Merge pull request #312 from madrang/guided-upscale

Added Upscale Button
This commit is contained in:
cmdr2 2022-10-12 15:17:40 +05:30 committed by GitHub
commit 8cb408bc6e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,3 +1,4 @@
"use strict" // Opt in to a restricted variant of JavaScript
const SOUND_ENABLED_KEY = "soundEnabled"
const SAVE_TO_DISK_KEY = "saveToDisk"
const USE_CPU_KEY = "useCPU"
@ -230,14 +231,16 @@ function setStatus(statusType, msg, msgType) {
}
function logMsg(msg, level, outputMsg) {
if (level === 'error') {
outputMsg.innerHTML = '<span style="color: red">Error: ' + msg + '</span>'
} else if (level === 'warn') {
outputMsg.innerHTML = '<span style="color: orange">Warning: ' + msg + '</span>'
} else {
outputMsg.innerText = msg
if (outputMsg.hasChildNodes()) {
outputMsg.appendChild(document.createElement('br'))
}
if (level === 'error') {
outputMsg.innerHTML += '<span style="color: red">Error: ' + msg + '</span>'
} else if (level === 'warn') {
outputMsg.innerHTML += '<span style="color: orange">Warning: ' + msg + '</span>'
} else {
outputMsg.innerText += msg
}
console.log(level, msg)
}
@ -303,28 +306,21 @@ function resizeInpaintingEditor() {
inpaintingEditor.setColor(inpaintingEditor.opts.color)
}
function showImages(req, res, outputContainer, livePreview) {
function showImages(reqBody, res, outputContainer, livePreview) {
let imageItemElements = outputContainer.querySelectorAll('.imgItem')
if(typeof res != 'object') return
res.output.reverse()
res.output.forEach((result, index) => {
if(typeof res != 'object') return
const imageData = result?.data || result?.path + '?t=' + new Date().getTime(),
imageSeed = result?.seed,
imageWidth = req.width,
imageHeight = req.height;
const imageData = result?.data || result?.path + '?t=' + new Date().getTime()
const imageWidth = reqBody.width
const imageHeight = reqBody.height
if (!imageData.includes('/')) {
// res contained no data for the image, stop execution
setStatus('request', 'invalid image', 'error')
return
}
let imageItemElem = (index < imageItemElements.length ? imageItemElements[index] : null)
if(!imageItemElem) {
imageItemElem = document.createElement('div')
imageItemElem.className = 'imgItem'
@ -333,33 +329,46 @@ function showImages(req, res, outputContainer, livePreview) {
<img/>
<div class="imgItemInfo">
<span class="imgSeedLabel"></span>
<button class="imgUseBtn">Use as Input</button>
<button class="imgSaveBtn">Download</button>
</div>
</div>
`
const useAsInputBtn = imageItemElem.querySelector('.imgUseBtn'),
saveImageBtn = imageItemElem.querySelector('.imgSaveBtn');
useAsInputBtn.addEventListener('click', getUseAsInputHandler(imageItemElem))
saveImageBtn.addEventListener('click', getSaveImageHandler(imageItemElem, req['output_format']))
outputContainer.appendChild(imageItemElem)
}
const imageElem = imageItemElem.querySelector('img'),
imageSeedLabel = imageItemElem.querySelector('.imgSeedLabel');
const imageElem = imageItemElem.querySelector('img')
imageElem.src = imageData
imageElem.width = parseInt(imageWidth)
imageElem.height = parseInt(imageHeight)
imageElem.setAttribute('data-seed', imageSeed)
const imageInfo = imageItemElem.querySelector('.imgItemInfo')
imageInfo.style.visibility = (livePreview ? 'hidden' : 'visible')
imageSeedLabel.innerText = 'Seed: ' + imageSeed
if ('seed' in result && !imageElem.hasAttribute('data-seed')) {
const req = Object.assign({}, reqBody, {
seed: result?.seed || reqBody.seed
})
imageElem.setAttribute('data-seed', req.seed)
const imageSeedLabel = imageItemElem.querySelector('.imgSeedLabel')
imageSeedLabel.innerText = 'Seed: ' + req.seed
const buttons = {
'imgUseBtn': { html: 'Use as Input', click: getUseAsInputHandler(imageItemElem) },
'imgSaveBtn': { html: 'Download', click: getSaveImageHandler(imageItemElem, req['output_format']) },
'imgX2Btn': { html: 'Double Size', click: getStartNewTaskHandler(req, imageItemElem, 'img2img_X2') },
'imgRedoBtn': { html: 'Redo', click: getStartNewTaskHandler(req, imageItemElem, 'img2img') },
}
if (!req.use_upscale) {
buttons.upscaleBtn = { html: 'Upscale', click: getStartNewTaskHandler(req, imageItemElem, 'upscale') }
}
const imgItemInfo = imageItemElem.querySelector('.imgItemInfo')
const createButton = function(name, btnInfo) {
const newButton = document.createElement('button')
newButton.classList.add(name)
newButton.classList.add('tasksBtns')
newButton.innerHTML = btnInfo.html
newButton.addEventListener('click', btnInfo.click)
imgItemInfo.appendChild(newButton)
}
Object.keys(buttons).forEach((name) => createButton(name, buttons[name]))
}
})
}
@ -398,6 +407,53 @@ function getSaveImageHandler(imageItemElem, outputFormat) {
imgDownload.click()
}
}
function getStartNewTaskHandler(reqBody, imageItemElem, mode) {
return function() {
if (serverStatus !== 'online') {
alert('The server is still starting up..')
return
}
const imageElem = imageItemElem.querySelector('img')
const newTaskRequest = getCurrentUserRequest()
switch (mode) {
case 'img2img':
case 'img2img_X2':
newTaskRequest.reqBody = Object.assign({}, reqBody, { num_outputs: 1 })
if (!newTaskRequest.reqBody.init_image || mode === 'img2img_X2') {
newTaskRequest.reqBody.sampler = 'ddim'
newTaskRequest.reqBody.prompt_strength = '0.5'
newTaskRequest.reqBody.init_image = imageElem.src
delete newTaskRequest.reqBody.mask
} else {
newTaskRequest.reqBody.seed = 1 + newTaskRequest.reqBody.seed
}
if (mode === 'img2img_X2') {
newTaskRequest.reqBody.width = reqBody.width * 2
newTaskRequest.reqBody.height = reqBody.height * 2
newTaskRequest.reqBody.num_inference_steps = Math.min(100, reqBody.num_inference_steps * 2)
if (useUpscalingField.checked) {
newTaskRequest.reqBody.use_upscale = upscaleModelField.value
} else {
delete newTaskRequest.reqBody.use_upscale
}
}
break
case 'upscale':
newTaskRequest.reqBody = Object.assign({}, reqBody, {
num_outputs: 1,
//use_face_correction: 'GFPGANv1.3',
use_upscale: upscaleModelField.value,
})
break
default:
throw new Error("Unknown upscale mode: " + mode)
}
newTaskRequest.seed = newTaskRequest.reqBody.seed
newTaskRequest.numOutputsTotal = 1
newTaskRequest.batchCount = 1
createTask(newTaskRequest)
}
}
// makes a single image. don't call this directly, use makeImage() instead
async function doMakeImage(task) {
@ -416,10 +472,8 @@ async function doMakeImage(task) {
const previewPrompt = task['previewPrompt']
const progressBar = task['progressBar']
let res = ''
let seed = reqBody['seed']
let numOutputs = parseInt(reqBody['num_outputs'])
let res = undefined
let stepUpdate = undefined
try {
res = await fetch('/image', {
method: 'POST',
@ -433,119 +487,134 @@ async function doMakeImage(task) {
let textDecoder = new TextDecoder()
let finalJSON = ''
let prevTime = -1
let readComplete = false
while (true) {
try {
let t = new Date().getTime()
let t = new Date().getTime()
let jsonStr = ''
if (!readComplete) {
const {value, done} = await reader.read()
if (done) {
readComplete = true
}
if (done && finalJSON.length <= 0 && !value) {
break
}
if (value) {
jsonStr = textDecoder.decode(value)
}
}
try {
// hack for a middleman buffering all the streaming updates, and unleashing them on the poor browser in one shot.
// this results in having to parse JSON like {"step": 1}{"step": 2}{"step": 3}{"ste...
// which is obviously invalid and can happen at any point while rendering.
// So we need to extract only the next {} section
if (finalJSON.length > 0) {
// Append new data when required
if (jsonStr.length > 0) {
jsonStr = finalJSON + jsonStr
} else {
jsonStr = finalJSON
}
finalJSON = ''
}
// Find next delimiter
let lastChunkIdx = jsonStr.indexOf('}{')
if (lastChunkIdx !== -1) {
finalJSON = jsonStr.substring(0, lastChunkIdx + 1)
jsonStr = jsonStr.substring(lastChunkIdx + 1)
} else {
finalJSON = jsonStr
jsonStr = ''
}
// Try to parse
stepUpdate = (finalJSON.length > 0 ? JSON.parse(finalJSON) : undefined)
finalJSON = jsonStr
} catch (e) {
if (e instanceof SyntaxError && !readComplete) {
finalJSON += jsonStr
} else {
throw e
}
}
if (readComplete && finalJSON.length <= 0) {
break
}
if (typeof stepUpdate === 'object' && 'step' in stepUpdate) {
let batchSize = stepUpdate.total_steps
let overallStepCount = stepUpdate.step + task.batchesDone * batchSize
let totalSteps = batchCount * batchSize
let percent = 100 * (overallStepCount / totalSteps)
percent = (percent > 100 ? 100 : percent)
percent = percent.toFixed(0)
let timeTaken = (prevTime === -1 ? -1 : t - prevTime)
let jsonStr = textDecoder.decode(value)
let stepsRemaining = totalSteps - overallStepCount
stepsRemaining = (stepsRemaining < 0 ? 0 : stepsRemaining)
let timeRemaining = (timeTaken === -1 ? '' : stepsRemaining * timeTaken) // ms
try {
let stepUpdate = JSON.parse(jsonStr)
outputMsg.innerHTML = `Batch ${task.batchesDone+1} of ${batchCount}`
outputMsg.innerHTML += `. Generating image(s): ${percent}%`
if (stepUpdate.step === undefined) {
finalJSON += jsonStr
} else {
let batchSize = stepUpdate.total_steps
let overallStepCount = stepUpdate.step + task.batchesDone * batchSize
let totalSteps = batchCount * batchSize
let percent = 100 * (overallStepCount / totalSteps)
percent = (percent > 100 ? 100 : percent)
percent = percent.toFixed(0)
timeRemaining = (timeTaken !== -1 ? millisecondsToStr(timeRemaining) : '')
outputMsg.innerHTML += `. Time remaining (approx): ${timeRemaining}`
outputMsg.style.display = 'block'
stepsRemaining = totalSteps - overallStepCount
stepsRemaining = (stepsRemaining < 0 ? 0 : stepsRemaining)
timeRemaining = (timeTaken === -1 ? '' : stepsRemaining * timeTaken) // ms
outputMsg.innerHTML = `Batch ${task.batchesDone+1} of ${batchCount}`
outputMsg.innerHTML += `. Generating image(s): ${percent}%`
timeRemaining = (timeTaken !== -1 ? millisecondsToStr(timeRemaining) : '')
outputMsg.innerHTML += `. Time remaining (approx): ${timeRemaining}`
outputMsg.style.display = 'block'
if (stepUpdate.output !== undefined) {
showImages(reqBody, stepUpdate, outputContainer, true)
}
}
} catch (e) {
finalJSON += jsonStr
if (stepUpdate.output !== undefined) {
showImages(reqBody, stepUpdate, outputContainer, true)
}
prevTime = t
} catch (e) {
logError('Stable Diffusion had an error. Please check the logs in the command-line window.', res, outputMsg)
res = undefined
throw e
}
prevTime = t
}
if (res.status != 200) {
if (serverStatus === 'online') {
logError('Stable Diffusion had an error: ' + await res.text(), res, outputMsg)
} else {
logError("Stable Diffusion is still starting up, please wait. If this goes on beyond a few minutes, Stable Diffusion has probably crashed. Please check the error message in the command-line window.", res, outputMsg)
}
res = undefined
progressBar.style.display = 'none'
} else {
if (finalJSON !== undefined && finalJSON.indexOf('}{') !== -1) {
// hack for a middleman buffering all the streaming updates, and unleashing them
// on the poor browser in one shot.
// this results in having to parse JSON like {"step": 1}{"step": 2}...{"status": "succeeded"..}
// which is obviously invalid.
// So we need to just extract the last {} section, starting from "status" to the end of the response
let lastChunkIdx = finalJSON.lastIndexOf('}{')
if (lastChunkIdx !== -1) {
let remaining = finalJSON.substring(lastChunkIdx)
finalJSON = remaining.substring(1)
if (typeof stepUpdate === 'object' && stepUpdate.status !== 'succeeded') {
let msg = ''
if ('detail' in stepUpdate && typeof stepUpdate.detail === 'string' && stepUpdate.detail.length > 0) {
msg = stepUpdate.detail
if (msg.toLowerCase().includes('out of memory')) {
msg += `<br/><br/>
<b>Suggestions</b>:
<br/>
1. If you have set an initial image, please try reducing its dimension to ${MAX_INIT_IMAGE_DIMENSION}x${MAX_INIT_IMAGE_DIMENSION} or smaller.<br/>
2. Try disabling the '<em>Turbo mode</em>' under '<em>Advanced Settings</em>'.<br/>
3. Try generating a smaller image.<br/>`
}
} else {
msg = `Unexpected Read Error:<br/><pre>StepUpdate:${JSON.stringify(stepUpdate, undefined, 4)}</pre>`
}
res = JSON.parse(finalJSON)
if (res.status !== 'succeeded') {
let msg = ''
if (res.detail !== undefined) {
msg = res.detail
if (msg.toLowerCase().includes('out of memory')) {
msg += `<br/><br/>
<b>Suggestions</b>:
<br/>
1. If you have set an initial image, please try reducing its dimension to ${MAX_INIT_IMAGE_DIMENSION}x${MAX_INIT_IMAGE_DIMENSION} or smaller.<br/>
2. Try disabling the '<em>Turbo mode</em>' under '<em>Advanced Settings</em>'.<br/>
3. Try generating a smaller image.<br/>`
}
} else {
msg = res
logError(msg, res, outputMsg)
return false
}
if (typeof stepUpdate !== 'object' || !res || res.status != 200) {
if (serverStatus !== 'online') {
logError("Stable Diffusion is still starting up, please wait. If this goes on beyond a few minutes, Stable Diffusion has probably crashed. Please check the error message in the command-line window.", res, outputMsg)
} else if (typeof res === 'object') {
let msg = 'Stable Diffusion had an error reading the response: '
try { // 'Response': body stream already read
msg += 'Read: ' + await res.text()
} catch(e) {
msg += 'No error response. '
}
if (finalJSON) {
msg += 'Buffered data: ' + finalJSON
}
logError(msg, res, outputMsg)
res = undefined
} else {
msg = `Unexpected Read Error:<br/><pre>Response:${res}<br/>StepUpdate:${typeof stepUpdate === 'object' ? JSON.stringify(stepUpdate, undefined, 4) : stepUpdate}</pre>`
}
progressBar.style.display = 'none'
return false
}
lastPromptUsed = reqBody['prompt']
showImages(reqBody, stepUpdate, outputContainer, false)
} catch (e) {
console.log('request error', e)
logError('Stable Diffusion had an error. Please check the logs in the command-line window. <br/><br/>' + e + '<br/><pre>' + e.stack + '</pre>', res, outputMsg)
setStatus('request', 'error', 'error')
progressBar.style.display = 'none'
res = undefined
return false
}
if (!res) return false
lastPromptUsed = reqBody['prompt']
showImages(reqBody, res, outputContainer, false)
return true
}
@ -588,13 +657,27 @@ async function checkTasks() {
task['taskStatusLabel'].innerText = "Processing"
task['taskStatusLabel'].className += " activeTaskLabel"
const genSeeds = Boolean(typeof task.reqBody.seed !== 'number' || (task.reqBody.seed === task.seed && task.numOutputsTotal > 1))
const startSeed = task.reqBody.seed || task.seed
for (let i = 0; i < task.batchCount; i++) {
task.reqBody['seed'] = task.seed + (i * task.reqBody['num_outputs'])
let newTask = task;
if (task.batchCount > 1) {
// Each output render batch needs it's own task instance to avoid altering the other runs after they are completed.
newTask = Object.assign({}, task, {
reqBody: Object.assign({}, task.reqBody)
})
}
if (genSeeds) {
newTask.reqBody.seed = startSeed + (i * newTask.reqBody.num_outputs)
newTask.seed = newTask.reqBody.seed
} else if (newTask.seed !== newTask.reqBody.seed) {
newTask.seed = newTask.reqBody.seed
}
let success = await doMakeImage(task)
let success = await doMakeImage(newTask)
task.batchesDone++
if (!task.isProcessing) {
if (!task.isProcessing || !success) {
break
}
@ -612,7 +695,6 @@ async function checkTasks() {
if (successCount === task.batchCount) {
task.outputMsg.innerText = 'Processed ' + task.numOutputsTotal + ' images in ' + time + ' seconds'
// setStatus('request', 'done', 'success')
} else {
if (task.outputMsg.innerText.toLowerCase().indexOf('error') === -1) {
@ -626,112 +708,107 @@ async function checkTasks() {
currentTask = null
if (typeof requestIdleCallback === 'function') {
requestIdleCallback(checkTasks, { timeout: 30 * 1000 })
} else {
setTimeout(checkTasks, 500)
}
}
if (typeof requestIdleCallback === 'function') {
requestIdleCallback(checkTasks, { timeout: 30 * 1000 })
} else {
setTimeout(checkTasks, 10)
}
setTimeout(checkTasks, 0)
function getCurrentUserRequest() {
const numOutputsTotal = parseInt(numOutputsTotalField.value)
const numOutputsParallel = parseInt(numOutputsParallelField.value)
const seed = (randomSeedField.checked ? Math.floor(Math.random() * 10000000) : parseInt(seedField.value))
const newTask = {
isProcessing: false,
stopped: false,
batchesDone: 0,
numOutputsTotal: numOutputsTotal,
batchCount: Math.ceil(numOutputsTotal / numOutputsParallel),
seed,
reqBody: {
session_id: sessionId,
seed,
negative_prompt: negativePromptField.value.trim(),
num_outputs: numOutputsParallel,
num_inference_steps: numInferenceStepsField.value,
guidance_scale: guidanceScaleField.value,
width: widthField.value,
height: heightField.value,
// allow_nsfw: allowNSFWField.checked,
turbo: turboField.checked,
use_cpu: useCPUField.checked,
use_full_precision: useFullPrecisionField.checked,
use_stable_diffusion_model: stableDiffusionModelField.value,
stream_progress_updates: true,
stream_image_progress: (numOutputsTotal > 50 ? false : streamImageProgressField.checked),
show_only_filtered_image: showOnlyFilteredImageField.checked,
output_format: outputFormatField.value
}
}
if (IMAGE_REGEX.test(initImagePreview.src)) {
newTask.reqBody.init_image = initImagePreview.src
newTask.reqBody.prompt_strength = promptStrengthField.value
// if (IMAGE_REGEX.test(maskImagePreview.src)) {
// newTask.reqBody.mask = maskImagePreview.src
// }
if (maskSetting.checked) {
newTask.reqBody.mask = inpaintingEditor.getImg()
}
newTask.reqBody.sampler = 'ddim'
} else {
newTask.reqBody.sampler = samplerField.value
}
if (saveToDiskField.checked && diskPathField.value.trim() !== '') {
newTask.reqBody.save_to_disk_path = diskPathField.value.trim()
}
if (useFaceCorrectionField.checked) {
newTask.reqBody.use_face_correction = 'GFPGANv1.3'
}
if (useUpscalingField.checked) {
newTask.reqBody.use_upscale = upscaleModelField.value
}
return newTask
}
function makeImage() {
if (serverStatus !== 'online') {
alert('The server is still starting up..')
return
}
let prompts = getPrompts()
prompts.forEach(createTask)
const taskTemplate = getCurrentUserRequest()
const newTaskRequests = []
getPrompts().forEach((prompt) => newTaskRequests.push(Object.assign({}, taskTemplate, {
reqBody: Object.assign({ prompt: prompt }, taskTemplate.reqBody)
})))
newTaskRequests.forEach(createTask)
initialText.style.display = 'none'
}
function createTask(prompt) {
let task = {
stopped: false,
batchesDone: 0
}
let seed = (randomSeedField.checked ? Math.floor(Math.random() * 10000000) : parseInt(seedField.value))
let numOutputsTotal = parseInt(numOutputsTotalField.value)
let numOutputsParallel = parseInt(numOutputsParallelField.value)
let batchCount = Math.ceil(numOutputsTotal / numOutputsParallel)
let batchSize = numOutputsParallel
let streamImageProgress = (numOutputsTotal > 50 ? false : streamImageProgressField.checked)
if (activeTags.length > 0) {
let promptTags = activeTags.map(x => x.name).join(", ")
prompt += ", " + promptTags
}
let reqBody = {
session_id: sessionId,
prompt: prompt,
negative_prompt: negativePromptField.value.trim(),
num_outputs: batchSize,
num_inference_steps: numInferenceStepsField.value,
guidance_scale: guidanceScaleField.value,
width: widthField.value,
height: heightField.value,
// allow_nsfw: allowNSFWField.checked,
turbo: turboField.checked,
use_cpu: useCPUField.checked,
use_full_precision: useFullPrecisionField.checked,
use_stable_diffusion_model: stableDiffusionModelField.value,
stream_progress_updates: true,
stream_image_progress: streamImageProgress,
show_only_filtered_image: showOnlyFilteredImageField.checked,
output_format: outputFormatField.value
}
if (IMAGE_REGEX.test(initImagePreview.src)) {
reqBody['init_image'] = initImagePreview.src
reqBody['prompt_strength'] = promptStrengthField.value
// if (IMAGE_REGEX.test(maskImagePreview.src)) {
// reqBody['mask'] = maskImagePreview.src
// }
if (maskSetting.checked) {
reqBody['mask'] = inpaintingEditor.getImg()
}
reqBody['sampler'] = 'ddim'
} else {
reqBody['sampler'] = samplerField.value
}
if (saveToDiskField.checked && diskPathField.value.trim() !== '') {
reqBody['save_to_disk_path'] = diskPathField.value.trim()
}
if (useFaceCorrectionField.checked) {
reqBody['use_face_correction'] = 'GFPGANv1.3'
}
if (useUpscalingField.checked) {
reqBody['use_upscale'] = upscaleModelField.value
}
let taskConfig = `Seed: ${seed}, Sampler: ${reqBody['sampler']}, Inference Steps: ${numInferenceStepsField.value}, Guidance Scale: ${guidanceScaleField.value}, Model: ${stableDiffusionModelField.value}`
function createTask(task) {
let taskConfig = `Seed: ${task.seed}, Sampler: ${task.reqBody.sampler}, Inference Steps: ${task.reqBody.num_inference_steps}, Guidance Scale: ${task.reqBody.guidance_scale}, Model: ${task.reqBody.use_stable_diffusion_model}`
if (negativePromptField.value.trim() !== '') {
taskConfig += `, Negative Prompt: ${negativePromptField.value.trim()}`
taskConfig += `, Negative Prompt: ${task.reqBody.negative_prompt}`
}
if (reqBody['init_image'] !== undefined) {
taskConfig += `, Prompt Strength: ${promptStrengthField.value}`
if (task.reqBody.init_image !== undefined) {
taskConfig += `, Prompt Strength: ${task.reqBody.prompt_strength}`
}
if (useFaceCorrectionField.checked) {
taskConfig += `, Fix Faces: ${reqBody['use_face_correction']}`
if (task.reqBody.use_face_correction) {
taskConfig += `, Fix Faces: ${task.reqBody.use_face_correction}`
}
if (useUpscalingField.checked) {
taskConfig += `, Upscale: ${reqBody['use_upscale']}`
if (task.reqBody.use_upscale) {
taskConfig += `, Upscale: ${task.reqBody.use_upscale}`
}
task['reqBody'] = reqBody
task['seed'] = seed
task['batchCount'] = batchCount
task['isProcessing'] = false
let taskEntry = document.createElement('div')
taskEntry.className = 'imageTaskContainer'
taskEntry.innerHTML = ` <div class="taskStatusLabel">Enqueued</div>
@ -746,7 +823,6 @@ function createTask(prompt) {
createCollapsibles(taskEntry)
task['numOutputsTotal'] = numOutputsTotal
task['taskStatusLabel'] = taskEntry.querySelector('.taskStatusLabel')
task['outputContainer'] = taskEntry.querySelector('.img-preview')
task['outputMsg'] = taskEntry.querySelector('.outputMsg')
@ -774,7 +850,7 @@ function createTask(prompt) {
imagePreview.insertBefore(taskEntry, previewTools.nextSibling)
task['previewPrompt'].innerText = prompt
task.previewPrompt.innerText = task.reqBody.prompt
taskQueue.unshift(task)
}
@ -784,7 +860,6 @@ function getPrompts() {
prompts = prompts.split('\n')
let promptsToMake = []
prompts.forEach(prompt => {
prompt = prompt.trim()
if (prompt === '') {
@ -793,7 +868,6 @@ function getPrompts() {
let promptMatrix = prompt.split('|')
prompt = promptMatrix.shift().trim()
promptsToMake.push(prompt)
promptMatrix = promptMatrix.map(p => p.trim())
@ -804,8 +878,8 @@ function getPrompts() {
promptsToMake = promptsToMake.concat(promptPermutations)
}
})
return promptsToMake
const promptTags = (activeTags.length > 0 ? activeTags.map(x => x.name).join(", ") : "")
return promptsToMake.map((prompt) => `${prompt}, ${promptTags}`)
}
function permutePrompts(promptBase, promptMatrix) {
@ -1047,7 +1121,7 @@ useBetaChannelField.addEventListener('click', async function(e) {
async function getAppConfig() {
try {
let res = await fetch('/app_config')
config = await res.json()
const config = await res.json()
if (config.update_branch === 'beta') {
useBetaChannelField.checked = true
@ -1063,7 +1137,7 @@ async function getAppConfig() {
async function getModels() {
try {
let res = await fetch('/models')
models = await res.json()
const models = await res.json()
let activeModel = models['active']
let modelOptions = models['options']
@ -1081,7 +1155,7 @@ async function getModels() {
stableDiffusionModelField.appendChild(modelOption)
})
console.log('get models response', config)
console.log('get models response', models)
} catch (e) {
console.log('get models error', e)
}