
||||
cursor: "url(/media/images/fa-eye-dropper.svg) 0 24, pointer",
|
||||
begin: (editor, ctx, x, y, is_overlay = false) => {
|
||||
if (!is_overlay) {
|
||||
var img_rgb = editor.layers.background.ctx.getImageData(x, y, 1, 1).data
|
||||
var drawn_rgb = editor.ctx_current.getImageData(x, y, 1, 1).data
|
||||
var drawn_opacity = drawn_rgb[3] / 255
|
||||
editor.custom_color_input.value = rgbToHex({
|
||||
r: (drawn_rgb[0] * drawn_opacity) + (img_rgb[0] * (1 - drawn_opacity)),
|
||||
g: (drawn_rgb[1] * drawn_opacity) + (img_rgb[1] * (1 - drawn_opacity)),
|
||||
b: (drawn_rgb[2] * drawn_opacity) + (img_rgb[2] * (1 - drawn_opacity)),
|
||||
})
|
||||
editor.custom_color_input.dispatchEvent(new Event("change"))
|
||||
}
|
||||
},
|
||||
move: toolDoNothing,
|
||||
end: toolDoNothing
|
||||
}
|
||||
]
|
||||
|
||||
const IMAGE_EDITOR_ACTIONS = [
|
||||
{
|
||||
id: "fill_all",
|
||||
name: "Fill all",
|
||||
icon: "fa-solid fa-paint-roller",
|
||||
handler: (editor) => {
|
||||
editor.ctx_current.globalCompositeOperation = "source-over"
|
||||
editor.ctx_current.rect(0, 0, editor.width, editor.height)
|
||||
editor.ctx_current.fill()
|
||||
editor.setBrush()
|
||||
},
|
||||
trackHistory: true
|
||||
},
|
||||
{
|
||||
id: "clear",
|
||||
name: "Clear",
|
||||
@ -467,8 +497,8 @@ class ImageEditor {
|
||||
width = (multiplier * width).toFixed()
|
||||
height = (multiplier * height).toFixed()
|
||||
}
|
||||
this.width = width
|
||||
this.height = height
|
||||
this.width = parseInt(width)
|
||||
this.height = parseInt(height)
|
||||
|
||||
this.container.style.width = width + "px"
|
||||
this.container.style.height = height + "px"
|
||||
@ -494,8 +524,10 @@ class ImageEditor {
|
||||
}
|
||||
setImage(url, width, height) {
|
||||
this.setSize(width, height)
|
||||
this.layers.drawing.ctx.clearRect(0, 0, this.width, this.height)
|
||||
this.layers.background.ctx.clearRect(0, 0, this.width, this.height)
|
||||
if (!(url && this.inpainter)) {
|
||||
this.layers.drawing.ctx.clearRect(0, 0, this.width, this.height)
|
||||
}
|
||||
if (url) {
|
||||
var image = new Image()
|
||||
image.onload = () => {
|
||||
@ -604,6 +636,9 @@ class ImageEditor {
|
||||
if (event.key == "y" && event.ctrlKey) {
|
||||
this.history.redo()
|
||||
}
|
||||
if (event.key === "Escape") {
|
||||
this.hide()
|
||||
}
|
||||
}
|
||||
|
||||
// dropper ctrl holding handler stuff
|
||||
@ -682,14 +717,6 @@ class ImageEditor {
|
||||
}
|
||||
}
|
||||
|
||||
function rgbToHex(rgb) {
|
||||
function componentToHex(c) {
|
||||
var hex = parseInt(c).toString(16)
|
||||
return hex.length == 1 ? "0" + hex : hex
|
||||
}
|
||||
return "#" + componentToHex(rgb.r) + componentToHex(rgb.g) + componentToHex(rgb.b)
|
||||
}
|
||||
|
||||
const imageEditor = new ImageEditor(document.getElementById("image-editor"))
|
||||
const imageInpainter = new ImageEditor(document.getElementById("image-inpainter"), true)
|
||||
|
||||
@ -704,3 +731,107 @@ document.getElementById("init_image_button_inpaint").addEventListener("click", (
|
||||
})
|
||||
|
||||
img2imgUnload() // no init image when the app starts
|
||||
|
||||
|
||||
function rgbToHex(rgb) {
|
||||
function componentToHex(c) {
|
||||
var hex = parseInt(c).toString(16)
|
||||
return hex.length == 1 ? "0" + hex : hex
|
||||
}
|
||||
return "#" + componentToHex(rgb.r) + componentToHex(rgb.g) + componentToHex(rgb.b)
|
||||
}
|
||||
|
||||
function hexToRgb(hex) {
|
||||
var result = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex);
|
||||
return result ? {
|
||||
r: parseInt(result[1], 16),
|
||||
g: parseInt(result[2], 16),
|
||||
b: parseInt(result[3], 16)
|
||||
} : null;
|
||||
}
|
||||
|
||||
function pixelCompare(int1, int2) {
|
||||
return Math.abs(int1 - int2) < 4
|
||||
}
|
||||
|
||||
// adapted from https://ben.akrin.com/canvas_fill/fill_04.html
|
||||
function flood_fill(editor, the_canvas_context, x, y, color) {
|
||||
pixel_stack = [{x:x, y:y}] ;
|
||||
pixels = the_canvas_context.getImageData( 0, 0, editor.width, editor.height ) ;
|
||||
var linear_cords = ( y * editor.width + x ) * 4 ;
|
||||
var original_color = {r:pixels.data[linear_cords],
|
||||
g:pixels.data[linear_cords+1],
|
||||
b:pixels.data[linear_cords+2],
|
||||
a:pixels.data[linear_cords+3]} ;
|
||||
|
||||
var opacity = color.a / 255;
|
||||
var new_color = {
|
||||
r: parseInt((color.r * opacity) + (original_color.r * (1 - opacity))),
|
||||
g: parseInt((color.g * opacity) + (original_color.g * (1 - opacity))),
|
||||
b: parseInt((color.b * opacity) + (original_color.b * (1 - opacity)))
|
||||
}
|
||||
|
||||
if ((pixelCompare(new_color.r, original_color.r) &&
|
||||
pixelCompare(new_color.g, original_color.g) &&
|
||||
pixelCompare(new_color.b, original_color.b)))
|
||||
{
|
||||
return; // This color is already the color we want, so do nothing
|
||||
}
|
||||
var max_stack_size = editor.width * editor.height;
|
||||
while( pixel_stack.length > 0 && pixel_stack.length < max_stack_size ) {
|
||||
new_pixel = pixel_stack.shift() ;
|
||||
x = new_pixel.x ;
|
||||
y = new_pixel.y ;
|
||||
|
||||
linear_cords = ( y * editor.width + x ) * 4 ;
|
||||
while( y-->=0 &&
|
||||
(pixelCompare(pixels.data[linear_cords], original_color.r) &&
|
||||
pixelCompare(pixels.data[linear_cords+1], original_color.g) &&
|
||||
pixelCompare(pixels.data[linear_cords+2], original_color.b))) {
|
||||
linear_cords -= editor.width * 4 ;
|
||||
}
|
||||
linear_cords += editor.width * 4 ;
|
||||
y++ ;
|
||||
|
||||
var reached_left = false ;
|
||||
var reached_right = false ;
|
||||
while( y++<editor.height &&
|
||||
(pixelCompare(pixels.data[linear_cords], original_color.r) &&
|
||||
pixelCompare(pixels.data[linear_cords+1], original_color.g) &&
|
||||
pixelCompare(pixels.data[linear_cords+2], original_color.b))) {
|
||||
pixels.data[linear_cords] = new_color.r ;
|
||||
pixels.data[linear_cords+1] = new_color.g ;
|
||||
pixels.data[linear_cords+2] = new_color.b ;
|
||||
pixels.data[linear_cords+3] = 255 ;
|
||||
|
||||
if( x>0 ) {
|
||||
if( pixelCompare(pixels.data[linear_cords-4], original_color.r) &&
|
||||
pixelCompare(pixels.data[linear_cords-4+1], original_color.g) &&
|
||||
pixelCompare(pixels.data[linear_cords-4+2], original_color.b)) {
|
||||
if( !reached_left ) {
|
||||
pixel_stack.push( {x:x-1, y:y} ) ;
|
||||
reached_left = true ;
|
||||
}
|
||||
} else if( reached_left ) {
|
||||
reached_left = false ;
|
||||
}
|
||||
}
|
||||
|
||||
if( x<editor.width-1 ) {
|
||||
if( pixelCompare(pixels.data[linear_cords+4], original_color.r) &&
|
||||
pixelCompare(pixels.data[linear_cords+4+1], original_color.g) &&
|
||||
pixelCompare(pixels.data[linear_cords+4+2], original_color.b)) {
|
||||
if( !reached_right ) {
|
||||
pixel_stack.push( {x:x+1,y:y} ) ;
|
||||
reached_right = true ;
|
||||
}
|
||||
} else if( reached_right ) {
|
||||
reached_right = false ;
|
||||
}
|
||||
}
|
||||
|
||||
linear_cords += editor.width * 4 ;
|
||||
}
|
||||
}
|
||||
the_canvas_context.putImageData( pixels, 0, 0 ) ;
|
||||
}
|
||||
|
@ -104,6 +104,7 @@ function createModifierGroup(modifierGroup, initiallyExpanded) {
|
||||
}
|
||||
|
||||
refreshTagsList()
|
||||
document.dispatchEvent(new Event('refreshImageModifiers'))
|
||||
})
|
||||
}
|
||||
})
|
||||
@ -146,6 +147,7 @@ async function loadModifiers() {
|
||||
}
|
||||
|
||||
loadCustomModifiers()
|
||||
document.dispatchEvent(new Event('loadImageModifiers'))
|
||||
}
|
||||
|
||||
function refreshModifiersState(newTags) {
|
||||
@ -202,6 +204,26 @@ function refreshModifiersState(newTags) {
|
||||
refreshTagsList()
|
||||
}
|
||||
|
||||
function refreshInactiveTags(inactiveTags) {
|
||||
// update inactive tags
|
||||
if (inactiveTags !== undefined && inactiveTags.length > 0) {
|
||||
activeTags.forEach (tag => {
|
||||
if (inactiveTags.find(element => element === tag.name) !== undefined) {
|
||||
tag.inactive = true
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// update cards
|
||||
let overlays = document.querySelector('#editor-inputs-tags-list').querySelectorAll('.modifier-card-overlay')
|
||||
overlays.forEach (i => {
|
||||
let modifierName = i.parentElement.getElementsByClassName('modifier-card-label')[0].getElementsByTagName("p")[0].innerText
|
||||
if (inactiveTags.find(element => element === modifierName) !== undefined) {
|
||||
i.parentElement.classList.add('modifier-toggle-inactive')
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
function refreshTagsList() {
|
||||
editorModifierTagsList.innerHTML = ''
|
||||
|
||||
@ -227,6 +249,7 @@ function refreshTagsList() {
|
||||
activeTags.splice(idx, 1)
|
||||
refreshTagsList()
|
||||
}
|
||||
document.dispatchEvent(new Event('refreshImageModifiers'))
|
||||
})
|
||||
})
|
||||
|
||||
|
@ -26,13 +26,16 @@ let initImagePreview = document.querySelector("#init_image_preview")
|
||||
let initImageSizeBox = document.querySelector("#init_image_size_box")
|
||||
let maskImageSelector = document.querySelector("#mask")
|
||||
let maskImagePreview = document.querySelector("#mask_preview")
|
||||
let applyColorCorrectionField = document.querySelector('#apply_color_correction')
|
||||
let colorCorrectionSetting = document.querySelector('#apply_color_correction_setting')
|
||||
let promptStrengthSlider = document.querySelector('#prompt_strength_slider')
|
||||
let promptStrengthField = document.querySelector('#prompt_strength')
|
||||
let samplerField = document.querySelector('#sampler')
|
||||
let samplerField = document.querySelector('#sampler_name')
|
||||
let samplerSelectionContainer = document.querySelector("#samplerSelection")
|
||||
let useFaceCorrectionField = document.querySelector("#use_face_correction")
|
||||
let useUpscalingField = document.querySelector("#use_upscale")
|
||||
let upscaleModelField = document.querySelector("#upscale_model")
|
||||
let upscaleAmountField = document.querySelector("#upscale_amount")
|
||||
let stableDiffusionModelField = document.querySelector('#stable_diffusion_model')
|
||||
let vaeModelField = document.querySelector('#vae_model')
|
||||
let hypernetworkModelField = document.querySelector('#hypernetwork_model')
|
||||
@ -260,6 +263,7 @@ function showImages(reqBody, res, outputContainer, livePreview) {
|
||||
<div class="imgItemInfo">
|
||||
<span class="imgSeedLabel"></span>
|
||||
</div>
|
||||
<button class="imgPreviewItemClearBtn image_clear_btn"><i class="fa-solid fa-xmark"></i></button>
|
||||
</div>
|
||||
`
|
||||
outputContainer.appendChild(imageItemElem)
|
||||
@ -272,6 +276,11 @@ function showImages(reqBody, res, outputContainer, livePreview) {
|
||||
imageElem.setAttribute('data-steps', imageInferenceSteps)
|
||||
imageElem.setAttribute('data-guidance', imageGuidanceScale)
|
||||
|
||||
const imageRemoveBtn = imageItemElem.querySelector('.imgPreviewItemClearBtn')
|
||||
imageRemoveBtn.addEventListener('click', (e) => {
|
||||
console.log(e)
|
||||
shiftOrConfirm(e, "Remove the image from the results?", () => { imageItemElem.style.display = 'none' })
|
||||
})
|
||||
|
||||
const imageInfo = imageItemElem.querySelector('.imgItemInfo')
|
||||
imageInfo.style.visibility = (livePreview ? 'hidden' : 'visible')
|
||||
@ -302,9 +311,12 @@ function showImages(reqBody, res, outputContainer, livePreview) {
|
||||
const newButton = document.createElement('button')
|
||||
newButton.classList.add('tasksBtns')
|
||||
newButton.innerText = btnInfo.text
|
||||
newButton.addEventListener('click', function() {
|
||||
btnInfo.on_click(req, img)
|
||||
newButton.addEventListener('click', function(event) {
|
||||
btnInfo.on_click(req, img, event)
|
||||
})
|
||||
if (btnInfo.class !== undefined) {
|
||||
newButton.classList.add(btnInfo.class)
|
||||
}
|
||||
imgItemInfo.appendChild(newButton)
|
||||
}
|
||||
buttons.forEach(btn => {
|
||||
@ -613,7 +625,7 @@ function onTaskCompleted(task, reqBody, instance, outputContainer, stepUpdate) {
|
||||
<b>Suggestions</b>:
|
||||
<br/>
|
||||
1. If you have set an initial image, please try reducing its dimension to ${MAX_INIT_IMAGE_DIMENSION}x${MAX_INIT_IMAGE_DIMENSION} or smaller.<br/>
|
||||
2. Try disabling the '<em>Turbo mode</em>' under '<em>Advanced Settings</em>'.<br/>
|
||||
2. Try picking a lower level in the '<em>GPU Memory Usage</em>' setting (in the '<em>Settings</em>' tab).<br/>
|
||||
3. Try generating a smaller image.<br/>`
|
||||
}
|
||||
} else {
|
||||
@ -647,7 +659,7 @@ function onTaskCompleted(task, reqBody, instance, outputContainer, stepUpdate) {
|
||||
task.progressBar.classList.remove("active")
|
||||
setStatus('request', 'done', 'success')
|
||||
} else {
|
||||
task.outputMsg.innerText += `Task ended after ${time}`
|
||||
task.outputMsg.innerText += `. Task ended after ${time}`
|
||||
}
|
||||
|
||||
if (randomSeedField.checked) {
|
||||
@ -662,6 +674,9 @@ function onTaskCompleted(task, reqBody, instance, outputContainer, stepUpdate) {
|
||||
return
|
||||
}
|
||||
|
||||
if (pauseClient) {
|
||||
resumeBtn.click()
|
||||
}
|
||||
renderButtons.style.display = 'none'
|
||||
renameMakeImageButton()
|
||||
|
||||
@ -789,10 +804,11 @@ function createTask(task) {
|
||||
|
||||
if (task.reqBody.init_image !== undefined) {
|
||||
let h = 80
|
||||
let w = task.reqBody.width * h / task.reqBody.height >>0
|
||||
let w = task.reqBody.width * h / task.reqBody.height >>0
|
||||
taskConfig += `<div class="task-initimg" style="float:left;"><img style="width:${w}px;height:${h}px;" src="${task.reqBody.init_image}"><div class="task-fs-initimage"></div></div>`
|
||||
}
|
||||
taskConfig += `<b>Seed:</b> ${task.seed}, <b>Sampler:</b> ${task.reqBody.sampler}, <b>Inference Steps:</b> ${task.reqBody.num_inference_steps}, <b>Guidance Scale:</b> ${task.reqBody.guidance_scale}, <b>Model:</b> ${task.reqBody.use_stable_diffusion_model}`
|
||||
taskConfig += `<b>Seed:</b> ${task.seed}, <b>Sampler:</b> ${task.reqBody.sampler_name}, <b>Inference Steps:</b> ${task.reqBody.num_inference_steps}, <b>Guidance Scale:</b> ${task.reqBody.guidance_scale}, <b>Model:</b> ${task.reqBody.use_stable_diffusion_model}`
|
||||
|
||||
if (task.reqBody.use_vae_model.trim() !== '') {
|
||||
taskConfig += `, <b>VAE:</b> ${task.reqBody.use_vae_model}`
|
||||
}
|
||||
@ -806,12 +822,15 @@ function createTask(task) {
|
||||
taskConfig += `, <b>Fix Faces:</b> ${task.reqBody.use_face_correction}`
|
||||
}
|
||||
if (task.reqBody.use_upscale) {
|
||||
taskConfig += `, <b>Upscale:</b> ${task.reqBody.use_upscale}`
|
||||
taskConfig += `, <b>Upscale:</b> ${task.reqBody.use_upscale} (${task.reqBody.upscale_amount || 4}x)`
|
||||
}
|
||||
if (task.reqBody.use_hypernetwork_model) {
|
||||
taskConfig += `, <b>Hypernetwork:</b> ${task.reqBody.use_hypernetwork_model}`
|
||||
taskConfig += `, <b>Hypernetwork Strength:</b> ${task.reqBody.hypernetwork_strength}`
|
||||
}
|
||||
if (task.reqBody.preserve_init_image_color_profile) {
|
||||
taskConfig += `, <b>Preserve Color Profile:</b> true`
|
||||
}
|
||||
|
||||
let taskEntry = document.createElement('div')
|
||||
taskEntry.id = `imageTaskContainer-${Date.now()}`
|
||||
@ -894,7 +913,7 @@ function createTask(task) {
|
||||
if (task.previewPrompt.innerText.trim() === '') {
|
||||
task.previewPrompt.innerHTML = ' ' // allows the results to be collapsed
|
||||
}
|
||||
|
||||
return taskEntry.id
|
||||
}
|
||||
|
||||
function getCurrentUserRequest() {
|
||||
@ -917,9 +936,8 @@ function getCurrentUserRequest() {
|
||||
width: parseInt(widthField.value),
|
||||
height: parseInt(heightField.value),
|
||||
// allow_nsfw: allowNSFWField.checked,
|
||||
turbo: turboField.checked,
|
||||
vram_usage_level: vramUsageLevelField.value,
|
||||
//render_device: undefined, // Set device affinity. Prefer this device, but wont activate.
|
||||
use_full_precision: useFullPrecisionField.checked,
|
||||
use_stable_diffusion_model: stableDiffusionModelField.value,
|
||||
use_vae_model: vaeModelField.value,
|
||||
stream_progress_updates: true,
|
||||
@ -927,8 +945,10 @@ function getCurrentUserRequest() {
|
||||
show_only_filtered_image: showOnlyFilteredImageField.checked,
|
||||
output_format: outputFormatField.value,
|
||||
output_quality: parseInt(outputQualityField.value),
|
||||
metadata_output_format: document.querySelector('#metadata_output_format').value,
|
||||
original_prompt: promptField.value,
|
||||
active_tags: (activeTags.map(x => x.name))
|
||||
active_tags: (activeTags.map(x => x.name)),
|
||||
inactive_tags: (activeTags.filter(tag => tag.inactive === true).map(x => x.name))
|
||||
}
|
||||
}
|
||||
if (IMAGE_REGEX.test(initImagePreview.src)) {
|
||||
@ -941,9 +961,10 @@ function getCurrentUserRequest() {
|
||||
if (maskSetting.checked) {
|
||||
newTask.reqBody.mask = imageInpainter.getImg()
|
||||
}
|
||||
newTask.reqBody.sampler = 'ddim'
|
||||
newTask.reqBody.preserve_init_image_color_profile = applyColorCorrectionField.checked
|
||||
newTask.reqBody.sampler_name = 'ddim'
|
||||
} else {
|
||||
newTask.reqBody.sampler = samplerField.value
|
||||
newTask.reqBody.sampler_name = samplerField.value
|
||||
}
|
||||
if (saveToDiskField.checked && diskPathField.value.trim() !== '') {
|
||||
newTask.reqBody.save_to_disk_path = diskPathField.value.trim()
|
||||
@ -953,6 +974,7 @@ function getCurrentUserRequest() {
|
||||
}
|
||||
if (useUpscalingField.checked) {
|
||||
newTask.reqBody.use_upscale = upscaleModelField.value
|
||||
newTask.reqBody.upscale_amount = upscaleAmountField.value
|
||||
}
|
||||
if (hypernetworkModelField.value) {
|
||||
newTask.reqBody.use_hypernetwork_model = hypernetworkModelField.value
|
||||
@ -1148,8 +1170,10 @@ function onDimensionChange() {
|
||||
diskPathField.disabled = !saveToDiskField.checked
|
||||
|
||||
upscaleModelField.disabled = !useUpscalingField.checked
|
||||
upscaleAmountField.disabled = !useUpscalingField.checked
|
||||
useUpscalingField.addEventListener('change', function(e) {
|
||||
upscaleModelField.disabled = !this.checked
|
||||
upscaleAmountField.disabled = !this.checked
|
||||
})
|
||||
|
||||
makeImageBtn.addEventListener('click', makeImage)
|
||||
@ -1286,17 +1310,23 @@ async function getModels() {
|
||||
vaeOptions.unshift('') // add a None option
|
||||
hypernetworkOptions.unshift('') // add a None option
|
||||
|
||||
function createModelOptions(modelField, selectedModel) {
|
||||
return function(modelName) {
|
||||
const modelOption = document.createElement('option')
|
||||
modelOption.value = modelName
|
||||
modelOption.innerText = modelName !== '' ? modelName : 'None'
|
||||
function createModelOptions(modelField, selectedModel, path="") {
|
||||
return function fn(modelName) {
|
||||
if (typeof(modelName) == 'string') {
|
||||
const modelOption = document.createElement('option')
|
||||
modelOption.value = path + modelName
|
||||
modelOption.innerHTML = modelName !== '' ? (path != "" ? " "+modelName : modelName) : 'None'
|
||||
|
||||
if (modelName === selectedModel) {
|
||||
modelOption.selected = true
|
||||
if (path + modelName === selectedModel) {
|
||||
modelOption.selected = true
|
||||
}
|
||||
modelField.appendChild(modelOption)
|
||||
} else {
|
||||
const modelGroup = document.createElement('optgroup')
|
||||
modelGroup.label = path + modelName[0]
|
||||
modelField.appendChild(modelGroup)
|
||||
modelName[1].forEach( createModelOptions(modelField, selectedModel, path + modelName[0] + "/" ) )
|
||||
}
|
||||
|
||||
modelField.appendChild(modelOption)
|
||||
}
|
||||
}
|
||||
|
||||
@ -1352,6 +1382,7 @@ function img2imgLoad() {
|
||||
promptStrengthContainer.style.display = 'table-row'
|
||||
samplerSelectionContainer.style.display = "none"
|
||||
initImagePreviewContainer.classList.add("has-image")
|
||||
colorCorrectionSetting.style.display = ''
|
||||
|
||||
initImageSizeBox.textContent = initImagePreview.naturalWidth + " x " + initImagePreview.naturalHeight
|
||||
imageEditor.setImage(this.src, initImagePreview.naturalWidth, initImagePreview.naturalHeight)
|
||||
@ -1366,6 +1397,7 @@ function img2imgUnload() {
|
||||
promptStrengthContainer.style.display = "none"
|
||||
samplerSelectionContainer.style.display = ""
|
||||
initImagePreviewContainer.classList.remove("has-image")
|
||||
colorCorrectionSetting.style.display = 'none'
|
||||
imageEditor.setImage(null, parseInt(widthField.value), parseInt(heightField.value))
|
||||
|
||||
}
|
||||
@ -1417,7 +1449,7 @@ function selectTab(tab_id) {
|
||||
let tabInfo = tabElements.find(t => t.tab.id == tab_id)
|
||||
if (!tabInfo.tab.classList.contains("active")) {
|
||||
tabElements.forEach(info => {
|
||||
if (info.tab.classList.contains("active")) {
|
||||
if (info.tab.classList.contains("active") && info.tab.parentNode === tabInfo.tab.parentNode) {
|
||||
info.tab.classList.toggle("active")
|
||||
info.content.classList.toggle("active")
|
||||
}
|
||||
@ -1438,6 +1470,9 @@ function linkTabContents(tab) {
|
||||
|
||||
tab.addEventListener("click", event => selectTab(tab.id))
|
||||
}
|
||||
function isTabActive(tab) {
|
||||
return tab.classList.contains("active")
|
||||
}
|
||||
|
||||
let pauseClient = false
|
||||
|
||||
|
@ -53,6 +53,23 @@ var PARAMETERS = [
|
||||
return `<input id="${parameter.id}" name="${parameter.id}" size="30" disabled>`
|
||||
}
|
||||
},
|
||||
{
|
||||
id: "metadata_output_format",
|
||||
type: ParameterType.select,
|
||||
label: "Metadata format",
|
||||
note: "will be saved to disk in this format",
|
||||
default: "txt",
|
||||
options: [
|
||||
{
|
||||
value: "txt",
|
||||
label: "txt"
|
||||
},
|
||||
{
|
||||
value: "json",
|
||||
label: "json"
|
||||
}
|
||||
],
|
||||
},
|
||||
{
|
||||
id: "sound_toggle",
|
||||
type: ParameterType.checkbox,
|
||||
@ -66,6 +83,7 @@ var PARAMETERS = [
|
||||
type: ParameterType.checkbox,
|
||||
label: "Process newest jobs first",
|
||||
note: "reverse the normal processing order",
|
||||
icon: "fa-arrow-down-short-wide",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
@ -77,12 +95,20 @@ var PARAMETERS = [
|
||||
default: true,
|
||||
},
|
||||
{
|
||||
id: "turbo",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Turbo Mode",
|
||||
note: "generates images faster, but uses an additional 1 GB of GPU memory",
|
||||
id: "vram_usage_level",
|
||||
type: ParameterType.select,
|
||||
label: "GPU Memory Usage",
|
||||
note: "Faster performance requires more GPU memory (VRAM)<br/><br/>" +
|
||||
"<b>Balanced:</b> nearly as fast as High, much lower VRAM usage<br/>" +
|
||||
"<b>High:</b> fastest, maximum GPU memory usage</br>" +
|
||||
"<b>Low:</b> slowest, recommended for GPUs with 3 to 4 GB memory",
|
||||
icon: "fa-forward",
|
||||
default: true,
|
||||
default: "balanced",
|
||||
options: [
|
||||
{value: "balanced", label: "Balanced"},
|
||||
{value: "high", label: "High"},
|
||||
{value: "low", label: "Low"}
|
||||
],
|
||||
},
|
||||
{
|
||||
id: "use_cpu",
|
||||
@ -105,14 +131,6 @@ var PARAMETERS = [
|
||||
note: "to process in parallel",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "use_full_precision",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Use Full Precision",
|
||||
note: "for GPU-only. warning: this will consume more VRAM",
|
||||
icon: "fa-crosshairs",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "auto_save_settings",
|
||||
type: ParameterType.checkbox,
|
||||
@ -147,14 +165,6 @@ var PARAMETERS = [
|
||||
return `<input id="${parameter.id}" name="${parameter.id}" size="6" value="9000" onkeypress="preventNonNumericalInput(event)">`
|
||||
}
|
||||
},
|
||||
{
|
||||
id: "test_sd2",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Test SD 2.0",
|
||||
note: "Experimental! High memory usage! GPU-only! Not the final version! Please restart the program after changing this.",
|
||||
icon: "fa-fire",
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "use_beta_channel",
|
||||
type: ParameterType.checkbox,
|
||||
@ -210,16 +220,14 @@ function initParameters() {
|
||||
|
||||
initParameters()
|
||||
|
||||
let turboField = document.querySelector('#turbo')
|
||||
let vramUsageLevelField = document.querySelector('#vram_usage_level')
|
||||
let useCPUField = document.querySelector('#use_cpu')
|
||||
let autoPickGPUsField = document.querySelector('#auto_pick_gpus')
|
||||
let useGPUsField = document.querySelector('#use_gpus')
|
||||
let useFullPrecisionField = document.querySelector('#use_full_precision')
|
||||
let saveToDiskField = document.querySelector('#save_to_disk')
|
||||
let diskPathField = document.querySelector('#diskPath')
|
||||
let listenToNetworkField = document.querySelector("#listen_to_network")
|
||||
let listenPortField = document.querySelector("#listen_port")
|
||||
let testSD2Field = document.querySelector("#test_sd2")
|
||||
let useBetaChannelField = document.querySelector("#use_beta_channel")
|
||||
let uiOpenBrowserOnStartField = document.querySelector("#ui_open_browser_on_start")
|
||||
let confirmDangerousActionsField = document.querySelector("#confirm_dangerous_actions")
|
||||
@ -256,12 +264,6 @@ async function getAppConfig() {
|
||||
if (config.ui && config.ui.open_browser_on_start === false) {
|
||||
uiOpenBrowserOnStartField.checked = false
|
||||
}
|
||||
if ('test_sd2' in config) {
|
||||
testSD2Field.checked = config['test_sd2']
|
||||
}
|
||||
|
||||
let testSD2SettingEntry = getParameterSettingsEntry('test_sd2')
|
||||
testSD2SettingEntry.style.display = (config.update_branch === 'beta' ? '' : 'none')
|
||||
if (config.net && config.net.listen_to_network === false) {
|
||||
listenToNetworkField.checked = false
|
||||
}
|
||||
@ -327,20 +329,10 @@ autoPickGPUsField.addEventListener('click', function() {
|
||||
gpuSettingEntry.style.display = (this.checked ? 'none' : '')
|
||||
})
|
||||
|
||||
async function getDiskPath() {
|
||||
try {
|
||||
var diskPath = getSetting("diskPath")
|
||||
if (diskPath == '' || diskPath == undefined || diskPath == "undefined") {
|
||||
let res = await fetch('/get/output_dir')
|
||||
if (res.status === 200) {
|
||||
res = await res.json()
|
||||
res = res.output_dir
|
||||
|
||||
setSetting("diskPath", res)
|
||||
}
|
||||
}
|
||||
} catch (e) {
|
||||
console.log('error fetching output dir path', e)
|
||||
async function setDiskPath(defaultDiskPath) {
|
||||
var diskPath = getSetting("diskPath")
|
||||
if (diskPath == '' || diskPath == undefined || diskPath == "undefined") {
|
||||
setSetting("diskPath", defaultDiskPath)
|
||||
}
|
||||
}
|
||||
|
||||
@ -415,6 +407,7 @@ async function getSystemInfo() {
|
||||
|
||||
setDeviceInfo(devices)
|
||||
setHostInfo(res['hosts'])
|
||||
setDiskPath(res['default_output_dir'])
|
||||
} catch (e) {
|
||||
console.log('error fetching devices', e)
|
||||
}
|
||||
@ -435,8 +428,7 @@ saveSettingsBtn.addEventListener('click', function() {
|
||||
'update_branch': updateBranch,
|
||||
'ui_open_browser_on_start': uiOpenBrowserOnStartField.checked,
|
||||
'listen_to_network': listenToNetworkField.checked,
|
||||
'listen_port': listenPortField.value,
|
||||
'test_sd2': testSD2Field.checked
|
||||
'listen_port': listenPortField.value
|
||||
})
|
||||
saveSettingsBtn.classList.add('active')
|
||||
asyncDelay(300).then(() => saveSettingsBtn.classList.remove('active'))
|
||||
|
@ -13,8 +13,15 @@ function initTheme() {
|
||||
.filter(sheet => sheet.href?.startsWith(window.location.origin))
|
||||
.flatMap(sheet => Array.from(sheet.cssRules))
|
||||
.forEach(rule => {
|
||||
var selector = rule.selectorText; // TODO: also do selector == ":root", re-run un-set props
|
||||
var selector = rule.selectorText;
|
||||
if (selector && selector.startsWith(".theme-") && !selector.includes(" ")) {
|
||||
if (DEFAULT_THEME) { // re-add props that dont change (css needs this so they update correctly)
|
||||
Array.from(DEFAULT_THEME.rule.style)
|
||||
.filter(cssVariable => !Array.from(rule.style).includes(cssVariable))
|
||||
.forEach(cssVariable => {
|
||||
rule.style.setProperty(cssVariable, DEFAULT_THEME.rule.style.getPropertyValue(cssVariable));
|
||||
});
|
||||
}
|
||||
var theme_key = selector.substring(1);
|
||||
THEMES.push({
|
||||
key: theme_key,
|
||||
@ -62,12 +69,6 @@ function themeFieldChanged() {
|
||||
var theme = THEMES.find(t => t.key == theme_key);
|
||||
let borderColor = undefined
|
||||
if (theme) {
|
||||
// refresh variables incase they are back referencing
|
||||
Array.from(DEFAULT_THEME.rule.style)
|
||||
.filter(cssVariable => !Array.from(theme.rule.style).includes(cssVariable))
|
||||
.forEach(cssVariable => {
|
||||
body.style.setProperty(cssVariable, DEFAULT_THEME.rule.style.getPropertyValue(cssVariable));
|
||||
});
|
||||
borderColor = theme.rule.style.getPropertyValue('--input-border-color').trim()
|
||||
if (!borderColor.startsWith('#')) {
|
||||
borderColor = theme.rule.style.getPropertyValue('--theme-color-fallback')
|
||||
|
@ -20,6 +20,19 @@ function getNextSibling(elem, selector) {
|
||||
}
|
||||
}
|
||||
|
||||
function findClosestAncestor(element, selector) {
|
||||
if (!element || !element.parentNode) {
|
||||
// reached the top of the DOM tree, return null
|
||||
return null;
|
||||
} else if (element.parentNode.matches(selector)) {
|
||||
// found an ancestor that matches the selector, return it
|
||||
return element.parentNode;
|
||||
} else {
|
||||
// continue searching upwards
|
||||
return findClosestAncestor(element.parentNode, selector);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Panel Stuff */
|
||||
|
||||
|
@ -74,6 +74,7 @@
|
||||
// update activeTags
|
||||
const tag = activeTags.splice(currentPos, 1)
|
||||
activeTags.splice(droppedPos, 0, tag[0])
|
||||
document.dispatchEvent(new Event('refreshImageModifiers'))
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -58,6 +58,7 @@
|
||||
break
|
||||
}
|
||||
}
|
||||
document.dispatchEvent(new Event('refreshImageModifiers'))
|
||||
}
|
||||
}
|
||||
})
|
||||
|
471
ui/plugins/ui/merge.plugin.js
Normal file
@ -0,0 +1,471 @@
|
||||
(function() {
|
||||
"use strict"
|
||||
|
||||
///////////////////// Function section
|
||||
function smoothstep(x) {
|
||||
return x * x * (3 - 2 * x)
|
||||
}
|
||||
|
||||
function smootherstep(x) {
|
||||
return x * x * x * (x * (x * 6 - 15) + 10)
|
||||
}
|
||||
|
||||
function smootheststep(x) {
|
||||
let y = -20 * Math.pow(x, 7)
|
||||
y += 70 * Math.pow(x, 6)
|
||||
y -= 84 * Math.pow(x, 5)
|
||||
y += 35 * Math.pow(x, 4)
|
||||
return y
|
||||
}
|
||||
function getCurrentTime() {
|
||||
const now = new Date();
|
||||
let hours = now.getHours();
|
||||
let minutes = now.getMinutes();
|
||||
let seconds = now.getSeconds();
|
||||
|
||||
hours = hours < 10 ? `0${hours}` : hours;
|
||||
minutes = minutes < 10 ? `0${minutes}` : minutes;
|
||||
seconds = seconds < 10 ? `0${seconds}` : seconds;
|
||||
|
||||
return `${hours}:${minutes}:${seconds}`;
|
||||
}
|
||||
|
||||
function addLogMessage(message) {
|
||||
const logContainer = document.getElementById('merge-log');
|
||||
logContainer.innerHTML += `<i>${getCurrentTime()}</i> ${message}<br>`;
|
||||
|
||||
// Scroll to the bottom of the log
|
||||
logContainer.scrollTop = logContainer.scrollHeight;
|
||||
|
||||
document.querySelector('#merge-log-container').style.display = 'block'
|
||||
}
|
||||
|
||||
function addLogSeparator() {
|
||||
const logContainer = document.getElementById('merge-log');
|
||||
logContainer.innerHTML += '<hr>'
|
||||
|
||||
logContainer.scrollTop = logContainer.scrollHeight;
|
||||
}
|
||||
|
||||
function drawDiagram(fn) {
|
||||
const SIZE = 300
|
||||
const canvas = document.getElementById('merge-canvas');
|
||||
canvas.height = canvas.width = SIZE
|
||||
const ctx = canvas.getContext('2d');
|
||||
|
||||
// Draw coordinate system
|
||||
ctx.scale(1, -1);
|
||||
ctx.translate(0, -canvas.height);
|
||||
ctx.lineWidth = 1;
|
||||
ctx.beginPath();
|
||||
|
||||
ctx.strokeStyle = 'white'
|
||||
ctx.moveTo(0,0); ctx.lineTo(0,SIZE); ctx.lineTo(SIZE,SIZE); ctx.lineTo(SIZE,0); ctx.lineTo(0,0); ctx.lineTo(SIZE,SIZE);
|
||||
ctx.stroke()
|
||||
ctx.beginPath()
|
||||
ctx.setLineDash([1,2])
|
||||
const n = SIZE / 10
|
||||
for (let i=n; i<SIZE; i+=n) {
|
||||
ctx.moveTo(0,i)
|
||||
ctx.lineTo(SIZE,i)
|
||||
ctx.moveTo(i,0)
|
||||
ctx.lineTo(i,SIZE)
|
||||
}
|
||||
ctx.stroke()
|
||||
ctx.beginPath()
|
||||
ctx.setLineDash([])
|
||||
ctx.beginPath();
|
||||
ctx.strokeStyle = 'black'
|
||||
ctx.lineWidth = 3;
|
||||
// Plot function
|
||||
const numSamples = 20;
|
||||
for (let i = 0; i <= numSamples; i++) {
|
||||
const x = i / numSamples;
|
||||
const y = fn(x);
|
||||
|
||||
const canvasX = x * SIZE;
|
||||
const canvasY = y * SIZE;
|
||||
|
||||
if (i === 0) {
|
||||
ctx.moveTo(canvasX, canvasY);
|
||||
} else {
|
||||
ctx.lineTo(canvasX, canvasY);
|
||||
}
|
||||
}
|
||||
ctx.stroke()
|
||||
// Plot alpha values (yellow boxes)
|
||||
let start = parseFloat( document.querySelector('#merge-start').value )
|
||||
let step = parseFloat( document.querySelector('#merge-step').value )
|
||||
let iterations = document.querySelector('#merge-count').value>>0
|
||||
ctx.beginPath()
|
||||
ctx.fillStyle = "yellow"
|
||||
for (let i=0; i< iterations; i++) {
|
||||
const alpha = ( start + i * step ) / 100
|
||||
const x = alpha*SIZE
|
||||
const y = fn(alpha) * SIZE
|
||||
if (x <= SIZE) {
|
||||
ctx.rect(x-3,y-3,6,6)
|
||||
ctx.fill()
|
||||
} else {
|
||||
ctx.strokeStyle = 'red'
|
||||
ctx.moveTo(0,0); ctx.lineTo(0,SIZE); ctx.lineTo(SIZE,SIZE); ctx.lineTo(SIZE,0); ctx.lineTo(0,0); ctx.lineTo(SIZE,SIZE);
|
||||
ctx.stroke()
|
||||
addLogMessage('<i>Warning: maximum ratio is ≥ 100%</i>')
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function updateChart() {
|
||||
let fn = (x) => x
|
||||
switch (document.querySelector('#merge-interpolation').value) {
|
||||
case 'SmoothStep':
|
||||
fn = smoothstep
|
||||
break
|
||||
case 'SmootherStep':
|
||||
fn = smootherstep
|
||||
break
|
||||
case 'SmoothestStep':
|
||||
fn = smootheststep
|
||||
break
|
||||
}
|
||||
drawDiagram(fn)
|
||||
}
|
||||
|
||||
/////////////////////// Tab implementation
|
||||
document.querySelector('.tab-container')?.insertAdjacentHTML('beforeend', `
|
||||
<span id="tab-merge" class="tab">
|
||||
<span><i class="fa fa-code-merge icon"></i> Merge models <small>(beta)</small></span>
|
||||
</span>
|
||||
`)
|
||||
|
||||
document.querySelector('#tab-content-wrapper')?.insertAdjacentHTML('beforeend', `
|
||||
<div id="tab-content-merge" class="tab-content">
|
||||
<div id="merge" class="tab-content-inner">
|
||||
Loading..
|
||||
</div>
|
||||
</div>
|
||||
`)
|
||||
|
||||
const tabMerge = document.querySelector('#tab-merge')
|
||||
if (tabMerge) {
|
||||
linkTabContents(tabMerge)
|
||||
}
|
||||
const merge = document.querySelector('#merge')
|
||||
if (!merge) {
|
||||
// merge tab not found, dont exec plugin code.
|
||||
return
|
||||
}
|
||||
|
||||
document.querySelector('body').insertAdjacentHTML('beforeend', `
|
||||
<style>
|
||||
#tab-content-merge .tab-content-inner {
|
||||
max-width: 100%;
|
||||
padding: 10pt;
|
||||
}
|
||||
.merge-container {
|
||||
margin-left: 15%;
|
||||
margin-right: 15%;
|
||||
text-align: left;
|
||||
display: inline-grid;
|
||||
grid-template-columns: 1fr 1fr;
|
||||
grid-template-rows: auto auto auto;
|
||||
gap: 0px 0px;
|
||||
grid-auto-flow: row;
|
||||
grid-template-areas:
|
||||
"merge-input merge-config"
|
||||
"merge-buttons merge-buttons";
|
||||
}
|
||||
.merge-container p {
|
||||
margin-top: 3pt;
|
||||
margin-bottom: 3pt;
|
||||
}
|
||||
.merge-config .tab-content {
|
||||
background: var(--background-color1);
|
||||
border-radius: 3pt;
|
||||
}
|
||||
.merge-config .tab-content-inner {
|
||||
text-align: left;
|
||||
}
|
||||
|
||||
.merge-input {
|
||||
grid-area: merge-input;
|
||||
padding-left:1em;
|
||||
}
|
||||
.merge-config {
|
||||
grid-area: merge-config;
|
||||
padding:1em;
|
||||
}
|
||||
.merge-config input {
|
||||
margin-bottom: 3px;
|
||||
}
|
||||
.merge-config select {
|
||||
margin-bottom: 3px;
|
||||
}
|
||||
.merge-buttons {
|
||||
grid-area: merge-buttons;
|
||||
padding:1em;
|
||||
text-align: center;
|
||||
}
|
||||
#merge-button {
|
||||
padding: 8px;
|
||||
width:20em;
|
||||
}
|
||||
div#merge-log {
|
||||
height:150px;
|
||||
overflow-x:hidden;
|
||||
overflow-y:scroll;
|
||||
background:var(--background-color1);
|
||||
border-radius: 3pt;
|
||||
}
|
||||
div#merge-log i {
|
||||
color: hsl(var(--accent-hue), 100%, calc(2*var(--accent-lightness)));
|
||||
font-family: monospace;
|
||||
}
|
||||
.disabled {
|
||||
background: var(--background-color4);
|
||||
color: var(--text-color);
|
||||
}
|
||||
#merge-type-tabs {
|
||||
border-bottom: 1px solid black;
|
||||
}
|
||||
#merge-log-container {
|
||||
display: none;
|
||||
}
|
||||
.merge-container #merge-warning {
|
||||
color: rgb(153, 153, 153);
|
||||
}
|
||||
</style>
|
||||
`)
|
||||
|
||||
merge.innerHTML = `
|
||||
<div class="merge-container panel-box">
|
||||
<div class="merge-input">
|
||||
<p><label for="#mergeModelA">Select Model A:</label></p>
|
||||
<select id="mergeModelA">
|
||||
<option>A</option>
|
||||
</select>
|
||||
<p><label for="#mergeModelB">Select Model B:</label></p>
|
||||
<select id="mergeModelB">
|
||||
<option>A</option>
|
||||
</select>
|
||||
<br/><br/>
|
||||
<p id="merge-warning"><small><b>Important:</b> Please merge models of similar type.<br/>For e.g. <code>SD 1.4</code> models with only <code>SD 1.4/1.5</code> models,<br/><code>SD 2.0</code> with <code>SD 2.0</code>-type, and <code>SD 2.1</code> with <code>SD 2.1</code>-type models.</small></p>
|
||||
<br/>
|
||||
<table>
|
||||
<tr>
|
||||
<td><label for="#merge-filename">Output file name:</label></td>
|
||||
<td><input id="merge-filename" size=24> <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Base name of the output file.<br>Mix ratio and file suffix will be appended to this.</span></i></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><label for="#merge-fp">Output precision:</label></td>
|
||||
<td><select id="merge-fp">
|
||||
<option value="fp16">fp16 (smaller file size)</option>
|
||||
<option value="fp32">fp32 (larger file size)</option>
|
||||
</select>
|
||||
<i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Image generation uses fp16, so it's a good choice.<br>Use fp32 if you want to use the result models for more mixes</span></i>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><label for="#merge-format">Output file format:</label></td>
|
||||
<td><select id="merge-format">
|
||||
<option value="safetensors">Safetensors (recommended)</option>
|
||||
<option value="ckpt">CKPT/Pickle (legacy format)</option>
|
||||
</select>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<br/>
|
||||
<div id="merge-log-container">
|
||||
<p><label for="#merge-log">Log messages:</label></p>
|
||||
<div id="merge-log"></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="merge-config">
|
||||
<div class="tab-container">
|
||||
<span id="tab-merge-opts-single" class="tab active">
|
||||
<span>Make a single file</small></span>
|
||||
</span>
|
||||
<span id="tab-merge-opts-batch" class="tab">
|
||||
<span>Make multiple variations</small></span>
|
||||
</span>
|
||||
</div>
|
||||
<div>
|
||||
<div id="tab-content-merge-opts-single" class="tab-content active">
|
||||
<div class="tab-content-inner">
|
||||
<small>Saves a single merged model file, at the specified merge ratio.</small><br/><br/>
|
||||
<label for="#single-merge-ratio-slider">Merge ratio:</label>
|
||||
<input id="single-merge-ratio-slider" name="single-merge-ratio-slider" class="editor-slider" value="50" type="range" min="1" max="1000">
|
||||
<input id="single-merge-ratio" size=2 value="5">%
|
||||
<i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Model A's contribution to the mix. The rest will be from Model B.</span></i>
|
||||
</div>
|
||||
</div>
|
||||
<div id="tab-content-merge-opts-batch" class="tab-content">
|
||||
<div class="tab-content-inner">
|
||||
<small>Saves multiple variations of the model, at different merge ratios.<br/>Each variation will be saved as a separate file.</small><br/><br/>
|
||||
<table>
|
||||
<tr><td><label for="#merge-count">Number of variations:</label></td>
|
||||
<td> <input id="merge-count" size=2 value="5"></td>
|
||||
<td> <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Number of models to create</span></i></td></tr>
|
||||
<tr><td><label for="#merge-start">Starting merge ratio:</label></td>
|
||||
<td> <input id="merge-start" size=2 value="5">%</td>
|
||||
<td> <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Smallest share of model A in the mix</span></i></td></tr>
|
||||
<tr><td><label for="#merge-step">Increment each step:</label></td>
|
||||
<td> <input id="merge-step" size=2 value="10">%</td>
|
||||
<td> <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Share of model A added into the mix per step</span></i></td></tr>
|
||||
<tr><td><label for="#merge-interpolation">Interpolation model:</label></td>
|
||||
<td> <select id="merge-interpolation">
|
||||
<option>Exact</option>
|
||||
<option>SmoothStep</option>
|
||||
<option>SmootherStep</option>
|
||||
<option>SmoothestStep</option>
|
||||
</select></td>
|
||||
<td> <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Sigmoid function to be applied to the model share before mixing</span></i></td></tr>
|
||||
</table>
|
||||
<br/>
|
||||
<small>Preview of variation ratios:</small><br/>
|
||||
<canvas id="merge-canvas" width="400" height="400"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="merge-buttons">
|
||||
<button id="merge-button" class="primaryButton">Merge models</button>
|
||||
</div>
|
||||
</div>`
|
||||
|
||||
const tabSettingsSingle = document.querySelector('#tab-merge-opts-single')
|
||||
const tabSettingsBatch = document.querySelector('#tab-merge-opts-batch')
|
||||
linkTabContents(tabSettingsSingle)
|
||||
linkTabContents(tabSettingsBatch)
|
||||
|
||||
/////////////////////// Event Listener
|
||||
document.addEventListener('tabClick', (e) => {
|
||||
if (e.detail.name == 'merge') {
|
||||
console.log('Activate')
|
||||
let modelList = stableDiffusionModelField.cloneNode(true)
|
||||
modelList.id = "mergeModelA"
|
||||
document.querySelector("#mergeModelA").replaceWith(modelList)
|
||||
modelList = stableDiffusionModelField.cloneNode(true)
|
||||
modelList.id = "mergeModelB"
|
||||
document.querySelector("#mergeModelB").replaceWith(modelList)
|
||||
updateChart()
|
||||
}
|
||||
})
|
||||
|
||||
// slider
|
||||
const singleMergeRatioField = document.querySelector('#single-merge-ratio')
|
||||
const singleMergeRatioSlider = document.querySelector('#single-merge-ratio-slider')
|
||||
|
||||
function updateSingleMergeRatio() {
|
||||
singleMergeRatioField.value = singleMergeRatioSlider.value / 10
|
||||
singleMergeRatioField.dispatchEvent(new Event("change"))
|
||||
}
|
||||
|
||||
function updateSingleMergeRatioSlider() {
|
||||
if (singleMergeRatioField.value < 0) {
|
||||
singleMergeRatioField.value = 0
|
||||
} else if (singleMergeRatioField.value > 100) {
|
||||
singleMergeRatioField.value = 100
|
||||
}
|
||||
|
||||
singleMergeRatioSlider.value = singleMergeRatioField.value * 10
|
||||
singleMergeRatioSlider.dispatchEvent(new Event("change"))
|
||||
}
|
||||
|
||||
singleMergeRatioSlider.addEventListener('input', updateSingleMergeRatio)
|
||||
singleMergeRatioField.addEventListener('input', updateSingleMergeRatioSlider)
|
||||
updateSingleMergeRatio()
|
||||
|
||||
document.querySelector('.merge-config').addEventListener('change', updateChart)
|
||||
|
||||
document.querySelector('#merge-button').addEventListener('click', async function(e) {
|
||||
// Build request template
|
||||
let model0 = document.querySelector('#mergeModelA').value
|
||||
let model1 = document.querySelector('#mergeModelB').value
|
||||
let request = { model0: model0, model1: model1 }
|
||||
request['use_fp16'] = document.querySelector('#merge-fp').value == 'fp16'
|
||||
let iterations = document.querySelector('#merge-count').value>>0
|
||||
let start = parseFloat( document.querySelector('#merge-start').value )
|
||||
let step = parseFloat( document.querySelector('#merge-step').value )
|
||||
|
||||
if (isTabActive(tabSettingsSingle)) {
|
||||
start = parseFloat(singleMergeRatioField.value)
|
||||
step = 0
|
||||
iterations = 1
|
||||
addLogMessage(`merge ratio = ${start}%`)
|
||||
} else {
|
||||
addLogMessage(`start = ${start}%`)
|
||||
addLogMessage(`step = ${step}%`)
|
||||
}
|
||||
|
||||
if (start + (iterations-1) * step >= 100) {
|
||||
addLogMessage('<i>Aborting: maximum ratio is ≥ 100%</i>')
|
||||
addLogMessage('Reduce the number of variations or the step size')
|
||||
addLogSeparator()
|
||||
document.querySelector('#merge-count').focus()
|
||||
return
|
||||
}
|
||||
|
||||
if (document.querySelector('#merge-filename').value == "") {
|
||||
addLogMessage('<i>Aborting: No output file name specified</i>')
|
||||
addLogSeparator()
|
||||
document.querySelector('#merge-filename').focus()
|
||||
return
|
||||
}
|
||||
|
||||
// Disable merge button
|
||||
e.target.disabled=true
|
||||
e.target.classList.add('disabled')
|
||||
let cursor = $("body").css("cursor");
|
||||
let label = document.querySelector('#merge-button').innerHTML
|
||||
$("body").css("cursor", "progress");
|
||||
document.querySelector('#merge-button').innerHTML = 'Merging models ...'
|
||||
|
||||
addLogMessage("Merging models")
|
||||
addLogMessage("Model A: "+model0)
|
||||
addLogMessage("Model B: "+model1)
|
||||
|
||||
// Batch main loop
|
||||
for (let i=0; i<iterations; i++) {
|
||||
let alpha = ( start + i * step ) / 100
|
||||
switch (document.querySelector('#merge-interpolation').value) {
|
||||
case 'SmoothStep':
|
||||
alpha = smoothstep(alpha)
|
||||
break
|
||||
case 'SmootherStep':
|
||||
alpha = smootherstep(alpha)
|
||||
break
|
||||
case 'SmoothestStep':
|
||||
alpha = smootheststep(alpha)
|
||||
break
|
||||
}
|
||||
addLogMessage(`merging batch job ${i+1}/${iterations}, alpha = ${alpha.toFixed(5)}...`)
|
||||
|
||||
request['out_path'] = document.querySelector('#merge-filename').value
|
||||
request['out_path'] += '-' + alpha.toFixed(5) + '.' + document.querySelector('#merge-format').value
|
||||
addLogMessage(` filename: ${request['out_path']}`)
|
||||
|
||||
request['ratio'] = alpha
|
||||
let res = await fetch('/model/merge', {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify(request) })
|
||||
const data = await res.json();
|
||||
addLogMessage(JSON.stringify(data))
|
||||
}
|
||||
addLogMessage("<b>Done.</b> The models have been saved to your <tt>models/stable-diffusion</tt> folder.")
|
||||
addLogSeparator()
|
||||
// Re-enable merge button
|
||||
$("body").css("cursor", cursor);
|
||||
document.querySelector('#merge-button').innerHTML = label
|
||||
e.target.disabled=false
|
||||
e.target.classList.remove('disabled')
|
||||
|
||||
// Update model list
|
||||
stableDiffusionModelField.innerHTML = ''
|
||||
vaeModelField.innerHTML = ''
|
||||
hypernetworkModelField.innerHTML = ''
|
||||
await getModels()
|
||||
})
|
||||
|
||||
})()
|
@ -46,7 +46,7 @@
|
||||
|
||||
return obj;
|
||||
});
|
||||
console.log(activeTags)
|
||||
document.dispatchEvent(new Event('refreshImageModifiers'))
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@ -9,7 +9,7 @@
|
||||
}
|
||||
}
|
||||
|
||||
document.querySelector('#tab-container')?.insertAdjacentHTML('beforeend', `
|
||||
document.querySelector('.tab-container')?.insertAdjacentHTML('beforeend', `
|
||||
<span id="tab-news" class="tab">
|
||||
<span><i class="fa fa-bolt icon"></i> What's new?</span>
|
||||
</span>
|
||||
|
@ -1,119 +0,0 @@
|
||||
import json
|
||||
|
||||
class Request:
|
||||
request_id: str = None
|
||||
session_id: str = "session"
|
||||
prompt: str = ""
|
||||
negative_prompt: str = ""
|
||||
init_image: str = None # base64
|
||||
mask: str = None # base64
|
||||
num_outputs: int = 1
|
||||
num_inference_steps: int = 50
|
||||
guidance_scale: float = 7.5
|
||||
width: int = 512
|
||||
height: int = 512
|
||||
seed: int = 42
|
||||
prompt_strength: float = 0.8
|
||||
sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
|
||||
# allow_nsfw: bool = False
|
||||
precision: str = "autocast" # or "full"
|
||||
save_to_disk_path: str = None
|
||||
turbo: bool = True
|
||||
use_full_precision: bool = False
|
||||
use_face_correction: str = None # or "GFPGANv1.3"
|
||||
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
|
||||
use_stable_diffusion_model: str = "sd-v1-4"
|
||||
use_vae_model: str = None
|
||||
use_hypernetwork_model: str = None
|
||||
hypernetwork_strength: float = 1
|
||||
show_only_filtered_image: bool = False
|
||||
output_format: str = "jpeg" # or "png"
|
||||
output_quality: int = 75
|
||||
|
||||
stream_progress_updates: bool = False
|
||||
stream_image_progress: bool = False
|
||||
|
||||
def json(self):
|
||||
return {
|
||||
"session_id": self.session_id,
|
||||
"prompt": self.prompt,
|
||||
"negative_prompt": self.negative_prompt,
|
||||
"num_outputs": self.num_outputs,
|
||||
"num_inference_steps": self.num_inference_steps,
|
||||
"guidance_scale": self.guidance_scale,
|
||||
"hypernetwork_strengtgh": self.guidance_scale,
|
||||
"width": self.width,
|
||||
"height": self.height,
|
||||
"seed": self.seed,
|
||||
"prompt_strength": self.prompt_strength,
|
||||
"sampler": self.sampler,
|
||||
"use_face_correction": self.use_face_correction,
|
||||
"use_upscale": self.use_upscale,
|
||||
"use_stable_diffusion_model": self.use_stable_diffusion_model,
|
||||
"use_vae_model": self.use_vae_model,
|
||||
"use_hypernetwork_model": self.use_hypernetwork_model,
|
||||
"hypernetwork_strength": self.hypernetwork_strength,
|
||||
"output_format": self.output_format,
|
||||
"output_quality": self.output_quality,
|
||||
}
|
||||
|
||||
def __str__(self):
|
||||
return f'''
|
||||
session_id: {self.session_id}
|
||||
prompt: {self.prompt}
|
||||
negative_prompt: {self.negative_prompt}
|
||||
seed: {self.seed}
|
||||
num_inference_steps: {self.num_inference_steps}
|
||||
sampler: {self.sampler}
|
||||
guidance_scale: {self.guidance_scale}
|
||||
w: {self.width}
|
||||
h: {self.height}
|
||||
precision: {self.precision}
|
||||
save_to_disk_path: {self.save_to_disk_path}
|
||||
turbo: {self.turbo}
|
||||
use_full_precision: {self.use_full_precision}
|
||||
use_face_correction: {self.use_face_correction}
|
||||
use_upscale: {self.use_upscale}
|
||||
use_stable_diffusion_model: {self.use_stable_diffusion_model}
|
||||
use_vae_model: {self.use_vae_model}
|
||||
use_hypernetwork_model: {self.use_hypernetwork_model}
|
||||
hypernetwork_strength: {self.hypernetwork_strength}
|
||||
show_only_filtered_image: {self.show_only_filtered_image}
|
||||
output_format: {self.output_format}
|
||||
output_quality: {self.output_quality}
|
||||
|
||||
stream_progress_updates: {self.stream_progress_updates}
|
||||
stream_image_progress: {self.stream_image_progress}'''
|
||||
|
||||
class Image:
|
||||
data: str # base64
|
||||
seed: int
|
||||
is_nsfw: bool
|
||||
path_abs: str = None
|
||||
|
||||
def __init__(self, data, seed):
|
||||
self.data = data
|
||||
self.seed = seed
|
||||
|
||||
def json(self):
|
||||
return {
|
||||
"data": self.data,
|
||||
"seed": self.seed,
|
||||
"path_abs": self.path_abs,
|
||||
}
|
||||
|
||||
class Response:
|
||||
request: Request
|
||||
images: list
|
||||
|
||||
def json(self):
|
||||
res = {
|
||||
"status": 'succeeded',
|
||||
"request": self.request.json(),
|
||||
"output": [],
|
||||
}
|
||||
|
||||
for image in self.images:
|
||||
res["output"].append(image.json())
|
||||
|
||||
return res
|
@ -1,162 +0,0 @@
|
||||
diff --git a/optimizedSD/ddpm.py b/optimizedSD/ddpm.py
|
||||
index 79058bc..a473411 100644
|
||||
--- a/optimizedSD/ddpm.py
|
||||
+++ b/optimizedSD/ddpm.py
|
||||
@@ -564,12 +564,12 @@ class UNet(DDPM):
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
callback=callback, img_callback=img_callback)
|
||||
|
||||
+ yield from samples
|
||||
+
|
||||
if(self.turbo):
|
||||
self.model1.to("cpu")
|
||||
self.model2.to("cpu")
|
||||
|
||||
- return samples
|
||||
-
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond,b, img,
|
||||
ddim_use_original_steps=False,
|
||||
@@ -608,10 +608,10 @@ class UNet(DDPM):
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(pred_x0, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
||||
|
||||
- return img
|
||||
+ yield from img_callback(img, len(iterator)-1)
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
@@ -740,13 +740,13 @@ class UNet(DDPM):
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(x_dec, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(x_dec, i)
|
||||
|
||||
if mask is not None:
|
||||
- return x0 * mask + (1. - mask) * x_dec
|
||||
+ x_dec = x0 * mask + (1. - mask) * x_dec
|
||||
|
||||
- return x_dec
|
||||
+ yield from img_callback(x_dec, len(iterator)-1)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -820,12 +820,12 @@ class UNet(DDPM):
|
||||
|
||||
|
||||
d = to_d(x, sigma_hat, denoised)
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(x, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(x, i)
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
- return x
|
||||
+ yield from img_callback(x, len(sigmas)-1)
|
||||
|
||||
@torch.no_grad()
|
||||
def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, img_callback=None):
|
||||
@@ -852,14 +852,14 @@ class UNet(DDPM):
|
||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(x, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(x, i)
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
# Euler method
|
||||
dt = sigma_down - sigmas[i]
|
||||
x = x + d * dt
|
||||
x = x + torch.randn_like(x) * sigma_up
|
||||
- return x
|
||||
+ yield from img_callback(x, len(sigmas)-1)
|
||||
|
||||
|
||||
|
||||
@@ -892,8 +892,8 @@ class UNet(DDPM):
|
||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
d = to_d(x, sigma_hat, denoised)
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(x, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(x, i)
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
if sigmas[i + 1] == 0:
|
||||
# Euler method
|
||||
@@ -913,7 +913,7 @@ class UNet(DDPM):
|
||||
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
||||
d_prime = (d + d_2) / 2
|
||||
x = x + d_prime * dt
|
||||
- return x
|
||||
+ yield from img_callback(x, len(sigmas)-1)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -944,8 +944,8 @@ class UNet(DDPM):
|
||||
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(x, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(x, i)
|
||||
|
||||
d = to_d(x, sigma_hat, denoised)
|
||||
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
|
||||
@@ -966,7 +966,7 @@ class UNet(DDPM):
|
||||
|
||||
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
||||
x = x + d_2 * dt_2
|
||||
- return x
|
||||
+ yield from img_callback(x, len(sigmas)-1)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -994,8 +994,8 @@ class UNet(DDPM):
|
||||
|
||||
|
||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(x, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(x, i)
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
|
||||
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
|
||||
@@ -1016,7 +1016,7 @@ class UNet(DDPM):
|
||||
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
||||
x = x + d_2 * dt_2
|
||||
x = x + torch.randn_like(x) * sigma_up
|
||||
- return x
|
||||
+ yield from img_callback(x, len(sigmas)-1)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -1042,8 +1042,8 @@ class UNet(DDPM):
|
||||
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(x, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(x, i)
|
||||
|
||||
d = to_d(x, sigmas[i], denoised)
|
||||
ds.append(d)
|
||||
@@ -1054,4 +1054,4 @@ class UNet(DDPM):
|
||||
cur_order = min(i + 1, order)
|
||||
coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
|
||||
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
||||
- return x
|
||||
+ yield from img_callback(x, len(sigmas)-1)
|
@ -1,84 +0,0 @@
|
||||
diff --git a/ldm/models/diffusion/ddim.py b/ldm/models/diffusion/ddim.py
|
||||
index 27ead0e..6215939 100644
|
||||
--- a/ldm/models/diffusion/ddim.py
|
||||
+++ b/ldm/models/diffusion/ddim.py
|
||||
@@ -100,7 +100,7 @@ class DDIMSampler(object):
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
- samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||
+ samples = self.ddim_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
@@ -117,7 +117,8 @@ class DDIMSampler(object):
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule
|
||||
)
|
||||
- return samples, intermediates
|
||||
+ # return samples, intermediates
|
||||
+ yield from samples
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(self, cond, shape,
|
||||
@@ -168,14 +169,15 @@ class DDIMSampler(object):
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold)
|
||||
img, pred_x0 = outs
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(pred_x0, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
- return img, intermediates
|
||||
+ # return img, intermediates
|
||||
+ yield from img_callback(pred_x0, len(iterator)-1)
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
diff --git a/ldm/models/diffusion/plms.py b/ldm/models/diffusion/plms.py
|
||||
index 7002a36..0951f39 100644
|
||||
--- a/ldm/models/diffusion/plms.py
|
||||
+++ b/ldm/models/diffusion/plms.py
|
||||
@@ -96,7 +96,7 @@ class PLMSSampler(object):
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
- samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
+ samples = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
@@ -112,7 +112,8 @@ class PLMSSampler(object):
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
)
|
||||
- return samples, intermediates
|
||||
+ #return samples, intermediates
|
||||
+ yield from samples
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond, shape,
|
||||
@@ -165,14 +166,15 @@ class PLMSSampler(object):
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(pred_x0, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
- return img, intermediates
|
||||
+ # return img, intermediates
|
||||
+ yield from img_callback(pred_x0, len(iterator)-1)
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
@ -1,198 +0,0 @@
|
||||
# this is basically a cut down version of https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/c9a2cfdf2a53d37c2de1908423e4f548088667ef/modules/hypernetworks/hypernetwork.py, mostly for feature parity
|
||||
# I, c0bra5, don't really understand how deep learning works. I just know how to port stuff.
|
||||
|
||||
import inspect
|
||||
import torch
|
||||
import optimizedSD.splitAttention
|
||||
from . import runtime
|
||||
from einops import rearrange
|
||||
|
||||
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
|
||||
|
||||
loaded_hypernetwork = None
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
multiplier = 0.5
|
||||
activation_dict = {
|
||||
"linear": torch.nn.Identity,
|
||||
"relu": torch.nn.ReLU,
|
||||
"leakyrelu": torch.nn.LeakyReLU,
|
||||
"elu": torch.nn.ELU,
|
||||
"swish": torch.nn.Hardswish,
|
||||
"tanh": torch.nn.Tanh,
|
||||
"sigmoid": torch.nn.Sigmoid,
|
||||
}
|
||||
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
|
||||
|
||||
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
|
||||
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False):
|
||||
super().__init__()
|
||||
|
||||
assert layer_structure is not None, "layer_structure must not be None"
|
||||
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
|
||||
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
|
||||
|
||||
linears = []
|
||||
for i in range(len(layer_structure) - 1):
|
||||
|
||||
# Add a fully-connected layer
|
||||
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||
|
||||
# Add an activation func except last layer
|
||||
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
|
||||
pass
|
||||
elif activation_func in self.activation_dict:
|
||||
linears.append(self.activation_dict[activation_func]())
|
||||
else:
|
||||
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
|
||||
|
||||
# Add layer normalization
|
||||
if add_layer_norm:
|
||||
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
|
||||
|
||||
# Add dropout except last layer
|
||||
if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2):
|
||||
linears.append(torch.nn.Dropout(p=0.3))
|
||||
|
||||
self.linear = torch.nn.Sequential(*linears)
|
||||
|
||||
self.fix_old_state_dict(state_dict)
|
||||
self.load_state_dict(state_dict)
|
||||
|
||||
self.to(runtime.thread_data.device)
|
||||
|
||||
def fix_old_state_dict(self, state_dict):
|
||||
changes = {
|
||||
'linear1.bias': 'linear.0.bias',
|
||||
'linear1.weight': 'linear.0.weight',
|
||||
'linear2.bias': 'linear.1.bias',
|
||||
'linear2.weight': 'linear.1.weight',
|
||||
}
|
||||
|
||||
for fr, to in changes.items():
|
||||
x = state_dict.get(fr, None)
|
||||
if x is None:
|
||||
continue
|
||||
|
||||
del state_dict[fr]
|
||||
state_dict[to] = x
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
return x + self.linear(x) * runtime.thread_data.hypernetwork_strength
|
||||
|
||||
def apply_hypernetwork(hypernetwork, context, layer=None):
|
||||
hypernetwork_layers = hypernetwork.get(context.shape[2], None)
|
||||
|
||||
if hypernetwork_layers is None:
|
||||
return context, context
|
||||
|
||||
if layer is not None:
|
||||
layer.hyper_k = hypernetwork_layers[0]
|
||||
layer.hyper_v = hypernetwork_layers[1]
|
||||
|
||||
context_k = hypernetwork_layers[0](context)
|
||||
context_v = hypernetwork_layers[1](context)
|
||||
return context_k, context_v
|
||||
|
||||
def get_kv(context, hypernetwork):
|
||||
if hypernetwork is None:
|
||||
return context, context
|
||||
else:
|
||||
return apply_hypernetwork(runtime.thread_data.hypernetwork, context)
|
||||
|
||||
# This might need updating as the optimisedSD code changes
|
||||
# I think yall have a system for this (patch files in sd_internal) but idk how it works and no amount of searching gave me any clue
|
||||
# just in case for attribution https://github.com/easydiffusion/diffusion-kit/blob/e8ea0cadd543056059cd951e76d4744de76327d2/optimizedSD/splitAttention.py#L171
|
||||
def new_cross_attention_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
# default context
|
||||
context = context if context is not None else x() if inspect.isfunction(x) else x
|
||||
# hypernetwork!
|
||||
context_k, context_v = get_kv(context, runtime.thread_data.hypernetwork)
|
||||
k = self.to_k(context_k)
|
||||
v = self.to_v(context_v)
|
||||
del context, x
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
|
||||
limit = k.shape[0]
|
||||
att_step = self.att_step
|
||||
q_chunks = list(torch.tensor_split(q, limit//att_step, dim=0))
|
||||
k_chunks = list(torch.tensor_split(k, limit//att_step, dim=0))
|
||||
v_chunks = list(torch.tensor_split(v, limit//att_step, dim=0))
|
||||
|
||||
q_chunks.reverse()
|
||||
k_chunks.reverse()
|
||||
v_chunks.reverse()
|
||||
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
||||
del k, q, v
|
||||
for i in range (0, limit, att_step):
|
||||
|
||||
q_buffer = q_chunks.pop()
|
||||
k_buffer = k_chunks.pop()
|
||||
v_buffer = v_chunks.pop()
|
||||
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
|
||||
|
||||
del k_buffer, q_buffer
|
||||
# attention, what we cannot get enough of, by chunks
|
||||
|
||||
sim_buffer = sim_buffer.softmax(dim=-1)
|
||||
|
||||
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
|
||||
del v_buffer
|
||||
sim[i:i+att_step,:,:] = sim_buffer
|
||||
|
||||
del sim_buffer
|
||||
sim = rearrange(sim, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(sim)
|
||||
|
||||
|
||||
def load_hypernetwork(path: str):
|
||||
|
||||
state_dict = torch.load(path, map_location='cpu')
|
||||
|
||||
layer_structure = state_dict.get('layer_structure', [1, 2, 1])
|
||||
activation_func = state_dict.get('activation_func', None)
|
||||
weight_init = state_dict.get('weight_initialization', 'Normal')
|
||||
add_layer_norm = state_dict.get('is_layer_norm', False)
|
||||
use_dropout = state_dict.get('use_dropout', False)
|
||||
activate_output = state_dict.get('activate_output', True)
|
||||
last_layer_dropout = state_dict.get('last_layer_dropout', False)
|
||||
# this is a bit verbose so leaving it commented out for the poor soul who ever has to debug this
|
||||
# print(f"layer_structure: {layer_structure}")
|
||||
# print(f"activation_func: {activation_func}")
|
||||
# print(f"weight_init: {weight_init}")
|
||||
# print(f"add_layer_norm: {add_layer_norm}")
|
||||
# print(f"use_dropout: {use_dropout}")
|
||||
# print(f"activate_output: {activate_output}")
|
||||
# print(f"last_layer_dropout: {last_layer_dropout}")
|
||||
|
||||
layers = {}
|
||||
for size, sd in state_dict.items():
|
||||
if type(size) == int:
|
||||
layers[size] = (
|
||||
HypernetworkModule(size, sd[0], layer_structure, activation_func, weight_init, add_layer_norm,
|
||||
use_dropout, activate_output, last_layer_dropout=last_layer_dropout),
|
||||
HypernetworkModule(size, sd[1], layer_structure, activation_func, weight_init, add_layer_norm,
|
||||
use_dropout, activate_output, last_layer_dropout=last_layer_dropout),
|
||||
)
|
||||
print(f"hypernetwork loaded")
|
||||
return layers
|
||||
|
||||
|
||||
|
||||
# overriding of original function
|
||||
old_cross_attention_forward = optimizedSD.splitAttention.CrossAttention.forward
|
||||
# hijacks the cross attention forward function to add hyper network support
|
||||
def hijack_cross_attention():
|
||||
print("hypernetwork functionality added to cross attention")
|
||||
optimizedSD.splitAttention.CrossAttention.forward = new_cross_attention_forward
|
||||
# there was a cop on board
|
||||
def unhijack_cross_attention_forward():
|
||||
print("hypernetwork functionality removed from cross attention")
|
||||
optimizedSD.splitAttention.CrossAttention.forward = old_cross_attention_forward
|
||||
|
||||
hijack_cross_attention()
|
500
ui/server.py
@ -1,500 +0,0 @@
|
||||
"""server.py: FastAPI SD-UI Web Host.
|
||||
Notes:
|
||||
async endpoints always run on the main thread. Without they run on the thread pool.
|
||||
"""
|
||||
import json
|
||||
import traceback
|
||||
|
||||
import sys
|
||||
import os
|
||||
import socket
|
||||
import picklescan.scanner
|
||||
import rich
|
||||
|
||||
SD_DIR = os.getcwd()
|
||||
print('started in ', SD_DIR)
|
||||
|
||||
SD_UI_DIR = os.getenv('SD_UI_PATH', None)
|
||||
sys.path.append(os.path.dirname(SD_UI_DIR))
|
||||
|
||||
CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, '..', 'scripts'))
|
||||
MODELS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'models'))
|
||||
|
||||
USER_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'plugins', 'ui'))
|
||||
CORE_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_UI_DIR, 'plugins', 'ui'))
|
||||
UI_PLUGINS_SOURCES = ((CORE_UI_PLUGINS_DIR, 'core'), (USER_UI_PLUGINS_DIR, 'user'))
|
||||
|
||||
STABLE_DIFFUSION_MODEL_EXTENSIONS = ['.ckpt', '.safetensors']
|
||||
VAE_MODEL_EXTENSIONS = ['.vae.pt', '.ckpt']
|
||||
HYPERNETWORK_MODEL_EXTENSIONS = ['.pt']
|
||||
|
||||
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
|
||||
TASK_TTL = 15 * 60 # Discard last session's task timeout
|
||||
APP_CONFIG_DEFAULTS = {
|
||||
# auto: selects the cuda device with the most free memory, cuda: use the currently active cuda device.
|
||||
'render_devices': 'auto', # valid entries: 'auto', 'cpu' or 'cuda:N' (where N is a GPU index)
|
||||
'update_branch': 'main',
|
||||
'ui': {
|
||||
'open_browser_on_start': True,
|
||||
},
|
||||
}
|
||||
APP_CONFIG_DEFAULT_MODELS = [
|
||||
# needed to support the legacy installations
|
||||
'custom-model', # Check if user has a custom model, use it first.
|
||||
'sd-v1-4', # Default fallback.
|
||||
]
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
import logging
|
||||
from typing import Any, Generator, Hashable, List, Optional, Union
|
||||
|
||||
from sd_internal import Request, Response, task_manager
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
outpath = os.path.join(os.path.expanduser("~"), OUTPUT_DIRNAME)
|
||||
|
||||
os.makedirs(USER_UI_PLUGINS_DIR, exist_ok=True)
|
||||
|
||||
# don't show access log entries for URLs that start with the given prefix
|
||||
ACCESS_LOG_SUPPRESS_PATH_PREFIXES = ['/ping', '/image', '/modifier-thumbnails']
|
||||
|
||||
NOCACHE_HEADERS={"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
|
||||
|
||||
class NoCacheStaticFiles(StaticFiles):
|
||||
def is_not_modified(self, response_headers, request_headers) -> bool:
|
||||
if 'content-type' in response_headers and ('javascript' in response_headers['content-type'] or 'css' in response_headers['content-type']):
|
||||
response_headers.update(NOCACHE_HEADERS)
|
||||
return False
|
||||
|
||||
return super().is_not_modified(response_headers, request_headers)
|
||||
|
||||
app.mount('/media', NoCacheStaticFiles(directory=os.path.join(SD_UI_DIR, 'media')), name="media")
|
||||
|
||||
for plugins_dir, dir_prefix in UI_PLUGINS_SOURCES:
|
||||
app.mount(f'/plugins/{dir_prefix}', NoCacheStaticFiles(directory=plugins_dir), name=f"plugins-{dir_prefix}")
|
||||
|
||||
def getConfig(default_val=APP_CONFIG_DEFAULTS):
|
||||
try:
|
||||
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
|
||||
if not os.path.exists(config_json_path):
|
||||
return default_val
|
||||
with open(config_json_path, 'r', encoding='utf-8') as f:
|
||||
config = json.load(f)
|
||||
if 'net' not in config:
|
||||
config['net'] = {}
|
||||
if os.getenv('SD_UI_BIND_PORT') is not None:
|
||||
config['net']['listen_port'] = int(os.getenv('SD_UI_BIND_PORT'))
|
||||
if os.getenv('SD_UI_BIND_IP') is not None:
|
||||
config['net']['listen_to_network'] = ( os.getenv('SD_UI_BIND_IP') == '0.0.0.0' )
|
||||
return config
|
||||
except Exception as e:
|
||||
print(str(e))
|
||||
print(traceback.format_exc())
|
||||
return default_val
|
||||
|
||||
def setConfig(config):
|
||||
print( json.dumps(config) )
|
||||
try: # config.json
|
||||
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
|
||||
with open(config_json_path, 'w', encoding='utf-8') as f:
|
||||
json.dump(config, f)
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
try: # config.bat
|
||||
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
|
||||
config_bat = []
|
||||
|
||||
if 'update_branch' in config:
|
||||
config_bat.append(f"@set update_branch={config['update_branch']}")
|
||||
|
||||
config_bat.append(f"@set SD_UI_BIND_PORT={config['net']['listen_port']}")
|
||||
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
|
||||
config_bat.append(f"@set SD_UI_BIND_IP={bind_ip}")
|
||||
|
||||
config_bat.append(f"@set test_sd2={'Y' if config.get('test_sd2', False) else 'N'}")
|
||||
|
||||
if len(config_bat) > 0:
|
||||
with open(config_bat_path, 'w', encoding='utf-8') as f:
|
||||
f.write('\r\n'.join(config_bat))
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
try: # config.sh
|
||||
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
|
||||
config_sh = ['#!/bin/bash']
|
||||
|
||||
if 'update_branch' in config:
|
||||
config_sh.append(f"export update_branch={config['update_branch']}")
|
||||
|
||||
config_sh.append(f"export SD_UI_BIND_PORT={config['net']['listen_port']}")
|
||||
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
|
||||
config_sh.append(f"export SD_UI_BIND_IP={bind_ip}")
|
||||
|
||||
config_sh.append(f"export test_sd2=\"{'Y' if config.get('test_sd2', False) else 'N'}\"")
|
||||
|
||||
if len(config_sh) > 1:
|
||||
with open(config_sh_path, 'w', encoding='utf-8') as f:
|
||||
f.write('\n'.join(config_sh))
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
def resolve_model_to_use(model_name:str, model_type:str, model_dir:str, model_extensions:list, default_models=[]):
|
||||
config = getConfig()
|
||||
|
||||
model_dirs = [os.path.join(MODELS_DIR, model_dir), SD_DIR]
|
||||
if not model_name: # When None try user configured model.
|
||||
# config = getConfig()
|
||||
if 'model' in config and model_type in config['model']:
|
||||
model_name = config['model'][model_type]
|
||||
if model_name:
|
||||
is_sd2 = config.get('test_sd2', False)
|
||||
if model_name.startswith('sd2_') and not is_sd2: # temp hack, until SD2 is unified with 1.4
|
||||
print('ERROR: Cannot use SD 2.0 models with SD 1.0 code. Using the sd-v1-4 model instead!')
|
||||
model_name = 'sd-v1-4'
|
||||
|
||||
# Check models directory
|
||||
models_dir_path = os.path.join(MODELS_DIR, model_dir, model_name)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(models_dir_path + model_extension):
|
||||
return models_dir_path
|
||||
if os.path.exists(model_name + model_extension):
|
||||
# Direct Path to file
|
||||
model_name = os.path.abspath(model_name)
|
||||
return model_name
|
||||
# Default locations
|
||||
if model_name in default_models:
|
||||
default_model_path = os.path.join(SD_DIR, model_name)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(default_model_path + model_extension):
|
||||
return default_model_path
|
||||
# Can't find requested model, check the default paths.
|
||||
for default_model in default_models:
|
||||
for model_dir in model_dirs:
|
||||
default_model_path = os.path.join(model_dir, default_model)
|
||||
for model_extension in model_extensions:
|
||||
if os.path.exists(default_model_path + model_extension):
|
||||
if model_name is not None:
|
||||
print(f'Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}')
|
||||
return default_model_path
|
||||
raise Exception('No valid models found.')
|
||||
|
||||
def resolve_ckpt_to_use(model_name:str=None):
|
||||
return resolve_model_to_use(model_name, model_type='stable-diffusion', model_dir='stable-diffusion', model_extensions=STABLE_DIFFUSION_MODEL_EXTENSIONS, default_models=APP_CONFIG_DEFAULT_MODELS)
|
||||
|
||||
def resolve_vae_to_use(model_name:str=None):
|
||||
try:
|
||||
return resolve_model_to_use(model_name, model_type='vae', model_dir='vae', model_extensions=VAE_MODEL_EXTENSIONS, default_models=[])
|
||||
except:
|
||||
return None
|
||||
|
||||
def resolve_hypernetwork_to_use(model_name:str=None):
|
||||
try:
|
||||
return resolve_model_to_use(model_name, model_type='hypernetwork', model_dir='hypernetwork', model_extensions=HYPERNETWORK_MODEL_EXTENSIONS, default_models=[])
|
||||
except:
|
||||
return None
|
||||
|
||||
class SetAppConfigRequest(BaseModel):
|
||||
update_branch: str = None
|
||||
render_devices: Union[List[str], List[int], str, int] = None
|
||||
model_vae: str = None
|
||||
ui_open_browser_on_start: bool = None
|
||||
listen_to_network: bool = None
|
||||
listen_port: int = None
|
||||
test_sd2: bool = None
|
||||
|
||||
@app.post('/app_config')
|
||||
async def setAppConfig(req : SetAppConfigRequest):
|
||||
config = getConfig()
|
||||
if req.update_branch is not None:
|
||||
config['update_branch'] = req.update_branch
|
||||
if req.render_devices is not None:
|
||||
update_render_devices_in_config(config, req.render_devices)
|
||||
if req.ui_open_browser_on_start is not None:
|
||||
if 'ui' not in config:
|
||||
config['ui'] = {}
|
||||
config['ui']['open_browser_on_start'] = req.ui_open_browser_on_start
|
||||
if req.listen_to_network is not None:
|
||||
if 'net' not in config:
|
||||
config['net'] = {}
|
||||
config['net']['listen_to_network'] = bool(req.listen_to_network)
|
||||
if req.listen_port is not None:
|
||||
if 'net' not in config:
|
||||
config['net'] = {}
|
||||
config['net']['listen_port'] = int(req.listen_port)
|
||||
if req.test_sd2 is not None:
|
||||
config['test_sd2'] = req.test_sd2
|
||||
try:
|
||||
setConfig(config)
|
||||
|
||||
if req.render_devices:
|
||||
update_render_threads()
|
||||
|
||||
return JSONResponse({'status': 'OK'}, headers=NOCACHE_HEADERS)
|
||||
except Exception as e:
|
||||
print(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
def is_malicious_model(file_path):
|
||||
try:
|
||||
scan_result = picklescan.scanner.scan_file_path(file_path)
|
||||
if scan_result.issues_count > 0 or scan_result.infected_files > 0:
|
||||
rich.print(":warning: [bold red]Scan %s: %d scanned, %d issue, %d infected.[/bold red]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
|
||||
return True
|
||||
else:
|
||||
rich.print("Scan %s: [green]%d scanned, %d issue, %d infected.[/green]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
|
||||
return False
|
||||
except Exception as e:
|
||||
print('error while scanning', file_path, 'error:', e)
|
||||
return False
|
||||
|
||||
known_models = {}
|
||||
def getModels():
|
||||
models = {
|
||||
'active': {
|
||||
'stable-diffusion': 'sd-v1-4',
|
||||
'vae': '',
|
||||
'hypernetwork': '',
|
||||
},
|
||||
'options': {
|
||||
'stable-diffusion': ['sd-v1-4'],
|
||||
'vae': [],
|
||||
'hypernetwork': [],
|
||||
},
|
||||
}
|
||||
|
||||
def listModels(models_dirname, model_type, model_extensions):
|
||||
models_dir = os.path.join(MODELS_DIR, models_dirname)
|
||||
if not os.path.exists(models_dir):
|
||||
os.makedirs(models_dir)
|
||||
|
||||
for file in os.listdir(models_dir):
|
||||
for model_extension in model_extensions:
|
||||
if not file.endswith(model_extension):
|
||||
continue
|
||||
|
||||
model_path = os.path.join(models_dir, file)
|
||||
mtime = os.path.getmtime(model_path)
|
||||
mod_time = known_models[model_path] if model_path in known_models else -1
|
||||
if mod_time != mtime:
|
||||
if is_malicious_model(model_path):
|
||||
models['scan-error'] = file
|
||||
return
|
||||
known_models[model_path] = mtime
|
||||
|
||||
model_name = file[:-len(model_extension)]
|
||||
models['options'][model_type].append(model_name)
|
||||
|
||||
models['options'][model_type] = [*set(models['options'][model_type])] # remove duplicates
|
||||
models['options'][model_type].sort()
|
||||
|
||||
# custom models
|
||||
listModels(models_dirname='stable-diffusion', model_type='stable-diffusion', model_extensions=STABLE_DIFFUSION_MODEL_EXTENSIONS)
|
||||
listModels(models_dirname='vae', model_type='vae', model_extensions=VAE_MODEL_EXTENSIONS)
|
||||
listModels(models_dirname='hypernetwork', model_type='hypernetwork', model_extensions=HYPERNETWORK_MODEL_EXTENSIONS)
|
||||
# legacy
|
||||
custom_weight_path = os.path.join(SD_DIR, 'custom-model.ckpt')
|
||||
if os.path.exists(custom_weight_path):
|
||||
models['options']['stable-diffusion'].append('custom-model')
|
||||
|
||||
return models
|
||||
|
||||
def getUIPlugins():
|
||||
plugins = []
|
||||
|
||||
for plugins_dir, dir_prefix in UI_PLUGINS_SOURCES:
|
||||
for file in os.listdir(plugins_dir):
|
||||
if file.endswith('.plugin.js'):
|
||||
plugins.append(f'/plugins/{dir_prefix}/{file}')
|
||||
|
||||
return plugins
|
||||
|
||||
def getIPConfig():
|
||||
try:
|
||||
ips = socket.gethostbyname_ex(socket.gethostname())
|
||||
ips[2].append(ips[0])
|
||||
return ips[2]
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print(traceback.format_exc())
|
||||
return []
|
||||
|
||||
|
||||
@app.get('/get/{key:path}')
|
||||
def read_web_data(key:str=None):
|
||||
if not key: # /get without parameters, stable-diffusion easter egg.
|
||||
raise HTTPException(status_code=418, detail="StableDiffusion is drawing a teapot!") # HTTP418 I'm a teapot
|
||||
elif key == 'app_config':
|
||||
config = getConfig(default_val=None)
|
||||
if config is None:
|
||||
config = APP_CONFIG_DEFAULTS
|
||||
return JSONResponse(config, headers=NOCACHE_HEADERS)
|
||||
elif key == 'system_info':
|
||||
config = getConfig()
|
||||
system_info = {
|
||||
'devices': task_manager.get_devices(),
|
||||
'hosts': getIPConfig(),
|
||||
}
|
||||
system_info['devices']['config'] = config.get('render_devices', "auto")
|
||||
return JSONResponse(system_info, headers=NOCACHE_HEADERS)
|
||||
elif key == 'models':
|
||||
return JSONResponse(getModels(), headers=NOCACHE_HEADERS)
|
||||
elif key == 'modifiers': return FileResponse(os.path.join(SD_UI_DIR, 'modifiers.json'), headers=NOCACHE_HEADERS)
|
||||
elif key == 'output_dir': return JSONResponse({ 'output_dir': outpath }, headers=NOCACHE_HEADERS)
|
||||
elif key == 'ui_plugins': return JSONResponse(getUIPlugins(), headers=NOCACHE_HEADERS)
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail=f'Request for unknown {key}') # HTTP404 Not Found
|
||||
|
||||
@app.get('/ping') # Get server and optionally session status.
|
||||
def ping(session_id:str=None):
|
||||
if task_manager.is_alive() <= 0: # Check that render threads are alive.
|
||||
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
raise HTTPException(status_code=500, detail='Render thread is dead.')
|
||||
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
|
||||
# Alive
|
||||
response = {'status': str(task_manager.current_state)}
|
||||
if session_id:
|
||||
session = task_manager.get_cached_session(session_id, update_ttl=True)
|
||||
response['tasks'] = {id(t): t.status for t in session.tasks}
|
||||
response['devices'] = task_manager.get_devices()
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
|
||||
def save_model_to_config(ckpt_model_name, vae_model_name, hypernetwork_model_name):
|
||||
config = getConfig()
|
||||
if 'model' not in config:
|
||||
config['model'] = {}
|
||||
|
||||
config['model']['stable-diffusion'] = ckpt_model_name
|
||||
config['model']['vae'] = vae_model_name
|
||||
config['model']['hypernetwork'] = hypernetwork_model_name
|
||||
|
||||
if vae_model_name is None or vae_model_name == "":
|
||||
del config['model']['vae']
|
||||
if hypernetwork_model_name is None or hypernetwork_model_name == "":
|
||||
del config['model']['hypernetwork']
|
||||
|
||||
setConfig(config)
|
||||
|
||||
def update_render_devices_in_config(config, render_devices):
|
||||
if render_devices not in ('cpu', 'auto') and not render_devices.startswith('cuda:'):
|
||||
raise HTTPException(status_code=400, detail=f'Invalid render device requested: {render_devices}')
|
||||
|
||||
if render_devices.startswith('cuda:'):
|
||||
render_devices = render_devices.split(',')
|
||||
|
||||
config['render_devices'] = render_devices
|
||||
|
||||
@app.post('/render')
|
||||
def render(req : task_manager.ImageRequest):
|
||||
try:
|
||||
save_model_to_config(req.use_stable_diffusion_model, req.use_vae_model, req.use_hypernetwork_model)
|
||||
req.use_stable_diffusion_model = resolve_ckpt_to_use(req.use_stable_diffusion_model)
|
||||
req.use_vae_model = resolve_vae_to_use(req.use_vae_model)
|
||||
req.use_hypernetwork_model = resolve_hypernetwork_to_use(req.use_hypernetwork_model)
|
||||
new_task = task_manager.render(req)
|
||||
response = {
|
||||
'status': str(task_manager.current_state),
|
||||
'queue': len(task_manager.tasks_queue),
|
||||
'stream': f'/image/stream/{id(new_task)}',
|
||||
'task': id(new_task)
|
||||
}
|
||||
return JSONResponse(response, headers=NOCACHE_HEADERS)
|
||||
except ChildProcessError as e: # Render thread is dead
|
||||
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
|
||||
except ConnectionRefusedError as e: # Unstarted task pending limit reached, deny queueing too many.
|
||||
raise HTTPException(status_code=503, detail=str(e)) # HTTP503 Service Unavailable
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print(traceback.format_exc())
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get('/image/stream/{task_id:int}')
|
||||
def stream(task_id:int):
|
||||
#TODO Move to WebSockets ??
|
||||
task = task_manager.get_cached_task(task_id, update_ttl=True)
|
||||
if not task: raise HTTPException(status_code=404, detail=f'Request {task_id} not found.') # HTTP404 NotFound
|
||||
#if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
|
||||
if task.buffer_queue.empty() and not task.lock.locked():
|
||||
if task.response:
|
||||
#print(f'Session {session_id} sending cached response')
|
||||
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
|
||||
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
|
||||
#print(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
|
||||
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
|
||||
|
||||
@app.get('/image/stop')
|
||||
def stop(task: int):
|
||||
if not task:
|
||||
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
|
||||
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
|
||||
task_manager.current_state_error = StopAsyncIteration('')
|
||||
return {'OK'}
|
||||
task_id = task
|
||||
task = task_manager.get_cached_task(task_id, update_ttl=False)
|
||||
if not task: raise HTTPException(status_code=404, detail=f'Task {task_id} was not found.') # HTTP404 Not Found
|
||||
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Task {task_id} is already stopped.') # HTTP409 Conflict
|
||||
task.error = StopAsyncIteration(f'Task {task_id} stop requested.')
|
||||
return {'OK'}
|
||||
|
||||
@app.get('/image/tmp/{task_id:int}/{img_id:int}')
|
||||
def get_image(task_id: int, img_id: int):
|
||||
task = task_manager.get_cached_task(task_id, update_ttl=True)
|
||||
if not task: raise HTTPException(status_code=410, detail=f'Task {task_id} could not be found.') # HTTP404 NotFound
|
||||
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
|
||||
try:
|
||||
img_data = task.temp_images[img_id]
|
||||
img_data.seek(0)
|
||||
return StreamingResponse(img_data, media_type='image/jpeg')
|
||||
except KeyError as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get('/')
|
||||
def read_root():
|
||||
return FileResponse(os.path.join(SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
|
||||
|
||||
@app.on_event("shutdown")
|
||||
def shutdown_event(): # Signal render thread to close on shutdown
|
||||
task_manager.current_state_error = SystemExit('Application shutting down.')
|
||||
|
||||
# don't log certain requests
|
||||
class LogSuppressFilter(logging.Filter):
|
||||
def filter(self, record: logging.LogRecord) -> bool:
|
||||
path = record.getMessage()
|
||||
for prefix in ACCESS_LOG_SUPPRESS_PATH_PREFIXES:
|
||||
if path.find(prefix) != -1:
|
||||
return False
|
||||
return True
|
||||
logging.getLogger('uvicorn.access').addFilter(LogSuppressFilter())
|
||||
|
||||
# Check models and prepare cache for UI open
|
||||
getModels()
|
||||
|
||||
# Start the task_manager
|
||||
task_manager.default_model_to_load = resolve_ckpt_to_use()
|
||||
task_manager.default_vae_to_load = resolve_vae_to_use()
|
||||
task_manager.default_hypernetwork_to_load = resolve_hypernetwork_to_use()
|
||||
|
||||
def update_render_threads():
|
||||
config = getConfig()
|
||||
render_devices = config.get('render_devices', 'auto')
|
||||
active_devices = task_manager.get_devices()['active'].keys()
|
||||
|
||||
print('requesting for render_devices', render_devices)
|
||||
task_manager.update_render_threads(render_devices, active_devices)
|
||||
|
||||
update_render_threads()
|
||||
|
||||
# start the browser ui
|
||||
def open_browser():
|
||||
config = getConfig()
|
||||
ui = config.get('ui', {})
|
||||
net = config.get('net', {'listen_port':9000})
|
||||
port = net.get('listen_port', 9000)
|
||||
if ui.get('open_browser_on_start', True):
|
||||
import webbrowser; webbrowser.open(f"http://localhost:{port}")
|
||||
|
||||
open_browser()
|