Compare commits

..

42 Commits

Author SHA1 Message Date
7219c55dcd Correct PATH 2022-10-10 21:07:30 +05:30
9aa46f92dc Check for uvicorn and set the PATH env variable before checking 2022-10-10 21:04:23 +05:30
199fa4a0f5 Don't check for ldm, since it doesn't register in the pkgutils 2022-10-10 20:59:43 +05:30
c91348dae7 Print traceback when printing a fatal message 2022-10-10 20:20:53 +05:30
b47ff071da 4.6.0.66 opencv-python for mac 2022-10-10 20:17:05 +05:30
0d921eacb6 4.6.0.66 opencv-python 2022-10-10 20:16:29 +05:30
e1718c45e1 Use opencv-python==4.6.0 2022-10-10 20:15:30 +05:30
1c5352203d Try moving the environment.yaml to the sd folder before installing 2022-10-10 20:12:02 +05:30
e521b350ca Activate the project env dir in the dev console 2022-10-10 20:06:26 +05:30
e9ddef6992 Typo while checking the OS name 2022-10-10 20:02:19 +05:30
1d4a835e4a Run the SD install command inside the SD repo folder 2022-10-10 19:58:56 +05:30
3cf7a984fd Convert bytes to str in the output of run 2022-10-10 19:50:43 +05:30
a6913dfe29 Rename dev console scripts 2022-10-10 19:38:41 +05:30
1f7c7909c2 Initial port of the entire installation process; Switched 0.0.0.0 to localhost default; Skip color correction in GFPGAN via a patch 2022-10-10 19:35:33 +05:30
0e15c48d04 Just run the symlinks 2022-10-04 20:00:59 +05:30
a3e5931fd6 Project root check in dev script 2022-10-04 19:57:35 +05:30
0e3766838f Typo 2022-10-04 19:52:11 +05:30
f17a00092a Don't use git clone's exit status; Remove package overrides in env yaml 2022-10-04 19:48:34 +05:30
724e101edc Merge branch 'installer_new' of github.com:cmdr2/stable-diffusion-ui into installer_new 2022-10-04 19:21:23 +05:30
0b1968c017 Task to install Stable Diffusion's environment 2022-10-04 19:21:14 +05:30
be3a52d703 Make the start script executable 2022-10-04 16:34:59 +05:30
7468aa5a4f Re-organize the script files, to allow overwriting the main script file with an auto-update without freaking out the shell 2022-10-04 16:33:54 +05:30
889fd98577 Newline doesn't work in linux echo 2022-10-04 16:21:57 +05:30
9de91d3021 Open bash conditionally in the dev console on unix 2022-10-04 16:06:14 +05:30
f20014660d Enter to continue on linux 2022-10-04 15:46:31 +05:30
add533d0da Incorrect newline character 2022-10-04 15:45:52 +05:30
a5f5113e9a Typo in bash case 2022-10-04 15:44:15 +05:30
c72e1f0943 Execute permissions for the unix scripts 2022-10-04 15:39:33 +05:30
e282b2864f Installer v2.5 for {linux,mac}_{x64,arm64}; Include the micromamba binaries for them 2022-10-04 15:33:36 +05:30
abcab9bce5 Preserve an error log if the installation failed; Include the starting timestamp in the log 2022-10-04 14:48:16 +05:30
2174788514 Use git fetch for getting the latest SD commits 2022-10-04 14:36:20 +05:30
ecda0d5b05 Pull before checking out a commit for SD 2022-10-04 14:31:40 +05:30
55bd8a34d7 Typo in detachedHead suppress command 2022-10-04 13:53:14 +05:30
65c667cc37 Suppress detachedHead warnings 2022-10-04 13:52:01 +05:30
582b594789 Developer console which shows an activated mamba environment; A script to enable developer mode and auto-create the symlinks 2022-10-04 13:48:56 +05:30
19a868b2df Installer v2.5 now checks out stable diffusion and applies patches 2022-10-04 12:27:36 +05:30
9e07228a90 Revert update 2022-10-03 23:31:46 +05:30
85f8141968 Update test 2022-10-03 23:31:14 +05:30
b9646a8a94 Unnecessary quotes 2022-10-03 23:30:00 +05:30
3a7e4390eb Start cmd 2022-10-03 23:26:15 +05:30
d07279c266 Installer files for v2.5 2022-10-03 23:05:10 +05:30
c10411c506 Initial files for installer v2.5 2022-10-03 22:58:36 +05:30
206 changed files with 4791 additions and 37762 deletions

2
.github/FUNDING.yml vendored
View File

@ -1,3 +1,3 @@
# These are supported funding model platforms
ko_fi: easydiffusion
ko_fi: cmdr2_stablediffusion_ui

5
.gitignore vendored
View File

@ -1,8 +1,3 @@
__pycache__
installer
installer.tar
dist
.idea/*
node_modules/*
.tmp1
.tmp2

View File

@ -1,9 +0,0 @@
*.min.*
*.py
*.json
*.html
/*
!/ui
/ui/easydiffusion
!/ui/plugins
!/ui/media

View File

@ -1,7 +0,0 @@
{
"printWidth": 120,
"tabWidth": 4,
"semi": false,
"arrowParens": "always",
"trailingComma": "es5"
}

File diff suppressed because it is too large Load Diff

View File

@ -1,262 +0,0 @@
# What's new?
## v3.0
### Major Changes
- **ControlNet** - Full support for ControlNet, with native integration of the common ControlNet models. Just select a control image, then choose the ControlNet filter/model and run. No additional configuration or download necessary. Supports custom ControlNets as well.
- **SDXL** - Full support for SDXL. No configuration necessary, just put the SDXL model in the `models/stable-diffusion` folder.
- **Multiple LoRAs** - Use multiple LoRAs, including SDXL and SD2-compatible LoRAs. Put them in the `models/lora` folder.
- **Embeddings** - Use textual inversion embeddings easily, by putting them in the `models/embeddings` folder and using their names in the prompt (or by clicking the `+ Embeddings` button to select embeddings visually). Thanks @JeLuf.
- **Seamless Tiling** - Generate repeating textures that can be useful for games and other art projects. Works best in 512x512 resolution. Thanks @JeLuf.
- **Inpainting Models** - Full support for inpainting models, including custom inpainting models. No configuration (or yaml files) necessary.
- **Faster than v2.5** - Nearly 40% faster than Easy Diffusion v2.5, and can be even faster if you enable xFormers.
- **Even less VRAM usage** - Less than 2 GB for 512x512 images on 'low' VRAM usage setting (SD 1.5). Can generate large images with SDXL.
- **WebP images** - Supports saving images in the lossless webp format.
- **Undo/Redo in the UI** - Remove tasks or images from the queue easily, and undo the action if you removed anything accidentally. Thanks @JeLuf.
- **Three new samplers, and latent upscaler** - Added `DEIS`, `DDPM` and `DPM++ 2m SDE` as additional samplers. Thanks @ogmaresca and @rbertus2000.
- **Significantly faster 'Upscale' and 'Fix Faces' buttons on the images**
- **Major rewrite of the code** - We've switched to using diffusers under-the-hood, which allows us to release new features faster, and focus on making the UI and installer even easier to use.
### Detailed changelog
* 3.0.9c - 6 Feb 2025 - (Internal code change) Remove hardcoded references to `torch.cuda`, and replace with torchruntime's device utilities.
* 3.0.9b - 28 Jan 2025 - Fix a bug affecting older versions of Easy Diffusion, which tried to upgrade to an incompatible version of PyTorch.
* 3.0.9b - 4 Jan 2025 - Replace the use of WMIC (deprecated) with a powershell call.
* 3.0.9 - 28 May 2024 - Slider for controlling the strength of controlnets.
* 3.0.8 - 27 May 2024 - SDXL ControlNets for Img2Img and Inpainting.
* 3.0.7 - 11 Dec 2023 - Setting to enable/disable VAE tiling (in the Image Settings panel). Sometimes VAE tiling reduces the quality of the image, so this setting will help control that.
* 3.0.6 - 18 Sep 2023 - Add thumbnails to embeddings from the UI, using the new `Upload Thumbnail` button in the Embeddings popup. Thanks @JeLuf.
* 3.0.6 - 15 Sep 2023 - Fix broken embeddings dialog when LoRA information couldn't be fetched.
* 3.0.6 - 14 Sep 2023 - UI for adding notes to LoRA files (to help you remember which prompts to use). Also added a button to automatically fetch prompts from Civitai for a LoRA file, using the `Import from Civitai` button. Thanks @JeLuf.
* 3.0.5 - 2 Sep 2023 - Support SDXL ControlNets.
* 3.0.4 - 1 Sep 2023 - Fix incorrect metadata generated for embeddings, when the exact word doesn't match the case, or is part of a larger word.
* 3.0.4 - 1 Sep 2023 - Simplify the installation for AMD users on Linux. Thanks @JeLuf.
* 3.0.4 - 1 Sep 2023 - Allow using a different folder for models. This is useful if you want to share a models folder across different software, or on a different drive. You can change this path in the Settings tab.
* 3.0.3 - 31 Aug 2023 - Auto-save images to disk (if enabled by the user) when upscaling/fixing using the buttons on the image.
* 3.0.3 - 30 Aug 2023 - Allow loading NovelAI-based custom models.
* 3.0.3 - 30 Aug 2023 - Fix broken VAE tiling. This allows you to create larger images with lesser VRAM usage.
* 3.0.3 - 30 Aug 2023 - Allow blocking NSFW images using a server-side config. This prevents the browser from generating NSFW images or changing the config. Open `config.yaml` in a text editor (e.g. Notepad), and add `block_nsfw: true` at the end, and save the file.
* 3.0.2 - 29 Aug 2023 - Fixed incorrect matching of embeddings from prompts.
* 3.0.2 - 24 Aug 2023 - Fix broken seamless tiling.
* 3.0.2 - 23 Aug 2023 - Fix styling on mobile devices.
* 3.0.2 - 22 Aug 2023 - Full support for inpainting models, including custom models. Support SD 1.x and SD 2.x inpainting models. Does not require you to specify a yaml config file.
* 3.0.2 - 22 Aug 2023 - Reduce VRAM consumption of controlnet in 'low' VRAM mode, and allow accelerating controlnets using xformers.
* 3.0.2 - 22 Aug 2023 - Improve auto-detection of SD 2.0 and 2.1 models, removing the need for custom yaml files for SD 2.x models. Improve the model load time by speeding-up the black image test.
* 3.0.1 - 18 Aug 2023 - Rotate an image if EXIF rotation is present. For e.g. this is common in images taken with a smartphone.
* 3.0.1 - 18 Aug 2023 - Resize control images to the task dimensions, to avoid memory errors with high-res control images.
* 3.0.1 - 18 Aug 2023 - Show controlnet filter preview in the task entry.
* 3.0.1 - 18 Aug 2023 - Fix drag-and-drop and 'Use these Settings' for LoRA and ControlNet.
* 3.0.1 - 18 Aug 2023 - Auto-save LoRA models and strengths.
* 3.0.1 - 17 Aug 2023 - Automatically use the correct yaml config file for custom SDXL models, even if a yaml file isn't present in the folder.
* 3.0.1 - 17 Aug 2023 - Fix broken embeddings with SDXL.
* 3.0.1 - 16 Aug 2023 - Fix broken LoRA with SDXL.
* 3.0.1 - 15 Aug 2023 - Fix broken seamless tiling.
* 3.0.1 - 15 Aug 2023 - Fix textual inversion embeddings not working in `low` VRAM usage mode.
* 3.0.1 - 15 Aug 2023 - Fix for custom VAEs not working in `low` VRAM usage mode.
* 3.0.1 - 14 Aug 2023 - Slider to change the image dimensions proportionally (in Image Settings). Thanks @JeLuf.
* 3.0.1 - 14 Aug 2023 - Show an error to the user if an embedding isn't compatible with the model, instead of failing silently without informing the user. Thanks @JeLuf.
* 3.0.1 - 14 Aug 2023 - Disable watermarking for SDXL img2img. Thanks @AvidGameFan.
* 3.0.0 - 3 Aug 2023 - Enabled diffusers for everyone by default. The old v2 engine can be used by disabling the "Use v3 engine" option in the Settings tab.
## v2.5
### Major Changes
- **Nearly twice as fast** - significantly faster speed of image generation. Code contributions are welcome to make our project even faster: https://github.com/easydiffusion/sdkit/#is-it-fast
- **Mac M1/M2 support** - Experimental support for Mac M1/M2. Thanks @michaelgallacher, @JeLuf and vishae.
- **AMD support for Linux** - Experimental support for AMD GPUs on Linux. Thanks @DianaNites and @JeLuf.
- **Full support for Stable Diffusion 2.1 (including CPU)** - supports loading v1.4 or v2.0 or v2.1 models seamlessly. No need to enable "Test SD2", and no need to add `sd2_` to your SD 2.0 model file names. Works on CPU as well.
- **Memory optimized Stable Diffusion 2.1** - you can now use Stable Diffusion 2.1 models, with the same low VRAM optimizations that we've always had for SD 1.4. Please note, the SD 2.0 and 2.1 models require more GPU and System RAM, as compared to the SD 1.4 and 1.5 models.
- **11 new samplers!** - explore the new samplers, some of which can generate great images in less than 10 inference steps! We've added the Karras and UniPC samplers. Thanks @Schorny for the UniPC samplers.
- **Model Merging** - You can now merge two models (`.ckpt` or `.safetensors`) and output `.ckpt` or `.safetensors` models, optionally in `fp16` precision. Details: https://github.com/easydiffusion/easydiffusion/wiki/Model-Merging . Thanks @JeLuf.
- **Fast loading/unloading of VAEs** - No longer needs to reload the entire Stable Diffusion model, each time you change the VAE
- **Database of known models** - automatically picks the right configuration for known models. E.g. we automatically detect and apply "v" parameterization (required for some SD 2.0 models), and "fp32" attention precision (required for some SD 2.1 models).
- **Color correction for img2img** - an option to preserve the color profile (histogram) of the initial image. This is especially useful if you're getting red-tinted images after inpainting/masking.
- **Three GPU Memory Usage Settings** - `High` (fastest, maximum VRAM usage), `Balanced` (default - almost as fast, significantly lower VRAM usage), `Low` (slowest, very low VRAM usage). The `Low` setting is applied automatically for GPUs with less than 4 GB of VRAM.
- **Find models in sub-folders** - This allows you to organize your models into sub-folders inside `models/stable-diffusion`, instead of keeping them all in a single folder. Thanks @patriceac and @ogmaresca.
- **Custom Modifier Categories** - Ability to create custom modifiers with thumbnails, and custom categories (and hierarchy of categories). Details: https://github.com/easydiffusion/easydiffusion/wiki/Custom-Modifiers . Thanks @ogmaresca.
- **Embed metadata, or save as TXT/JSON** - You can now embed the metadata directly into the images, or save them as text or json files (choose in the Settings tab). Thanks @patriceac.
- **Major rewrite of the code** - Most of the codebase has been reorganized and rewritten, to make it more manageable and easier for new developers to contribute features. We've separated our core engine into a new project called `sdkit`, which allows anyone to easily integrate Stable Diffusion (and related modules like GFPGAN etc) into their programming projects (via a simple `pip install sdkit`): https://github.com/easydiffusion/sdkit/
- **Name change** - Last, and probably the least, the UI is now called "Easy Diffusion". It indicates the focus of this project - an easy way for people to play with Stable Diffusion.
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
### Detailed changelog
* 2.5.48 - 1 Aug 2023 - (beta-only) Full support for ControlNets. You can select a control image to guide the AI. You can pick a filter to pre-process the image, and one of the known (or custom) controlnet models. Supports `OpenPose`, `Canny`, `Straight Lines`, `Depth`, `Line Art`, `Scribble`, `Soft Edge`, `Shuffle` and `Segment`.
* 2.5.47 - 30 Jul 2023 - An option to use `Strict Mask Border` while inpainting, to avoid touching areas outside the mask. But this might show a slight outline of the mask, which you will have to touch up separately.
* 2.5.47 - 29 Jul 2023 - (beta-only) Fix long prompts with SDXL.
* 2.5.47 - 29 Jul 2023 - (beta-only) Fix red dots in some SDXL images.
* 2.5.47 - 29 Jul 2023 - Significantly faster `Fix Faces` and `Upscale` buttons (on the image). They no longer need to generate the image from scratch, instead they just upscale/fix the generated image in-place.
* 2.5.47 - 28 Jul 2023 - Lots of internal code reorganization, in preparation for supporting Controlnets. No user-facing changes.
* 2.5.46 - 27 Jul 2023 - (beta-only) Full support for SD-XL models (base and refiner)!
* 2.5.45 - 24 Jul 2023 - (beta-only) Hide the samplers that won't be supported in the new diffusers version.
* 2.5.45 - 22 Jul 2023 - (beta-only) Fix the recently-broken inpainting models.
* 2.5.45 - 16 Jul 2023 - (beta-only) Fix the image quality of LoRAs, which had degraded in v2.5.44.
* 2.5.44 - 15 Jul 2023 - (beta-only) Support for multiple LoRA files.
* 2.5.43 - 9 Jul 2023 - (beta-only) Support for loading Textual Inversion embeddings. You can find the option in the Image Settings panel. Thanks @JeLuf.
* 2.5.43 - 9 Jul 2023 - Improve the startup time of the UI.
* 2.5.42 - 4 Jul 2023 - Keyboard shortcuts for the Image Editor. Thanks @JeLuf.
* 2.5.42 - 28 Jun 2023 - Allow dropping images from folders to use as an Initial Image.
* 2.5.42 - 26 Jun 2023 - Show a popup for Image Modifiers, allowing a larger screen space, better UX on mobile screens, and more room for us to develop and improve the Image Modifiers panel. Thanks @Hakorr.
* 2.5.42 - 26 Jun 2023 - (beta-only) Show a welcome screen for users of the diffusers beta, with instructions on how to use the new prompt syntax, and known bugs. Thanks @JeLuf.
* 2.5.42 - 26 Jun 2023 - Use YAML files for config. You can now edit the `config.yaml` file (using a text editor, like Notepad). This file is present inside the Easy Diffusion folder, and is easier to read and edit (for humans) than JSON. Thanks @JeLuf.
* 2.5.41 - 24 Jun 2023 - (beta-only) Fix broken inpainting in low VRAM usage mode.
* 2.5.41 - 24 Jun 2023 - (beta-only) Fix a recent regression where the LoRA would not get applied when changing SD models.
* 2.5.41 - 23 Jun 2023 - Fix a regression where latent upscaler stopped working on PCs without a graphics card.
* 2.5.41 - 20 Jun 2023 - Automatically fix black images if fp32 attention precision is required in diffusers.
* 2.5.41 - 19 Jun 2023 - Another fix for multi-gpu rendering (in all VRAM usage modes).
* 2.5.41 - 13 Jun 2023 - Fix multi-gpu bug with "low" VRAM usage mode while generating images.
* 2.5.41 - 12 Jun 2023 - Fix multi-gpu bug with CodeFormer.
* 2.5.41 - 6 Jun 2023 - Allow changing the strength of CodeFormer, and slightly improved styling of the CodeFormer options.
* 2.5.41 - 5 Jun 2023 - Allow sharing an Easy Diffusion instance via https://try.cloudflare.com/ . You can find this option at the bottom of the Settings tab. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - Show an option to download for tiled images. Shows a button on the generated image. Creates larger images by tiling them with the image generated by Easy Diffusion. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - (beta-only) Allow LoRA strengths between -2 and 2. Thanks @ogmaresca.
* 2.5.40 - 5 Jun 2023 - Reduce the VRAM usage of Latent Upscaling when using "balanced" VRAM usage mode.
* 2.5.40 - 5 Jun 2023 - Fix the "realesrgan" key error when using CodeFormer with more than 1 image in a batch.
* 2.5.40 - 3 Jun 2023 - Added CodeFormer as another option for fixing faces and eyes. CodeFormer tends to perform better than GFPGAN for many images. Thanks @patriceac for the implementation, and for contacting the CodeFormer team (who were supportive of it being integrated into Easy Diffusion).
* 2.5.39 - 25 May 2023 - (beta-only) Seamless Tiling - make seamlessly tiled images, e.g. rock and grass textures. Thanks @JeLuf.
* 2.5.38 - 24 May 2023 - Better reporting of errors, and show an explanation if the user cannot disable the "Use CPU" setting.
* 2.5.38 - 23 May 2023 - Add Latent Upscaler as another option for upscaling images. Thanks @JeLuf for the implementation of the Latent Upscaler model.
* 2.5.37 - 19 May 2023 - (beta-only) Two more samplers: DDPM and DEIS. Also disables the samplers that aren't working yet in the Diffusers version. Thanks @ogmaresca.
* 2.5.37 - 19 May 2023 - (beta-only) Support CLIP-Skip. You can set this option under the models dropdown. Thanks @JeLuf.
* 2.5.37 - 19 May 2023 - (beta-only) More VRAM optimizations for all modes in diffusers. The VRAM usage for diffusers in "low" and "balanced" should now be equal or less than the non-diffusers version. Performs softmax in half precision, like sdkit does.
* 2.5.36 - 16 May 2023 - (beta-only) More VRAM optimizations for "balanced" VRAM usage mode.
* 2.5.36 - 11 May 2023 - (beta-only) More VRAM optimizations for "low" VRAM usage mode.
* 2.5.36 - 10 May 2023 - (beta-only) Bug fix for "meta" error when using a LoRA in 'low' VRAM usage mode.
* 2.5.35 - 8 May 2023 - Allow dragging a zoomed-in image (after opening an image with the "expand" button). Thanks @ogmaresca.
* 2.5.35 - 3 May 2023 - (beta-only) First round of VRAM Optimizations for the "Test Diffusers" version. This change significantly reduces the amount of VRAM used by the diffusers version during image generation. The VRAM usage is still not equal to the "non-diffusers" version, but more optimizations are coming soon.
* 2.5.34 - 22 Apr 2023 - Don't start the browser in an incognito new profile (on Windows). Thanks @JeLuf.
* 2.5.33 - 21 Apr 2023 - Install PyTorch 2.0 on new installations (on Windows and Linux).
* 2.5.32 - 19 Apr 2023 - Automatically check for black images, and set full-precision if necessary (for attn). This means custom models based on Stable Diffusion v2.1 will just work, without needing special command-line arguments or editing of yaml config files.
* 2.5.32 - 18 Apr 2023 - Automatic support for AMD graphics cards on Linux. Thanks @DianaNites and @JeLuf.
* 2.5.31 - 10 Apr 2023 - Reduce VRAM usage while upscaling.
* 2.5.31 - 6 Apr 2023 - Allow seeds upto `4,294,967,295`. Thanks @ogmaresca.
* 2.5.31 - 6 Apr 2023 - Buttons to show the previous/next image in the image popup. Thanks @ogmaresca.
* 2.5.30 - 5 Apr 2023 - Fix a bug where the JPEG image quality wasn't being respected when embedding the metadata into it. Thanks @JeLuf.
* 2.5.30 - 1 Apr 2023 - (beta-only) Slider to control the strength of the LoRA model.
* 2.5.30 - 28 Mar 2023 - Refactor task entry config to use a generating method. Added ability for plugins to easily add to this. Removed confusing sentence from `contributing.md`
* 2.5.30 - 28 Mar 2023 - Allow the user to undo the deletion of tasks or images, instead of showing a pop-up each time. The new `Undo` button will be present at the top of the UI. Thanks @JeLuf.
* 2.5.30 - 28 Mar 2023 - Support saving lossless WEBP images. Thanks @ogmaresca.
* 2.5.30 - 28 Mar 2023 - Lots of bug fixes for the UI (Read LoRA flag in metadata files, new prompt weight format with scrollwheel, fix overflow with lots of tabs, clear button in image editor, shorter filenames in download). Thanks @patriceac, @JeLuf and @ogmaresca.
* 2.5.29 - 27 Mar 2023 - (beta-only) Fix a bug where some non-square images would fail while inpainting with a `The size of tensor a must match size of tensor b` error.
* 2.5.29 - 27 Mar 2023 - (beta-only) Fix the `incorrect number of channels` error, when given a PNG image with an alpha channel in `Test Diffusers`.
* 2.5.29 - 27 Mar 2023 - (beta-only) Fix broken inpainting in `Test Diffusers`.
* 2.5.28 - 24 Mar 2023 - (beta-only) Support for weighted prompts and long prompt lengths (not limited to 77 tokens). This change requires enabling the `Test Diffusers` setting in beta (in the Settings tab), and restarting the program.
* 2.5.27 - 21 Mar 2023 - (beta-only) LoRA support, accessible by enabling the `Test Diffusers` setting (in the Settings tab in the UI). This change switches the internal engine to diffusers (if the `Test Diffusers` setting is enabled). If the `Test Diffusers` flag is disabled, it'll have no impact for the user.
* 2.5.26 - 15 Mar 2023 - Allow styling the buttons displayed on an image. Update the API to allow multiple buttons and text labels in a single row. Thanks @ogmaresca.
* 2.5.26 - 15 Mar 2023 - View images in full-screen, by either clicking on the image, or clicking the "Full screen" icon next to the Seed number on the image. Thanks @ogmaresca for the internal API.
* 2.5.25 - 14 Mar 2023 - Button to download all the images, and all the metadata as a zip file. This is available at the top of the UI, as well as on each image. Thanks @JeLuf.
* 2.5.25 - 14 Mar 2023 - Lots of UI tweaks and bug fixes. Thanks @patriceac and @JeLuf.
* 2.5.24 - 11 Mar 2023 - Button to load an image mask from a file.
* 2.5.24 - 10 Mar 2023 - Logo change. Image credit: @lazlo_vii.
* 2.5.23 - 8 Mar 2023 - Experimental support for Mac M1/M2. Thanks @michaelgallacher, @JeLuf and vishae!
* 2.5.23 - 8 Mar 2023 - Ability to create custom modifiers with thumbnails, and custom categories (and hierarchy of categories). More details - https://github.com/easydiffusion/easydiffusion/wiki/Custom-Modifiers . Thanks @ogmaresca.
* 2.5.22 - 28 Feb 2023 - Minor styling changes to UI buttons, and the models dropdown.
* 2.5.22 - 28 Feb 2023 - Lots of UI-related bug fixes. Thanks @patriceac.
* 2.5.21 - 22 Feb 2023 - An option to control the size of the image thumbnails. You can use the `Display options` in the top-right corner to change this. Thanks @JeLuf.
* 2.5.20 - 20 Feb 2023 - Support saving images in WEBP format (which consumes less disk space, with similar quality). Thanks @ogmaresca.
* 2.5.20 - 18 Feb 2023 - A setting to block NSFW images from being generated. You can enable this setting in the Settings tab.
* 2.5.19 - 17 Feb 2023 - Initial support for server-side plugins. Currently supports overriding the `get_cond_and_uncond()` function.
* 2.5.18 - 17 Feb 2023 - 5 new samplers! UniPC samplers, some of which produce images in less than 15 steps. Thanks @Schorny.
* 2.5.16 - 13 Feb 2023 - Searchable dropdown for models. This is useful if you have a LOT of models. You can type part of the model name, to auto-search through your models. Thanks @patriceac for the feature, and @AssassinJN for help in UI tweaks!
* 2.5.16 - 13 Feb 2023 - Lots of fixes and improvements to the installer. First round of changes to add Mac support. Thanks @JeLuf.
* 2.5.16 - 13 Feb 2023 - UI bug fixes for the inpainter editor. Thanks @patriceac.
* 2.5.16 - 13 Feb 2023 - Fix broken task reorder. Thanks @JeLuf.
* 2.5.16 - 13 Feb 2023 - Remove a task if all the images inside it have been removed. Thanks @AssassinJN.
* 2.5.16 - 10 Feb 2023 - Embed metadata into the JPG/PNG images, if selected in the "Settings" tab (under "Metadata format"). Thanks @patriceac.
* 2.5.16 - 10 Feb 2023 - Sort models alphabetically in the models dropdown. Thanks @ogmaresca.
* 2.5.16 - 10 Feb 2023 - Support multiple GFPGAN models. Download new GFPGAN models into the `models/gfpgan` folder, and refresh the UI to use it. Thanks @JeLuf.
* 2.5.16 - 10 Feb 2023 - Allow a server to enforce a fixed directory path to save images. This is useful if the server is exposed to a lot of users. This can be set in the `config.json` file as `force_save_path: "/path/to/fixed/save/dir"`. E.g. `force_save_path: "D:/user_images"`. Thanks @JeLuf.
* 2.5.16 - 10 Feb 2023 - The "Make Images" button now shows the correct amount of images it'll create when using operators like `{}` or `|`. For e.g. if the prompt is `Photo of a {woman, man}`, then the button will say `Make 2 Images`. Thanks @JeLuf.
* 2.5.16 - 10 Feb 2023 - A bunch of UI-related bug fixes. Thanks @patriceac.
* 2.5.15 - 8 Feb 2023 - Allow using 'balanced' VRAM usage mode on GPUs with 4 GB or less of VRAM. This mode used to be called 'Turbo' in the previous version.
* 2.5.14 - 8 Feb 2023 - Fix broken auto-save settings. We renamed `sampler` to `sampler_name`, which caused old settings to fail.
* 2.5.14 - 6 Feb 2023 - Simplify the UI for merging models, and some other minor UI tweaks. Better error reporting if a model failed to load.
* 2.5.14 - 3 Feb 2023 - Fix the 'Make Similar Images' button, which was producing incorrect images (weren't very similar).
* 2.5.13 - 1 Feb 2023 - Fix the remaining GPU memory leaks, including a better fix (more comprehensive) for the change in 2.5.12 (27 Jan).
* 2.5.12 - 27 Jan 2023 - Fix a memory leak, which made the UI unresponsive after an out-of-memory error. The allocated memory is now freed-up after an error.
* 2.5.11 - 25 Jan 2023 - UI for Merging Models. Thanks @JeLuf. More info: https://github.com/easydiffusion/easydiffusion/wiki/Model-Merging
* 2.5.10 - 24 Jan 2023 - Reduce the VRAM usage for img2img in 'balanced' mode (without reducing the rendering speed), to make it similar to v2.4 of this UI.
* 2.5.9 - 23 Jan 2023 - Fix a bug where img2img would produce poorer-quality images for the same settings, as compared to version 2.4 of this UI.
* 2.5.9 - 23 Jan 2023 - Reduce the VRAM usage for 'balanced' mode (without reducing the rendering speed), to make it similar to v2.4 of the UI.
* 2.5.8 - 17 Jan 2023 - Fix a bug where 'Low' VRAM usage would consume a LOT of VRAM (on higher-end GPUs). Also fixed a bug that caused out-of-memory errors on SD 2.1-768 models, on 'high' VRAM usage setting.
* 2.5.7 - 16 Jan 2023 - Fix a bug where VAE files ending with .vae.pt weren't getting displayed. Thanks Madrang, rbertus2000 and JeLuf.
* 2.5.6 - 10 Jan 2023 - `Fill` tool for the Image Editor, to allow filling areas with color (or the entire image). And some bug fixes to the Image Editor. Thanks @mdiller.
* 2.5.6 - 10 Jan 2023 - Find Stable Diffusion models in sub-folders inside `models/stable-diffusion`. This allows you to organize your models into sub-folders, instead of keeping them all in a single folder. Thanks @JeLuf.
* 2.5.5 - 9 Jan 2023 - Lots of bug fixes. Thanks @patriceac and @JeLuf.
* 2.5.4 - 29 Dec 2022 - Press Esc key on the keyboard to close the Image Editor. Thanks @patriceac.
* 2.5.4 - 29 Dec 2022 - Lots of bug fixes in the UI. Thanks @patriceac.
* 2.5.4 - 28 Dec 2022 - Full support for running tasks in parallel on multiple GPUs. Warning: 'Euler Ancestral', 'DPM2 Ancestral' and 'DPM++ 2s Ancestral' may produce slight variations in the image (if run in parallel), so we recommend using the other samplers.
* 2.5.3 - 27 Dec 2022 - Fix broken drag-and-drop for text metadata files (as well as paste in clipboard).
* 2.5.3 - 27 Dec 2022 - Allow upscaling by 2x as well as 4x.
* 2.5.3 - 27 Dec 2022 - Fix broken renders on a second GPU.
* 2.5.3 - 26 Dec 2022 - Add a `Remove` button on each image. Thanks @JeLuf.
* 2.5.2 - 26 Dec 2022 - Fix broken inpainting if using non-square target images.
* 2.5.2 - 26 Dec 2022 - Fix a bug where an incorrect model config would get used for some SD 2.1 models.
* 2.5.2 - 26 Dec 2022 - Slight performance and memory improvement while rendering using SD 2.1 models.
* 2.5.1 - 25 Dec 2022 - Allow custom config yaml files for models. You can put a config file (`.yaml`) next to the model file, with the same name as the model. For e.g. if you put `robo-diffusion-v2-base.yaml` next to `robo-diffusion-v2-base.ckpt`, it'll automatically use that config file.
* 2.5.1 - 25 Dec 2022 - Fix broken rendering for SD 2.1-768 models. Fix broken rendering SD 2.0 safetensor models.
* 2.5.0 - 25 Dec 2022 - Major new release! Nearly twice as fast, Full support for SD 2.1 (including low GPU RAM optimizations), 6 new samplers, Model Merging, Fast loading/unloading of VAEs, Database of known models, Color correction for img2img, Three GPU Memory Usage Settings, Save metadata as JSON, Major rewrite of the code, Name change.
## v2.4
### Major Changes
- **Allow reordering the task queue** (by dragging and dropping tasks). Thanks @madrang
- **Automatic scanning for malicious model files** - using `picklescan`, and support for `safetensor` model format. Thanks @JeLuf
- **Image Editor** - for drawing simple images for guiding the AI. Thanks @mdiller
- **Use pre-trained hypernetworks** - for improving the quality of images. Thanks @C0bra5
- **Support for custom VAE models**. You can place your VAE files in the `models/vae` folder, and refresh the browser page to use them. More info: https://github.com/easydiffusion/easydiffusion/wiki/VAE-Variational-Auto-Encoder
- **Experimental support for multiple GPUs!** It should work automatically. Just open one browser tab per GPU, and spread your tasks across your GPUs. For e.g. open our UI in two browser tabs if you have two GPUs. You can customize which GPUs it should use in the "Settings" tab, otherwise let it automatically pick the best GPUs. Thanks @madrang . More info: https://github.com/easydiffusion/easydiffusion/wiki/Run-on-Multiple-GPUs
- **Cleaner UI design** - Show settings and help in new tabs, instead of dropdown popups (which were buggy). Thanks @mdiller
- **Progress bar.** Thanks @mdiller
- **Custom Image Modifiers** - You can now save your custom image modifiers! Your saved modifiers can include special characters like `{}, (), [], |`
- Drag and Drop **text files generated from previously saved images**, and copy settings to clipboard. Thanks @madrang
- Paste settings from clipboard. Thanks @JeLuf
- Bug fixes to reduce the chances of tasks crashing during long multi-hour runs (chrome can put long-running background tabs to sleep). Thanks @JeLuf and @madrang
- **Improved documentation.** Thanks @JeLuf and @jsuelwald
- Improved the codebase for dealing with system settings and UI settings. Thanks @mdiller
- Help instructions next to some setttings, and in the tab
- Show system info in the settings tab
- Keyboard shortcut: Ctrl+Enter to start a task
- Configuration to prevent the browser from opening on startup
- Lots of minor bug fixes
- A `What's New?` tab in the UI
- Ask for a confimation before clearing the results pane or stopping a render task. The dialog can be skipped by holding down the shift key while clicking on the button.
- Show the network addresses of the server in the systems setting dialog
- Support loading models in the safetensor format, for improved safety
### Detailed changelog
* 2.4.24 - 9 Jan 2022 - Urgent fix for failures on old/long-term-support browsers. Thanks @JeLuf.
* 2.4.23/22 - 29 Dec 2022 - Allow rolling back from the upcoming v2.5 change (in beta).
* 2.4.21 - 23 Dec 2022 - Speed up image creation, by removing a delay (regression) of 4-5 seconds between clicking the `Make Image` button and calling the server.
* 2.4.20 - 22 Dec 2022 - `Pause All` button to pause all the pending tasks. Thanks @JeLuf
* 2.4.20 - 22 Dec 2022 - `Undo`/`Redo` buttons in the image editor. Thanks @JeLuf
* 2.4.20 - 22 Dec 2022 - Drag handle to reorder the tasks. This fixed a bug where the metadata was no longer selectable (for copying). Thanks @JeLuf
* 2.4.19 - 17 Dec 2022 - Add Undo/Redo buttons in the Image Editor. Thanks @JeLuf
* 2.4.19 - 10 Dec 2022 - Show init img in task list
* 2.4.19 - 7 Dec 2022 - Use pre-trained hypernetworks while generating images. Thanks @C0bra5
* 2.4.19 - 6 Dec 2022 - Allow processing new tasks first. Thanks @madrang
* 2.4.19 - 6 Dec 2022 - Allow reordering the task queue (by dragging tasks). Thanks @madrang
* 2.4.19 - 6 Dec 2022 - Re-organize the code, to make it easier to write user plugins. Thanks @madrang
* 2.4.18 - 5 Dec 2022 - Make JPEG Output quality user controllable. Thanks @JeLuf
* 2.4.18 - 5 Dec 2022 - Support loading models in the safetensor format, for improved safety. Thanks @JeLuf
* 2.4.18 - 1 Dec 2022 - Image Editor, for drawing simple images for guiding the AI. Thanks @mdiller
* 2.4.18 - 1 Dec 2022 - Disable an image modifier temporarily by right-clicking it. Thanks @patriceac
* 2.4.17 - 30 Nov 2022 - Scroll to generated image. Thanks @patriceac
* 2.4.17 - 30 Nov 2022 - Show the network addresses of the server in the systems setting dialog. Thanks @JeLuf
* 2.4.17 - 30 Nov 2022 - Fix a bug where GFPGAN wouldn't work properly when multiple GPUs tried to run it at the same time. Thanks @madrang
* 2.4.17 - 30 Nov 2022 - Confirm before stopping or clearing all the tasks. Thanks @JeLuf
* 2.4.16 - 29 Nov 2022 - Bug fixes for SD 2.0 - remove the need for patching, default to SD 1.4 model if trying to load an SD2 model in SD1.4.
* 2.4.15 - 25 Nov 2022 - Experimental support for SD 2.0. Uses lots of memory, not optimized, probably GPU-only.
* 2.4.14 - 22 Nov 2022 - Change the backend to a custom fork of Stable Diffusion
* 2.4.13 - 21 Nov 2022 - Change the modifier weight via mouse wheel, drag to reorder selected modifiers, and some more modifier-related fixes. Thanks @patriceac
* 2.4.12 - 21 Nov 2022 - Another fix for improving how long images take to generate. Reduces the time taken for an enqueued task to start processing.
* 2.4.11 - 21 Nov 2022 - Installer improvements: avoid crashing if the username contains a space or special characters, allow moving/renaming the folder after installation on Windows, whitespace fix on git apply
* 2.4.11 - 21 Nov 2022 - Validate inputs before submitting the Image request
* 2.4.11 - 19 Nov 2022 - New system settings to manage the network config (port number and whether to only listen on localhost)
* 2.4.11 - 19 Nov 2022 - Address a regression in how long images take to generate. Use the previous code for moving a model to CPU. This improves things by a second or two per image, but we still have a regression (investigating).
* 2.4.10 - 18 Nov 2022 - Textarea for negative prompts. Thanks @JeLuf
* 2.4.10 - 18 Nov 2022 - Improved design for Settings, and rounded toggle buttons instead of checkboxes for a more modern look. Thanks @mdiller
* 2.4.9 - 18 Nov 2022 - Add Picklescan - a scanner for malicious model files. If it finds a malicious file, it will halt the web application and alert the user. Thanks @JeLuf
* 2.4.8 - 18 Nov 2022 - A `Use these settings` button to use the settings from a previously generated image task. Thanks @patriceac
* 2.4.7 - 18 Nov 2022 - Don't crash if a VAE file fails to load
* 2.4.7 - 17 Nov 2022 - Fix a bug where Face Correction (GFPGAN) would fail on cuda:N (i.e. GPUs other than cuda:0), as well as fail on CPU if the system had an incompatible GPU.
* 2.4.6 - 16 Nov 2022 - Fix a regression in VRAM usage during startup, which caused 'Out of Memory' errors when starting on GPUs with 4gb (or less) VRAM
* 2.4.5 - 16 Nov 2022 - Add checkbox for "Open browser on startup".
* 2.4.5 - 16 Nov 2022 - Add a directory for core plugins that ship with Stable Diffusion UI by default.
* 2.4.5 - 16 Nov 2022 - Add a "What's New?" tab as a core plugin, which fetches the contents of CHANGES.md from the app's release branch.

View File

@ -1,23 +1,24 @@
Hi there, these instructions are meant for the developers of this project.
If you only want to use the Stable Diffusion UI, you've downloaded the wrong file. In that case, please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation
If you only want to use the Stable Diffusion UI, you've downloaded the wrong file. In that case, please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation
Thanks
# For developers:
If you would like to contribute to this project, there is a discord for discussion:
If you would like to contribute to this project, there is a discord for dicussion:
[![Discord Server](https://badgen.net/badge/icon/discord?icon=discord&label)](https://discord.com/invite/u9yhsFmEkB)
## Development environment for UI (frontend and server) changes
This is in-flux, but one way to get a development environment running for editing the UI of this project is:
(swap `.sh` or `.bat` in instructions depending on your environment, and be sure to adjust any paths to match where you're working)
1) Install the project to a new location using the [usual installation process](https://github.com/easydiffusion/easydiffusion#installation), e.g. to `/projects/stable-diffusion-ui-archive`
2) Start the newly installed project, and check that you can view and generate images on `localhost:9000`
3) Next, please clone the project repository using `git clone` (e.g. to `/projects/stable-diffusion-ui-repo`)
4) Close the server (started in step 2), and edit `/projects/stable-diffusion-ui-archive/scripts/on_env_start.sh` (or `on_env_start.bat`)
5) Comment out the lines near the bottom that copies the `files/ui` folder, e.g:
1) `git clone` the repository, e.g. to `/projects/stable-diffusion-ui-repo`
2) Download the pre-built end user archive from the link on github, and extract it, e.g. to `/projects/stable-diffusion-ui-archive`
3) `cd /projects/stable-diffusion-ui-archive` and run the script to set up and start the project, e.g. `start.sh`
4) Check you can view and generate images on `localhost:9000`
5) Close the server, and edit `/projects/stable-diffusion-ui-archive/scripts/on_env_start.sh`
6) Comment out the lines near the bottom that copies the `files/ui` folder, e.g:
for `.sh`
```
@ -32,20 +33,23 @@ REM @xcopy sd-ui-files\ui ui /s /i /Y
REM @copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
REM @copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
```
6) Next, comment out the line at the top of `/projects/stable-diffusion-ui-archive/scripts/on_sd_start.sh` (or `on_sd_start.bat`) that copies `on_env_start`. For e.g. `@rem @copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y`
7) Comment out the line at the top of `/projects/stable-diffusion-ui-archive/scripts/on_sd_start.sh` that copies `on_env_start`. For e.g. `@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y`
8) Delete the current `ui` folder at `/projects/stable-diffusion-ui-archive/ui`
9) Now make a symlink between the repository clone (where you will be making changes) and this archive (where you will be running stable diffusion):
`ln -s /projects/stable-diffusion-ui-repo/ui /projects/stable-diffusion-ui-archive/ui`
or for Windows
`mklink /J \projects\stable-diffusion-ui-archive\ui \projects\stable-diffusion-ui-repo\ui` (link name first, source repo dir second)
9) Run the project again (like in step 2) and ensure you can still use the UI.
`mklink /D \projects\stable-diffusion-ui-archive\ui \projects\stable-diffusion-ui-repo\ui` (link name first, source repo dir second)
9) Run the archive again `start.sh` and ensure you can still use the UI.
10) Congrats, now any changes you make in your repo `ui` folder are linked to this running archive of the app and can be previewed in the browser.
11) Please update CHANGES.md in your pull requests.
Check the `ui/frontend/build/README.md` for instructions on running and building the React code.
## Development environment for Installer changes
Build the Windows installer using Windows, and the Linux installer using Linux. Don't mix the two, and don't use WSL. An Ubuntu VM is fine for building the Linux installer on a Windows host.
1. Run `build.bat` or `./build.sh` depending on whether you're in Windows or Linux.
2. Make a new GitHub release and upload the Windows and Linux installer builds created inside the `dist` folder.
For NSIS (on Windows), you need to have these plugins in the `nsis/Plugins` folder: `amd64-unicode`, `x86-ansi`, `x86-unicode`
1. Install Miniconda 3 or Anaconda.
2. Install `conda install -c conda-forge -y conda-pack`
3. Open the Anaconda Prompt. Do not use WSL if you're building for Windows.
4. Run `build.bat` or `./build.sh` depending on whether you're in Windows or Linux.
5. Compress the `stable-diffusion-ui` folder created inside the `dist` folder. Make a `zip` for Windows, and `tar.xz` for Linux (smaller files, and Linux users already have tar).
6. Make a new GitHub release and upload the Windows and Linux installer builds.

15
Developer Console.cmd Normal file
View File

@ -0,0 +1,15 @@
@echo off
echo "Opening Stable Diffusion UI - Developer Console.." & echo.
set SD_BASE_DIR=%cd%
set MAMBA_ROOT_PREFIX=%SD_BASE_DIR%\env\mamba
set INSTALL_ENV_DIR=%SD_BASE_DIR%\env\installer_env
set PROJECT_ENV_DIR=%SD_BASE_DIR%\env\project_env
call "%MAMBA_ROOT_PREFIX%\condabin\mamba_hook.bat"
call micromamba activate "%INSTALL_ENV_DIR%"
call micromamba activate "%PROJECT_ENV_DIR%"
cmd /k

View File

@ -1,24 +0,0 @@
Congrats on downloading Easy Diffusion, version 3!
If you haven't downloaded Easy Diffusion yet, please download from https://github.com/easydiffusion/easydiffusion#installation
After downloading, to install please follow these instructions:
For Windows:
- Please double-click the "Easy-Diffusion-Windows.exe" file and follow the instructions.
For Linux and Mac:
- Please open a terminal, and go to the "easy-diffusion" directory. Then run ./start.sh
That file will automatically install everything. After that it will start the Easy Diffusion interface in a web browser.
To start Easy Diffusion in the future, please run the same command mentioned above.
If you have any problems, please:
1. Try the troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting
2. Or, seek help from the community at https://discord.com/invite/u9yhsFmEkB
3. Or, file an issue at https://github.com/easydiffusion/easydiffusion/issues
Thanks
cmdr2 (and contributors to the project)

1
NSIS/.gitignore vendored
View File

@ -1 +0,0 @@
*.exe

View File

@ -1 +0,0 @@
Scripts to be used with the Nullsoft Scriptable Installation System

Binary file not shown.

Before

Width:  |  Height:  |  Size: 565 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 223 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 454 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

View File

@ -1,309 +0,0 @@
; Script generated by the HM NIS Edit Script Wizard.
Target amd64-unicode
Unicode True
SetCompressor /FINAL lzma
RequestExecutionLevel user
!AddPluginDir /amd64-unicode "."
; HM NIS Edit Wizard helper defines
!define PRODUCT_NAME "Easy Diffusion"
!define PRODUCT_VERSION "3.0"
!define PRODUCT_PUBLISHER "cmdr2 and contributors"
!define PRODUCT_WEB_SITE "https://easydiffusion.github.io"
!define PRODUCT_DIR_REGKEY "Software\Microsoft\Easy Diffusion\App Paths\installer.exe"
; MUI 1.67 compatible ------
!include "MUI.nsh"
!include "LogicLib.nsh"
!include "nsDialogs.nsh"
!include "nsisconf.nsh"
Var Dialog
Var Label
Var Button
Var InstDirLen
Var LongPathsEnabled
Var AccountType
;---------------------------------------------------------------------------------------------------------
; This function returns the number of spaces in a string.
; The string is passed on the stack (using Push $STRING)
; The result is also returned on the stack and can be consumed with Pop $var
; https://nsis.sourceforge.io/Check_for_spaces_in_a_directory_path
Function CheckForSpaces
Exch $R0
Push $R1
Push $R2
Push $R3
StrCpy $R1 -1
StrCpy $R3 $R0
StrCpy $R0 0
loop:
StrCpy $R2 $R3 1 $R1
IntOp $R1 $R1 - 1
StrCmp $R2 "" done
StrCmp $R2 " " 0 loop
IntOp $R0 $R0 + 1
Goto loop
done:
Pop $R3
Pop $R2
Pop $R1
Exch $R0
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; The function DirectoryLeave is called after the user chose the installation directory.
; If it calls "abort", the user is sent back to choose a different directory.
Function DirectoryLeave
; check whether the installation directory path is longer than 30 characters.
; If yes, we suggest to the user to enable long filename support
;----------------------------------------------------------------------------
StrLen $InstDirLen "$INSTDIR"
; Check whether the registry key that allows for >260 characters in a path name is set
ReadRegStr $LongPathsEnabled HKLM "SYSTEM\CurrentControlSet\Control\FileSystem" "LongPathsEnabled"
${If} $InstDirLen > 30
${AndIf} $LongPathsEnabled == "0"
; Check whether we're in the Admin group
UserInfo::GetAccountType
Pop $AccountType
${If} $AccountType == "Admin"
${AndIf} ${Cmd} `MessageBox MB_YESNO|MB_ICONQUESTION 'The path name is too long. $\n$\nYou can either enable long file name support in Windows,$\nor you can go back and choose a different path.$\n$\nFor details see: shorturl.at/auBD1$\n$\nEnable long path name support in Windows?' IDYES`
; Enable long path names
WriteRegDWORD HKLM "SYSTEM\CurrentControlSet\Control\FileSystem" "LongPathsEnabled" 1
${Else}
MessageBox MB_OK|MB_ICONEXCLAMATION "Installation path name too long. The installation path must not have more than 30 characters."
abort
${EndIf}
${EndIf}
; Check for spaces in the installation directory path.
; ----------------------------------------------------
; $R0 = CheckForSpaces( $INSTDIR )
Push $INSTDIR # Input string (install path).
Call CheckForSpaces
Pop $R0 # The function returns the number of spaces found in the input string.
; Check if any spaces exist in $INSTDIR.
${If} $R0 != 0
; Plural if more than 1 space in $INSTDIR.
; If $R0 == 1: $R1 = ""; else: $R1 = "s"
StrCmp $R0 1 0 +3
StrCpy $R1 ""
Goto +2
StrCpy $R1 "s"
; Show message box then take the user back to the Directory page.
MessageBox MB_OK|MB_ICONEXCLAMATION "Error: The Installaton directory \
has $R0 space character$R1.$\nPlease choose an installation directory without space characters."
Abort
${EndIf}
; Check for NTFS filesystem. Installations on FAT fail.
; -----------------------------------------------------
StrCpy $5 $INSTDIR 3
System::Call 'Kernel32::GetVolumeInformation(t "$5",t,i ${NSIS_MAX_STRLEN},*i,*i,*i,t.r1,i ${NSIS_MAX_STRLEN})i.r0'
${If} $0 <> 0
${AndIf} $1 != "NTFS"
MessageBox mb_ok "$5 has filesystem type '$1'.$\nOnly NTFS filesystems are supported.$\nPlease choose a different drive."
Abort
${EndIf}
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; Open the MS download page in a browser and enable the [Next] button
Function MSMediaFeaturepack
ExecShell "open" "https://www.microsoft.com/en-us/software-download/mediafeaturepack"
GetDlgItem $0 $HWNDPARENT 1
EnableWindow $0 1
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; Install the MS Media Feature Pack, if it is missing (e.g. on Windows 10 N)
Function MediaPackDialog
!insertmacro MUI_HEADER_TEXT "Windows Media Feature Pack" "Required software module is missing"
; Skip this dialog if mf.dll is installed
${If} ${FileExists} "$WINDIR\system32\mf.dll"
Abort
${EndIf}
nsDialogs::Create 1018
Pop $Dialog
${If} $Dialog == error
Abort
${EndIf}
${NSD_CreateLabel} 0 0 100% 48u "The Windows Media Feature Pack is missing on this computer. It is required for Easy Diffusion.$\nYou can continue the installation after installing the Windows Media Feature Pack."
Pop $Label
${NSD_CreateButton} 10% 49u 80% 12u "Download Meda Feature Pack from Microsoft"
Pop $Button
GetFunctionAddress $0 MSMediaFeaturePack
nsDialogs::OnClick $Button $0
GetDlgItem $0 $HWNDPARENT 1
EnableWindow $0 0
nsDialogs::Show
FunctionEnd
Function FinishPageAction
CreateShortCut "$DESKTOP\Easy Diffusion.lnk" "$INSTDIR\Start Stable Diffusion UI.cmd" "" "$INSTDIR\installer_files\cyborg_flower_girl.ico"
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; MUI Settings
;---------------------------------------------------------------------------------------------------------
!define MUI_ABORTWARNING
!define MUI_ICON "${EXISTING_INSTALLATION_DIR}\installer_files\cyborg_flower_girl.ico"
!define MUI_WELCOMEFINISHPAGE_BITMAP "${EXISTING_INSTALLATION_DIR}\installer_files\cyborg_flower_girl.bmp"
; Welcome page
!define MUI_WELCOMEPAGE_TEXT "This installer will guide you through the installation of Easy Diffusion.$\n$\n\
Click Next to continue."
!insertmacro MUI_PAGE_WELCOME
Page custom MediaPackDialog
; License page
!insertmacro MUI_PAGE_LICENSE "${EXISTING_INSTALLATION_DIR}\LICENSE"
!insertmacro MUI_PAGE_LICENSE "${EXISTING_INSTALLATION_DIR}\CreativeML Open RAIL-M License"
; Directory page
!define MUI_PAGE_CUSTOMFUNCTION_LEAVE "DirectoryLeave"
!insertmacro MUI_PAGE_DIRECTORY
; Instfiles page
!insertmacro MUI_PAGE_INSTFILES
; Finish page
!define MUI_FINISHPAGE_SHOWREADME ""
!define MUI_FINISHPAGE_SHOWREADME_NOTCHECKED
!define MUI_FINISHPAGE_SHOWREADME_TEXT "Create Desktop Shortcut"
!define MUI_FINISHPAGE_SHOWREADME_FUNCTION FinishPageAction
!define MUI_FINISHPAGE_RUN "$INSTDIR\Start Stable Diffusion UI.cmd"
!insertmacro MUI_PAGE_FINISH
; Language files
!insertmacro MUI_LANGUAGE "English"
;---------------------------------------------------------------------------------------------------------
; MUI end
;---------------------------------------------------------------------------------------------------------
Name "${PRODUCT_NAME} ${PRODUCT_VERSION}"
OutFile "Install Easy Diffusion.exe"
InstallDir "C:\EasyDiffusion\"
InstallDirRegKey HKLM "${PRODUCT_DIR_REGKEY}" ""
ShowInstDetails show
;---------------------------------------------------------------------------------------------------------
; List of files to be installed
Section "MainSection" SEC01
SetOutPath "$INSTDIR"
File "${EXISTING_INSTALLATION_DIR}\CreativeML Open RAIL-M License"
File "${EXISTING_INSTALLATION_DIR}\How to install and run.txt"
File "${EXISTING_INSTALLATION_DIR}\LICENSE"
File "${EXISTING_INSTALLATION_DIR}\Start Stable Diffusion UI.cmd"
File /r "${EXISTING_INSTALLATION_DIR}\installer_files"
File /r "${EXISTING_INSTALLATION_DIR}\sd-ui-files"
SetOutPath "$INSTDIR\scripts"
File "${EXISTING_INSTALLATION_DIR}\scripts\install_status.txt"
File "${EXISTING_INSTALLATION_DIR}\scripts\on_env_start.bat"
File "C:\windows\system32\curl.exe"
File "${EXISTING_INSTALLATION_DIR}\scripts\config.yaml.sample"
CreateDirectory "$INSTDIR\models\stable-diffusion"
CreateDirectory "$INSTDIR\models\gfpgan"
CreateDirectory "$INSTDIR\models\realesrgan"
CreateDirectory "$INSTDIR\models\vae"
CreateDirectory "$INSTDIR\profile\.cache\huggingface\hub"
SetOutPath "$INSTDIR\profile\.cache\huggingface\hub"
File /r /x pytorch_model.bin "${EXISTING_INSTALLATION_DIR}\profile\.cache\huggingface\hub\models--openai--clip-vit-large-patch14"
CreateDirectory "$SMPROGRAMS\Easy Diffusion"
CreateShortCut "$SMPROGRAMS\Easy Diffusion\Easy Diffusion.lnk" "$INSTDIR\Start Stable Diffusion UI.cmd" "" "$INSTDIR\installer_files\cyborg_flower_girl.ico"
DetailPrint 'Downloading the Stable Diffusion 1.5 model...'
NScurl::http get "https://github.com/easydiffusion/sdkit-test-data/releases/download/assets/sd-v1-5.safetensors" "$INSTDIR\models\stable-diffusion\sd-v1-5.safetensors" /CANCEL /INSIST /END
DetailPrint 'Downloading the GFPGAN model...'
NScurl::http get "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth" "$INSTDIR\models\gfpgan\GFPGANv1.4.pth" /CANCEL /INSIST /END
DetailPrint 'Downloading the RealESRGAN_x4plus model...'
NScurl::http get "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" "$INSTDIR\models\realesrgan\RealESRGAN_x4plus.pth" /CANCEL /INSIST /END
DetailPrint 'Downloading the RealESRGAN_x4plus_anime model...'
NScurl::http get "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" "$INSTDIR\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" /CANCEL /INSIST /END
DetailPrint 'Downloading the default VAE (sd-vae-ft-mse-original) model...'
NScurl::http get "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt" "$INSTDIR\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" /CANCEL /INSIST /END
DetailPrint 'Downloading the CLIP model (clip-vit-large-patch14)...'
NScurl::http get "https://huggingface.co/openai/clip-vit-large-patch14/resolve/8d052a0f05efbaefbc9e8786ba291cfdf93e5bff/pytorch_model.bin" "$INSTDIR\profile\.cache\huggingface\hub\models--openai--clip-vit-large-patch14\snapshots\8d052a0f05efbaefbc9e8786ba291cfdf93e5bff\pytorch_model.bin" /CANCEL /INSIST /END
SectionEnd
;---------------------------------------------------------------------------------------------------------
; Our installer only needs 25 KB, but once it has run, we need 25 GB
; So we need to overwrite the automatically detected space requirements.
; https://nsis.sourceforge.io/Docs/Chapter4.html#4.9.13.7
; The example in section 4.9.13.7 seems to be wrong: the number
; needs to be provided in Kilobytes.
Function .onInit
; Set required size of section 'SEC01' to 25 Gigabytes
SectionSetSize ${SEC01} 26214400
; Check system meory size. We need at least 8GB
; ----------------------------------------------------
; allocate a few bytes of memory
System::Alloc 64
Pop $1
; Retrieve HW info from the Windows Kernel
System::Call "*$1(i64)"
System::Call "Kernel32::GlobalMemoryStatusEx(i r1)"
; unpack the data into $R2 - $R10
System::Call "*$1(i.r2, i.r3, l.r4, l.r5, l.r6, l.r7, l.r8, l.r9, l.r10)"
# free up the memory
System::Free $1
; Result mapping:
; "Structure size: $2 bytes"
; "Memory load: $3%"
; "Total physical memory: $4 bytes"
; "Free physical memory: $5 bytes"
; "Total page file: $6 bytes"
; "Free page file: $7 bytes"
; "Total virtual: $8 bytes"
; "Free virtual: $9 bytes"
; Mem size in MB
System::Int64Op $4 / 1048576
Pop $4
${If} $4 < "8000"
MessageBox MB_OK|MB_ICONEXCLAMATION "Warning!$\n$\nYour system has less than 8GB of memory (RAM).$\n$\n\
You can still try to install Easy Diffusion,$\nbut it might have problems to start, or run$\nvery slowly."
${EndIf}
FunctionEnd
;Section -Post
; WriteRegStr HKLM "${PRODUCT_DIR_REGKEY}" "" "$INSTDIR\installer.exe"
;SectionEnd

View File

@ -1,9 +0,0 @@
// placeholder until a more formal and legal-sounding privacy policy document is written. but the information below is true.
This is a summary of whether Easy Diffusion uses your data or tracks you:
* The short answer is - Easy Diffusion does *not* use your data, and does *not* track you.
* Easy Diffusion does not send your prompts or usage or analytics to anyone. There is no tracking. We don't even know how many people use Easy Diffusion, let alone their prompts.
* Easy Diffusion fetches updates to the code whenever it starts up. It does this by contacting GitHub directly, via SSL (secure connection). Only your computer and GitHub and [this repository](https://github.com/easydiffusion/easydiffusion) are involved, and no third party is involved. Some countries intercepts SSL connections, that's not something we can do much about. GitHub does *not* share statistics (even with me) about how many people fetched code updates.
* Easy Diffusion fetches the models from huggingface.co and github.com, if they don't exist on your PC. For e.g. if the safety checker (NSFW) model doesn't exist, it'll try to download it.
* Easy Diffusion fetches code packages from pypi.org, which is the standard hosting service for all Python projects. That's where packages installed via `pip install` are stored.
* Occasionally, antivirus software are known to *incorrectly* flag and delete some model files, which will result in Easy Diffusion re-downloading `pytorch_model.bin`. This *incorrect deletion* affects other Stable Diffusion UIs as well, like Invoke AI - https://itch.io/post/7509488

View File

@ -1,8 +0,0 @@
Hi there,
What you have downloaded is meant for the developers of this project, not for users.
If you only want to use the Stable Diffusion UI, you've downloaded the wrong file.
Please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation
Thanks

212
README.md
View File

@ -1,149 +1,107 @@
# Easy Diffusion 3.0
### An easy way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your computer.
Does not require technical knowledge, does not require pre-installed software. 1-click install, powerful features, friendly community.
️‍🔥🎉 **New!** Support for Flux has been added in the beta branch (v3.5 engine)!
[Installation guide](#installation) | [Troubleshooting guide](https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting) | [User guide](https://github.com/easydiffusion/easydiffusion/wiki) | <sub>[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB)</sub> <sup>(for support queries, and development discussions)</sup>
---
![262597678-11089485-2514-4a11-88fb-c3acc81fc9ec](https://github.com/easydiffusion/easydiffusion/assets/844287/050b5e15-e909-45bf-8162-a38234830e38)
# Installation
Click the download button for your operating system:
# Stable Diffusion UI v2
### A simple 1-click way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your own computer. No dependencies or technical knowledge required.
<p float="left">
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/latest/download/Easy-Diffusion-Linux.zip"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-linux.png" width="200" /></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/latest/download/Easy-Diffusion-Mac.zip"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-mac.png" width="200" /></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/latest/download/Easy-Diffusion-Windows.exe"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-win.png" width="200" /></a>
<a href="#installation"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/develop/media/download-win.png" width="200" /></a>
<a href="#installation"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/develop/media/download-linux.png" width="200" /></a>
</p>
**Hardware requirements:**
- **Windows:** NVIDIA¹ or AMD graphics card (minimum 2 GB RAM), or run on your CPU.
- **Linux:** NVIDIA¹ or AMD² graphics card (minimum 2 GB RAM), or run on your CPU.
- **Mac:** M1/M2/M3/M4 or AMD graphics card (Intel Mac), or run on your CPU.
- Minimum 8 GB of system RAM.
- Atleast 25 GB of space on the hard disk.
[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB) (for support, and development discussion) | [Troubleshooting guide for common problems](Troubleshooting.md)
¹) [CUDA Compute capability](https://en.wikipedia.org/wiki/CUDA#GPUs_supported) level of 3.7 or higher required.
️‍🔥🎉 **New!** Use Custom Weights, Task Queue, Negative Prompt, Live Preview, More Samplers, In-Painting, Face Correction (GFPGAN) and Upscaling (RealESRGAN) have been added!
²) ROCm 5.2 (or newer) support required.
This distribution currently uses Stable Diffusion 1.4. Once the model for 1.5 becomes publicly available, the model in this distribution will be updated.
The installer will take care of whatever is needed. If you face any problems, you can join the friendly [Discord community](https://discord.com/invite/u9yhsFmEkB) and ask for assistance.
## On Windows:
1. Run the downloaded `Easy-Diffusion-Windows.exe` file.
2. Run `Easy Diffusion` once the installation finishes. You can also start from your Start Menu, or from your desktop (if you created a shortcut).
If Windows SmartScreen prevents you from running the program click `More info` and then `Run anyway`.
**Tip:** On Windows 10, please install at the top level in your drive, e.g. `C:\EasyDiffusion` or `D:\EasyDiffusion`. This will avoid a common problem with Windows 10 (file path length limits).
## On Linux/Mac:
1. Unzip/extract the folder `easy-diffusion` which should be in your downloads folder, unless you changed your default downloads destination.
2. Open a terminal window, and navigate to the `easy-diffusion` directory.
3. Run `./start.sh` (or `bash start.sh`) in a terminal.
# To remove/uninstall:
Just delete the `EasyDiffusion` folder to uninstall all the downloaded packages.
----
# Easy for new users, powerful features for advanced users
## Features:
### User experience
- **Hassle-free installation**: Does not require technical knowledge, does not require pre-installed software. Just download and run!
- **Clutter-free UI**: A friendly and simple UI, while providing a lot of powerful features.
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish.
- **Intelligent Model Detection**: Automatically figures out the YAML config file to use for the chosen model (via a models database).
- **Live Preview**: See the image as the AI is drawing it.
- **Image Modifiers**: A library of *modifier tags* like *"Realistic"*, *"Pencil Sketch"*, *"ArtStation"* etc. Experiment with various styles quickly.
- **Multiple Prompts File**: Queue multiple prompts by entering one prompt per line, or by running a text file.
- **Save generated images to disk**: Save your images to your PC!
- **UI Themes**: Customize the program to your liking.
- **Searchable models dropdown**: organize your models into sub-folders, and search through them in the UI.
### Powerful image generation
- **Supports**: "*Text to Image*", "*Image to Image*" and "*InPainting*"
- **ControlNet**: For advanced control over the image, e.g. by setting the pose or drawing the outline for the AI to fill in.
- **16 Samplers**: `PLMS`, `DDIM`, `DEIS`, `Heun`, `Euler`, `Euler Ancestral`, `DPM2`, `DPM2 Ancestral`, `LMS`, `DPM Solver`, `DPM++ 2s Ancestral`, `DPM++ 2m`, `DPM++ 2m SDE`, `DPM++ SDE`, `DDPM`, `UniPC`.
- **Stable Diffusion XL and 2.1**: Generate higher-quality images using the latest Stable Diffusion XL models.
- **Textual Inversion Embeddings**: For guiding the AI strongly towards a particular concept.
- **Simple Drawing Tool**: Draw basic images to guide the AI, without needing an external drawing program.
- **Face Correction (GFPGAN)**
- **Upscaling (RealESRGAN)**
- **Loopback**: Use the output image as the input image for the next image task.
# Features in the new v2 Version:
- **No Dependencies or Technical Knowledge Required**: 1-click install for Windows 10/11 and Linux. *No dependencies*, no need for WSL or Docker or Conda or technical setup. Just download and run!
- **Face Correction (GFPGAN) and Upscaling (RealESRGAN)**
- **In-Painting**
- **Live Preview**: See the image as the AI is drawing it
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish
- **Custom Weights**: Use your own `.ckpt` file, by placing it inside the `stable-diffusion` folder (rename it to `custom-model.ckpt`)
- **Negative Prompt**: Specify aspects of the image to *remove*.
- **Attention/Emphasis**: `+` in the prompt increases the model's attention to enclosed words, and `-` decreases it. E.g. `apple++ falling from a tree`.
- **Weighted Prompts**: Use weights for specific words in your prompt to change their importance, e.g. `(red)2.4 (dragon)1.2`.
- **Prompt Matrix**: Quickly create multiple variations of your prompt, e.g. `a photograph of an astronaut riding a horse | illustration | cinematic lighting`.
- **Prompt Set**: Quickly create multiple variations of your prompt, e.g. `a photograph of an astronaut on the {moon,earth}`
- **1-click Upscale/Face Correction**: Upscale or correct an image after it has been generated.
- **Make Similar Images**: Click to generate multiple variations of a generated image.
- **NSFW Setting**: A setting in the UI to control *NSFW content*.
- **JPEG/PNG/WEBP output**: Multiple file formats.
### Advanced features
- **Custom Models**: Use your own `.ckpt` or `.safetensors` file, by placing it inside the `models/stable-diffusion` folder!
- **Stable Diffusion XL and 2.1 support**
- **Merge Models**
- **Use custom VAE models**
- **Textual Inversion Embeddings**
- **ControlNet**
- **Use custom GFPGAN models**
- **UI Plugins**: Choose from a growing list of [community-generated UI plugins](https://github.com/easydiffusion/easydiffusion/wiki/UI-Plugins), or write your own plugin to add features to the project!
### Performance and security
- **Fast**: Creates a 512x512 image with euler_a in 5 seconds, on an NVIDIA 3060 12GB.
- **Low Memory Usage**: Create 512x512 images with less than 2 GB of GPU RAM, and 768x768 images with less than 3 GB of GPU RAM!
- **Lots of Samplers:** ddim, plms, heun, euler, euler_a, dpm2, dpm2_a, lms
- **Image Modifiers**: A library of *modifier tags* like *"Realistic"*, *"Pencil Sketch"*, *"ArtStation"* etc. Experiment with various styles quickly.
- **New UI**: with cleaner design
- **Waifu Model Support**: Just replace the `stable-diffusion\sd-v1-4.ckpt` file after installation with the Waifu model
- Supports "*Text to Image*" and "*Image to Image*"
- **NSFW Setting**: A setting in the UI to control *NSFW content*
- **Use CPU setting**: If you don't have a compatible graphics card, but still want to run it on your CPU.
- **Multi-GPU support**: Automatically spreads your tasks across multiple GPUs (if available), for faster performance!
- **Auto scan for malicious models**: Uses picklescan to prevent malicious models.
- **Safetensors support**: Support loading models in the safetensor format, for improved safety.
- **Auto-updater**: Gets you the latest improvements and bug-fixes to a rapidly evolving project.
- **Developer Console**: A developer-mode for those who want to modify their Stable Diffusion code, modify packages, and edit the conda environment.
- **Low Memory Usage**: Creates 512x512 images with less than 4GB of VRAM!
**(and a lot more)**
![Screenshot of advanced settings](media/shot-v9.jpg?raw=true)
----
## Easy for new users, powerful features for advanced users:
![image](https://github.com/easydiffusion/easydiffusion/assets/844287/efbbac9f-42ce-4aef-8625-fd23c74a8241)
## Task Queue
![Screenshot of task queue](https://user-images.githubusercontent.com/844287/217043984-0b35f73b-1318-47cb-9eed-a2a91b430490.png)
## Live Preview
![live-512](https://user-images.githubusercontent.com/844287/192097249-729a0a1e-a677-485e-9ccc-16a9e848fabe.gif)
----
# System Requirements
1. Windows 10/11, or Linux. Experimental support for Mac is coming soon.
2. An NVIDIA graphics card, preferably with 4GB or more of VRAM. But if you don't have a compatible graphics card, you can still use it with a "Use CPU" setting. It'll be very slow, but it should still work.
# How to use?
Please refer to our [guide](https://github.com/easydiffusion/easydiffusion/wiki/How-to-Use) to understand how to use the features in this UI.
You do not need anything else. You do not need WSL, Docker or Conda. The installer will take care of it.
# Installation
1. **Download** [for Windows](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/stable-diffusion-ui-win64.zip) or [for Linux](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/stable-diffusion-ui-linux.tar.xz).
2. **Extract**:
- For Windows: After unzipping the file, please move the `stable-diffusion-ui` folder to your `C:` (or any drive like D:, at the top root level), e.g. `C:\stable-diffusion-ui`. This will avoid a common problem with Windows (file path length limits).
- For Linux: After extracting the .tar.xz file, please open a terminal, and go to the `stable-diffusion-ui` directory.
3. **Run**:
- For Windows: `Start Stable Diffusion UI.cmd` by double-clicking it.
- For Linux: In the terminal, run `./start.sh` (or `bash start.sh`)
This will automatically install Stable Diffusion, set it up, and start the interface. No additional steps are needed.
**To Uninstall:** Just delete the `stable-diffusion-ui` folder to uninstall all the downloaded packages.
# Usage
Open http://localhost:9000 in your browser (after running step 3 previously). It may take a few moments for the back-end to be ready.
## With a text description
1. Enter a text prompt, like `a photograph of an astronaut riding a horse` in the textbox.
2. Press `Make Image`. This will take some time, depending on your system's processing power.
3. See the image generated using your prompt.
## With an image
1. Click `Browse..` next to `Initial Image`. Select your desired image.
2. An optional text prompt can help you further describe the kind of image you want to generate.
3. Press `Make Image`. See the image generated using your prompt.
You can use Face Correction or Upscaling to improve the image further.
**Pro tip:** You can also click `Use as Input` on a generated image, to use it as the input image for your next generation. This can be useful for sequentially refining the generated image with a single click.
**Another tip:** Images with the same aspect ratio of your generated image work best. E.g. 1:1 if you're generating images sized 512x512.
## Problems? Troubleshooting
Please try the common [troubleshooting](Troubleshooting.md) steps. If that doesn't fix it, please ask on the [discord server](https://discord.com/invite/u9yhsFmEkB), or [file an issue](https://github.com/cmdr2/stable-diffusion-ui/issues).
# Image Settings
You can also set the configuration like `seed`, `width`, `height`, `num_outputs`, `num_inference_steps` and `guidance_scale` using the 'show' button next to 'Image settings'.
Use the same `seed` number to get the same image for a certain prompt. This is useful for refining a prompt without losing the basic image design. Enable the `random images` checkbox to get random images.
![Screenshot of advanced settings](media/config-v6.jpg?raw=true)
# System Settings
The system settings are reachable via the cogwheel symbol on the top right. It can be used to configure whether all generated images should
saved be automically, or to tune the Stable Diffusion image generation.
![Screenshot of advanced settings](media/system-settings-v2.jpg?raw=true)
# Image Modifiers
![Screenshot of advanced settings](media/modifiers-v1.jpg?raw=true)
# Bugs reports and code contributions welcome
If there are any problems or suggestions, please feel free to ask on the [discord server](https://discord.com/invite/u9yhsFmEkB) or [file an issue](https://github.com/easydiffusion/easydiffusion/issues).
If there are any problems or suggestions, please feel free to ask on the [discord server](https://discord.com/invite/u9yhsFmEkB) or [file an issue](https://github.com/cmdr2/stable-diffusion-ui/issues).
If you have any code contributions in mind, please feel free to say Hi to us on the [discord server](https://discord.com/invite/u9yhsFmEkB). We use the Discord server for development-related discussions, and for helping users.
# Credits
* Stable Diffusion: https://github.com/Stability-AI/stablediffusion
* CodeFormer: https://github.com/sczhou/CodeFormer (license: https://github.com/sczhou/CodeFormer/blob/master/LICENSE)
* GFPGAN: https://github.com/TencentARC/GFPGAN
* RealESRGAN: https://github.com/xinntao/Real-ESRGAN
* k-diffusion: https://github.com/crowsonkb/k-diffusion
* Code contributors and artists on the cmdr2 UI: https://github.com/cmdr2/stable-diffusion-ui and Discord (https://discord.com/invite/u9yhsFmEkB)
* Lots of contributors on the internet
Also, please feel free to submit a pull request, if you have any code contributions in mind. Join the [discord server](https://discord.com/invite/u9yhsFmEkB) for development-related discussions, and for helping other users.
# Disclaimer
The authors of this project are not responsible for any content generated using this interface.
The license of this software forbids you from sharing any content that:
- Violates any laws.
- Produces any harm to a person or persons.
- Disseminates (spreads) any personal information that would be meant for harm.
- Spreads misinformation.
- Target vulnerable groups.
For the full list of restrictions please read [the License](LICENSE). You agree to these terms by using this software.
The license of this software forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation, or target vulnerable groups. For the full list of restrictions please read [the license](LICENSE). You agree to these terms by using this software.

View File

@ -0,0 +1,25 @@
@echo off
echo. & echo "Stable Diffusion UI - v2.5" & echo.
set PATH=C:\Windows\System32;%PATH%
set SD_BASE_DIR=%cd%
@rem Confirm or change the installation dir
call installer\bootstrap\check-install-dir.bat
@rem set the vars again, if the installer dir has changed
set SD_BASE_DIR=%cd%
echo Working in %SD_BASE_DIR%
@rem Setup the packages required for the installer
call installer\bootstrap\bootstrap.bat
@rem Test the bootstrap
call git --version
call python --version
@rem Download the rest of the installer and UI
call installer\installer\start.bat

75
Troubleshooting.md Normal file
View File

@ -0,0 +1,75 @@
Common issues and their solutions. If these solutions don't work, please feel free to ask at the [discord server](https://discord.com/invite/u9yhsFmEkB) or [file an issue](https://github.com/cmdr2/stable-diffusion-ui/issues).
## RuntimeError: CUDA out of memory
This can happen if your PC has less than 6GB of VRAM.
Try disabling the "Turbo mode" setting under "Advanced Settings", since that takes an additional 1 GB of VRAM (to increase the speed).
Additionally, a common reason for this error is that you're using an initial image larger than 768x768 pixels. Try using a smaller initial image.
Also try generating smaller sized images.
## basicsr module not found
For Windows: Please download and extract basicsr from [here](https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.16/basicsr-win64.zip), and place the `basicsr` folder inside the `stable-diffusion-ui\stable-diffusion\env\lib\site-packages` folder. Then run the `Start Stable Diffusion UI.cmd` file again.
For Linux: Please contact on the [discord server](https://discord.com/invite/u9yhsFmEkB).
## No ldm found, or antlr4 or any other missing module, or ClobberError: This transaction has incompatible packages due to a shared path
On Windows, please ensure that you had placed the `stable-diffusion-ui` folder after unzipping to the root of C: or D: (or any drive). For e.g. `C:\stable-diffusion-ui`. **Note:** This has to be done **before** you start the installation process. If you have already installed (and are facing this error), please delete the installed folder, and start fresh by unzipping and placing the folder at the top of your drive.
This error can also be caused if you already have conda/miniconda/anaconda installed, due to package conflicts. Please open your Anaconda Prompt, and run `conda clean --all` to clean up unused packages.
If nothing works, this could be due to a corrupted installation. Please try reinstalling this, by deleting the installed folder, and unzipping from the downloaded zip file.
## Killed uvicorn server:app --app-dir ... --port 9000 --host 0.0.0.0
This happens if your PC ran out of RAM. Stable Diffusion requires a lot of RAM, and requires atleast 10 GB of RAM to work well. You can also try closing all other applications before running Stable Diffusion UI.
## Green image generated
This usually happens if you're running NVIDIA 1650 or 1660 Super. To solve this, please close and run the Stable Diffusion command on your computer. If you're using the older Docker-based solution (v1), please upgrade to v2: https://github.com/cmdr2/stable-diffusion-ui/tree/v2#installation
If you're still seeing this error, please try enabling "Full Precision" under "Advanced Settings" in the Stable Diffusion UI.
## './docker-compose.yml' is invalid:
> ERROR: The Compose file './docker-compose.yml' is invalid because:
> services.stability-ai.deploy.resources.reservations value Additional properties are not allowed ('devices' was unexpected)
Please ensure you have `docker-compose` version 1.29 or higher. Check `docker-compose --version`, and if required [update it to 1.29](https://docs.docker.com/compose/install/). (Thanks [HVRyan](https://github.com/HVRyan))
## RuntimeError: Found no NVIDIA driver on your system:
If you have an NVIDIA GPU and the latest [NVIDIA driver](http://www.nvidia.com/Download/index.aspx), please ensure that you've installed [nvidia-container-toolkit](https://stackoverflow.com/a/58432877). (Thanks [u/exintrovert420](https://www.reddit.com/user/exintrovert420/))
## Some other process is already running at port 9000 / port 9000 could not be bound
You can override the port used. Please change `docker-compose.yml` inside the project directory, and update the line `9000:9000` to `1337:9000` (where 1337 is whichever port number you want).
After doing this, please restart your server, by running `./server restart`.
After this, you can access the server at `http://localhost:1337` (where 1337 is the new port you specified earlier).
## RuntimeError: CUDA error: unknown error
Please ensure that you have an NVIDIA GPU and the latest [NVIDIA driver](http://www.nvidia.com/Download/index.aspx), and that you've installed [nvidia-container-toolkit](https://stackoverflow.com/a/58432877).
Also, if you are using WSL (Windows), please ensure you have the latest WSL kernel by running `wsl --shutdown` and then `wsl --update`. (Thanks [AndrWeisR](https://github.com/AndrWeisR))
# For support queries
## Entering a conda environment in an existing installation
This will give you an activated conda environment in the terminal, so you can run commands and force-install any packages, if required.
Users don't need to have the Anaconda Prompt installed to do this anymore, since the installer bundles a portable version of conda inside it. Just follow these steps.
**Windows:**
1. Open the terminal: Press Win+R, type "cmd", and press "Run"
2. Type `cd C:\stable-diffusion-ui` and press enter (or wherever you've installed it)
3. Type `installer\Scripts\activate.bat` and press enter
4. Type `cd stable-diffusion` and press enter
5. Type `conda activate .\env` and press enter
6. Type `python --version` and press enter. You should see 3.8.5.
**Linux:**
1. Open the terminal
2. Type `cd /path/to/stable-diffusion-ui` and press enter
3. Type `installer/bin/activate` and press enter
4. Type `cd stable-diffusion` and press enter
5. Type `conda activate ./env` and press enter
6. Type `python --version` and press enter. You should see 3.8.5.
This will give you an activated conda environment. To confirm, type `python --version` and press enter. You should see 3.8.5.

View File

@ -1,78 +0,0 @@
@echo off
setlocal enabledelayedexpansion
@echo "Hi there, what you are running is meant for the developers of this project, not for users." & echo.
@echo "If you only want to use Easy Diffusion, you've downloaded the wrong file."
@echo "Please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation" & echo.
@echo "If you are actually a developer of this project, please type Y and press enter" & echo.
set /p answer=Are you a developer of this project (Y/N)?
if /i "%answer:~,1%" NEQ "Y" exit /b
@rem verify dependencies
call makensis /VERSION >.tmp1 2>.tmp2
if "!ERRORLEVEL!" NEQ "0" (
echo makensis.exe not found! Download it from https://sourceforge.net/projects/nsisbi/files/ and set it on the PATH variable.
pause
exit
)
set /p OUT_DIR=Output folder path (will create the installer files inside this, e.g. F:\EasyDiffusion):
mkdir "%OUT_DIR%\scripts"
mkdir "%OUT_DIR%\installer_files"
set BASE_DIR=%cd%
@rem STEP 1: copy the installer files for Windows
copy "%BASE_DIR%\scripts\on_env_start.bat" "%OUT_DIR%\scripts\"
copy "%BASE_DIR%\scripts\config.yaml.sample" "%OUT_DIR%\scripts\config.yaml.sample"
copy "%BASE_DIR%\scripts\Start Stable Diffusion UI.cmd" "%OUT_DIR%\"
copy "%BASE_DIR%\LICENSE" "%OUT_DIR%\"
copy "%BASE_DIR%\CreativeML Open RAIL-M License" "%OUT_DIR%\"
copy "%BASE_DIR%\How to install and run.txt" "%OUT_DIR%\"
copy "%BASE_DIR%\NSIS\cyborg_flower_girl.ico" "%OUT_DIR%\installer_files\"
copy "%BASE_DIR%\NSIS\cyborg_flower_girl.bmp" "%OUT_DIR%\installer_files\"
echo. > "%OUT_DIR%\scripts\install_status.txt"
echo ----
echo Basic files ready. Verify the files in %OUT_DIR%, then press Enter to initialize the environment, or close to quit.
echo ----
pause
@rem STEP 2: Initialize the environment with git, python and conda
cd /d "%OUT_DIR%\"
call "%BASE_DIR%\scripts\bootstrap.bat"
echo ----
echo Environment ready. Verify the environment, then press Enter to download the necessary packages, or close to quit.
echo ----
pause
@rem STEP 3: Download the packages and create a working installation
cd /d "%OUT_DIR%\"
start "Install Easy Diffusion" /D "%OUT_DIR%" "Start Stable Diffusion UI.cmd"
echo ----
echo Installation in progress (in a new window). Once complete, verify the installation, then press Enter to create an installer from these files, or close to quit.
echo ----
pause
@rem STEP 4: Build the installer from a working installation
cd /d "%OUT_DIR%\"
echo ^^!define EXISTING_INSTALLATION_DIR "%OUT_DIR%" > nsisconf.nsh
call makensis /NOCD /V4 "%BASE_DIR%\NSIS\sdui.nsi"
echo ----
if "!ERRORLEVEL!" EQU "0" (
echo Installer built successfully at %OUT_DIR%
) else (
echo Installer failed to build at %OUT_DIR%
)
echo ----
pause

View File

@ -1,40 +0,0 @@
#!/bin/bash
printf "Hi there, what you are running is meant for the developers of this project, not for users.\n\n"
printf "If you only want to use Easy Diffusion, you've downloaded the wrong file.\n"
printf "Please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation \n\n"
printf "If you are actually a developer of this project, please type Y and press enter\n\n"
read -p "Are you a developer of this project (Y/N) " yn
case $yn in
[Yy]* ) ;;
* ) exit;;
esac
mkdir -p dist/linux-mac/easy-diffusion/scripts
# copy the installer files for Linux and Mac
cp scripts/on_env_start.sh dist/linux-mac/easy-diffusion/scripts/
cp scripts/bootstrap.sh dist/linux-mac/easy-diffusion/scripts/
cp scripts/functions.sh dist/linux-mac/easy-diffusion/scripts/
cp scripts/config.yaml.sample dist/linux-mac/easy-diffusion/scripts/config.yaml.sample
cp scripts/start.sh dist/linux-mac/easy-diffusion/
cp LICENSE dist/linux-mac/easy-diffusion/
cp "CreativeML Open RAIL-M License" dist/linux-mac/easy-diffusion/
cp "How to install and run.txt" dist/linux-mac/easy-diffusion/
echo "" > dist/linux-mac/easy-diffusion/scripts/install_status.txt
# set the permissions
chmod u+x dist/linux-mac/easy-diffusion/scripts/on_env_start.sh
chmod u+x dist/linux-mac/easy-diffusion/scripts/bootstrap.sh
chmod u+x dist/linux-mac/easy-diffusion/start.sh
# make the zip
cd dist/linux-mac
zip -r ../Easy-Diffusion-Linux.zip easy-diffusion
zip -r ../Easy-Diffusion-Mac.zip easy-diffusion
cd ../..
echo "Build ready. Upload the zip files inside the 'dist' folder."

18
developer_console.sh Normal file
View File

@ -0,0 +1,18 @@
#!/bin/bash
if [ "$0" == "bash" ]; then
echo "Opening Stable Diffusion UI - Developer Console.."
echo ""
export SD_BASE_DIR=`pwd`
export MAMBA_ROOT_PREFIX="$SD_BASE_DIR/env/mamba"
export INSTALL_ENV_DIR="$SD_BASE_DIR/env/installer_env"
export PROJECT_ENV_DIR="$SD_BASE_DIR/env/project_env"
eval "$($MAMBA_ROOT_PREFIX/micromamba shell hook -s posix)"
micromamba activate "$INSTALL_ENV_DIR"
micromamba activate "$PROJECT_ENV_DIR"
else
bash --init-file developer_console.sh
fi

101
engine/__init__.py Normal file
View File

@ -0,0 +1,101 @@
import json
class Request:
session_id: str = "session"
prompt: str = ""
negative_prompt: str = ""
init_image: str = None # base64
mask: str = None # base64
num_outputs: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
width: int = 512
height: int = 512
seed: int = 42
prompt_strength: float = 0.8
sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
# allow_nsfw: bool = False
precision: str = "autocast" # or "full"
save_to_disk_path: str = None
turbo: bool = True
use_cpu: bool = False
use_full_precision: bool = False
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
show_only_filtered_image: bool = False
stream_progress_updates: bool = False
stream_image_progress: bool = False
def json(self):
return {
"session_id": self.session_id,
"prompt": self.prompt,
"negative_prompt": self.negative_prompt,
"num_outputs": self.num_outputs,
"num_inference_steps": self.num_inference_steps,
"guidance_scale": self.guidance_scale,
"width": self.width,
"height": self.height,
"seed": self.seed,
"prompt_strength": self.prompt_strength,
"sampler": self.sampler,
"use_face_correction": self.use_face_correction,
"use_upscale": self.use_upscale,
}
def to_string(self):
return f'''
session_id: {self.session_id}
prompt: {self.prompt}
negative_prompt: {self.negative_prompt}
seed: {self.seed}
num_inference_steps: {self.num_inference_steps}
sampler: {self.sampler}
guidance_scale: {self.guidance_scale}
w: {self.width}
h: {self.height}
precision: {self.precision}
save_to_disk_path: {self.save_to_disk_path}
turbo: {self.turbo}
use_cpu: {self.use_cpu}
use_full_precision: {self.use_full_precision}
use_face_correction: {self.use_face_correction}
use_upscale: {self.use_upscale}
show_only_filtered_image: {self.show_only_filtered_image}
stream_progress_updates: {self.stream_progress_updates}
stream_image_progress: {self.stream_image_progress}'''
class Image:
data: str # base64
seed: int
is_nsfw: bool
path_abs: str = None
def __init__(self, data, seed):
self.data = data
self.seed = seed
def json(self):
return {
"data": self.data,
"seed": self.seed,
"path_abs": self.path_abs,
}
class Response:
request: Request
images: list
def json(self):
res = {
"status": 'succeeded',
"request": self.request.json(),
"output": [],
}
for image in self.images:
res["output"].append(image.json())
return res

658
engine/runtime.py Normal file
View File

@ -0,0 +1,658 @@
import json
import os, re
import traceback
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from einops import rearrange, repeat
from ldm.util import instantiate_from_config
from optimizedSD.optimUtils import split_weighted_subprompts
from transformers import logging
from gfpgan import GFPGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import uuid
logging.set_verbosity_error()
# consts
config_yaml = "optimizedSD/v1-inference.yaml"
filename_regex = re.compile('[^a-zA-Z0-9]')
# api stuff
from . import Request, Response, Image as ResponseImage
import base64
from io import BytesIO
#from colorama import Fore
# local
stop_processing = False
temp_images = {}
ckpt_file = None
gfpgan_file = None
real_esrgan_file = None
model = None
modelCS = None
modelFS = None
model_gfpgan = None
model_real_esrgan = None
model_is_half = False
model_fs_is_half = False
device = None
unet_bs = 1
precision = 'autocast'
sampler_plms = None
sampler_ddim = None
has_valid_gpu = False
force_full_precision = False
try:
gpu = torch.cuda.current_device()
gpu_name = torch.cuda.get_device_name(gpu)
print('GPU detected: ', gpu_name)
force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
if force_full_precision:
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name)
mem_free, mem_total = torch.cuda.mem_get_info(gpu)
mem_total /= float(10**9)
if mem_total < 3.0:
print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion")
raise Exception()
has_valid_gpu = True
except:
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!')
pass
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast', half_model_fs=False):
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
ckpt_file = ckpt_to_use
device = device_to_use if has_valid_gpu else 'cpu'
precision = precision_to_use if not force_full_precision else 'full'
unet_bs = unet_bs_to_use
if device == 'cpu':
precision = 'full'
sd = load_model_from_config(f"{ckpt_file}.ckpt")
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config_yaml}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.cdevice = device
model.unet_bs = unet_bs
model.turbo = turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = device
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if device != "cpu" and precision == "autocast":
model.half()
modelCS.half()
model_is_half = True
else:
model_is_half = False
if half_model_fs:
modelFS.half()
model_fs_is_half = True
else:
model_fs_is_half = False
print('loaded ', ckpt_file, 'to', device, 'precision', precision)
def load_model_gfpgan(gfpgan_to_use):
global gfpgan_file, model_gfpgan
if gfpgan_to_use is None:
return
gfpgan_file = gfpgan_to_use
model_path = gfpgan_to_use + ".pth"
if device == 'cpu':
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
else:
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda'))
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision)
def load_model_real_esrgan(real_esrgan_to_use):
global real_esrgan_file, model_real_esrgan
if real_esrgan_to_use is None:
return
real_esrgan_file = real_esrgan_to_use
model_path = real_esrgan_to_use + ".pth"
RealESRGAN_models = {
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
}
model_to_use = RealESRGAN_models[real_esrgan_to_use]
if device == 'cpu':
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
model_real_esrgan.device = torch.device('cpu')
model_real_esrgan.model.to('cpu')
else:
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half)
model_real_esrgan.model.name = real_esrgan_to_use
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision)
def mk_img(req: Request):
try:
yield from do_mk_img(req)
except Exception as e:
print(traceback.format_exc())
gc()
if device != "cpu":
modelFS.to("cpu")
modelCS.to("cpu")
model.model1.to("cpu")
model.model2.to("cpu")
gc()
yield json.dumps({
"status": 'failed',
"detail": str(e)
})
def do_mk_img(req: Request):
global model, modelCS, modelFS, device
global model_gfpgan, model_real_esrgan
global stop_processing
stop_processing = False
res = Response()
res.request = req
res.images = []
temp_images.clear()
model.turbo = req.turbo
if req.use_cpu:
if device != 'cpu':
device = 'cpu'
if model_is_half:
del model, modelCS, modelFS
load_model_ckpt(ckpt_file, device)
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
else:
if has_valid_gpu:
prev_device = device
device = 'cuda'
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
(precision == 'full' and not req.use_full_precision and not force_full_precision) or \
(req.init_image is None and model_fs_is_half) or \
(req.init_image is not None and not model_fs_is_half and not force_full_precision):
del model, modelCS, modelFS
load_model_ckpt(ckpt_file, device, req.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'), half_model_fs=(req.init_image is not None and not req.use_full_precision))
if prev_device != device:
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
if req.use_face_correction != gfpgan_file:
load_model_gfpgan(req.use_face_correction)
if req.use_upscale != real_esrgan_file:
load_model_real_esrgan(req.use_upscale)
model.cdevice = device
modelCS.cond_stage_model.device = device
opt_prompt = req.prompt
opt_seed = req.seed
opt_n_samples = req.num_outputs
opt_n_iter = 1
opt_scale = req.guidance_scale
opt_C = 4
opt_H = req.height
opt_W = req.width
opt_f = 8
opt_ddim_steps = req.num_inference_steps
opt_ddim_eta = 0.0
opt_strength = req.prompt_strength
opt_save_to_disk_path = req.save_to_disk_path
opt_init_img = req.init_image
opt_use_face_correction = req.use_face_correction
opt_use_upscale = req.use_upscale
opt_show_only_filtered = req.show_only_filtered_image
opt_format = 'png'
opt_sampler_name = req.sampler
print(req.to_string(), '\n device', device)
print('\n\n Using precision:', precision)
seed_everything(opt_seed)
batch_size = opt_n_samples
prompt = opt_prompt
assert prompt is not None
data = [batch_size * [prompt]]
if precision == "autocast" and device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
mask = None
if req.init_image is None:
handler = _txt2img
init_latent = None
t_enc = None
else:
handler = _img2img
init_image = load_img(req.init_image, opt_W, opt_H)
init_image = init_image.to(device)
if device != "cpu" and precision == "autocast":
init_image = init_image.half()
modelFS.to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
if req.mask is not None:
mask = load_mask(req.mask, opt_W, opt_H, init_latent.shape[2], init_latent.shape[3], True).to(device)
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0)
mask = repeat(mask, '1 ... -> b ...', b=batch_size)
if device != "cpu" and precision == "autocast":
mask = mask.half()
move_fs_to_cpu()
assert 0. <= opt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(opt_strength * opt_ddim_steps)
print(f"target t_enc is {t_enc} steps")
if opt_save_to_disk_path is not None:
session_out_path = os.path.join(opt_save_to_disk_path, req.session_id)
os.makedirs(session_out_path, exist_ok=True)
else:
session_out_path = None
seeds = ""
with torch.no_grad():
for n in trange(opt_n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if opt_scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
modelFS.to(device)
partial_x_samples = None
def img_callback(x_samples, i):
nonlocal partial_x_samples
partial_x_samples = x_samples
if req.stream_progress_updates:
n_steps = opt_ddim_steps if req.init_image is None else t_enc
progress = {"step": i, "total_steps": n_steps}
if req.stream_image_progress and i % 5 == 0:
partial_images = []
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
buf = BytesIO()
img.save(buf, format='JPEG')
buf.seek(0)
del img, x_sample, x_samples_ddim
# don't delete x_samples, it is used in the code that called this callback
temp_images[str(req.session_id) + '/' + str(i)] = buf
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
progress['output'] = partial_images
yield json.dumps(progress)
if stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
# run the handler
try:
if handler == _txt2img:
x_samples = _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, opt_sampler_name)
else:
x_samples = _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask)
yield from x_samples
x_samples = partial_x_samples
except UserInitiatedStop:
if partial_x_samples is None:
continue
x_samples = partial_x_samples
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
has_filters = (opt_use_face_correction is not None and opt_use_face_correction.startswith('GFPGAN')) or \
(opt_use_upscale is not None and opt_use_upscale.startswith('RealESRGAN'))
return_orig_img = not has_filters or not opt_show_only_filtered
if stop_processing:
return_orig_img = True
if opt_save_to_disk_path is not None:
prompt_flattened = filename_regex.sub('_', prompts[0])
prompt_flattened = prompt_flattened[:50]
img_id = str(uuid.uuid4())[-8:]
file_path = f"{prompt_flattened}_{img_id}"
img_out_path = os.path.join(session_out_path, f"{file_path}.{opt_format}")
meta_out_path = os.path.join(session_out_path, f"{file_path}.txt")
if return_orig_img:
save_image(img, img_out_path)
save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_strength, opt_use_face_correction, opt_use_upscale, opt_sampler_name, req.negative_prompt)
if return_orig_img:
img_data = img_to_base64_str(img)
res_image_orig = ResponseImage(data=img_data, seed=opt_seed)
res.images.append(res_image_orig)
if opt_save_to_disk_path is not None:
res_image_orig.path_abs = img_out_path
del img
if has_filters and not stop_processing:
print('Applying filters..')
gc()
filters_applied = []
if opt_use_face_correction:
_, _, output = model_gfpgan.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_face_correction)
if opt_use_upscale:
output, _ = model_real_esrgan.enhance(x_sample[:,:,::-1])
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_upscale)
filtered_image = Image.fromarray(x_sample)
filtered_img_data = img_to_base64_str(filtered_image)
res_image_filtered = ResponseImage(data=filtered_img_data, seed=opt_seed)
res.images.append(res_image_filtered)
filters_applied = "_".join(filters_applied)
if opt_save_to_disk_path is not None:
filtered_img_out_path = os.path.join(session_out_path, f"{file_path}_{filters_applied}.{opt_format}")
save_image(filtered_image, filtered_img_out_path)
res_image_filtered.path_abs = filtered_img_out_path
del filtered_image
seeds += str(opt_seed) + ","
opt_seed += 1
move_fs_to_cpu()
gc()
del x_samples, x_samples_ddim, x_sample
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
print('Task completed')
yield json.dumps(res.json())
def save_image(img, img_out_path):
try:
img.save(img_out_path)
except:
print('could not save the file', traceback.format_exc())
def save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_prompt_strength, opt_correct_face, opt_upscale, sampler_name, negative_prompt):
metadata = f"{prompts[0]}\nWidth: {opt_W}\nHeight: {opt_H}\nSeed: {opt_seed}\nSteps: {opt_ddim_steps}\nGuidance Scale: {opt_scale}\nPrompt Strength: {opt_prompt_strength}\nUse Face Correction: {opt_correct_face}\nUse Upscaling: {opt_upscale}\nSampler: {sampler_name}\nNegative Prompt: {negative_prompt}"
try:
with open(meta_out_path, 'w') as f:
f.write(metadata)
except:
print('could not save the file', traceback.format_exc())
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name):
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f]
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
if sampler_name == 'ddim':
model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
samples_ddim = model.sample(
S=opt_ddim_steps,
conditioning=c,
seed=opt_seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
eta=opt_ddim_eta,
x_T=start_code,
img_callback=img_callback,
mask=mask,
sampler = sampler_name,
)
yield from samples_ddim
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask):
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(device),
opt_seed,
opt_ddim_eta,
opt_ddim_steps,
)
x_T = None if mask is None else init_latent
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
img_callback=img_callback,
mask=mask,
x_T=x_T,
sampler = 'ddim'
)
yield from samples_ddim
def move_fs_to_cpu():
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
def gc():
if device == 'cpu':
return
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# internal
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
# utils
class UserInitiatedStop(Exception):
pass
def load_img(img_str, w0, h0):
image = base64_str_to_img(img_str).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from base64")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
image = image.resize((w, h), resample=Image.Resampling.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
def load_mask(mask_str, h0, w0, newH, newW, invert=False):
image = base64_str_to_img(mask_str).convert("RGB")
w, h = image.size
print(f"loaded input mask of size ({w}, {h})")
if invert:
print("inverted")
image = ImageOps.invert(image)
# where_0, where_1 = np.where(image == 0), np.where(image == 255)
# image[where_0], image[where_1] = 255, 0
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
print(f"New mask size ({w}, {h})")
image = image.resize((newW, newH), resample=Image.Resampling.LANCZOS)
image = np.array(image)
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
# https://stackoverflow.com/a/61114178
def img_to_base64_str(img):
buffered = BytesIO()
img.save(buffered, format="PNG")
buffered.seek(0)
img_byte = buffered.getvalue()
img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode()
return img_str
def base64_str_to_img(img_str):
img_str = img_str[len("data:image/png;base64,"):]
data = base64.b64decode(img_str)
buffered = BytesIO(data)
img = Image.open(buffered)
return img

237
engine/server.py Normal file
View File

@ -0,0 +1,237 @@
import json
import traceback
import sys
import os
SCRIPT_DIR = os.getcwd()
print('started in ', SCRIPT_DIR)
SD_UI_DIR = os.getenv('SD_UI_PATH', None)
sys.path.append(os.path.dirname(SD_UI_DIR))
CONFIG_DIR = os.path.join(SD_UI_DIR, '..', 'scripts')
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from starlette.responses import FileResponse, StreamingResponse
from pydantic import BaseModel
import logging
from sd_internal import Request, Response
app = FastAPI()
model_loaded = False
model_is_loading = False
modifiers_cache = None
outpath = os.path.join(os.path.expanduser("~"), OUTPUT_DIRNAME)
# don't show access log entries for URLs that start with the given prefix
ACCESS_LOG_SUPPRESS_PATH_PREFIXES = ['/ping', '/modifier-thumbnails']
app.mount('/media', StaticFiles(directory=os.path.join(SD_UI_DIR, 'media/')), name="media")
# defaults from https://huggingface.co/blog/stable_diffusion
class ImageRequest(BaseModel):
session_id: str = "session"
prompt: str = ""
negative_prompt: str = ""
init_image: str = None # base64
mask: str = None # base64
num_outputs: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
width: int = 512
height: int = 512
seed: int = 42
prompt_strength: float = 0.8
sampler: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
# allow_nsfw: bool = False
save_to_disk_path: str = None
turbo: bool = True
use_cpu: bool = False
use_full_precision: bool = False
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
show_only_filtered_image: bool = False
stream_progress_updates: bool = False
stream_image_progress: bool = False
class SetAppConfigRequest(BaseModel):
update_branch: str = "main"
@app.get('/')
def read_root():
headers = {"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
return FileResponse(os.path.join(SD_UI_DIR, 'index.html'), headers=headers)
@app.get('/ping')
async def ping():
global model_loaded, model_is_loading
try:
if model_loaded:
return {'OK'}
if model_is_loading:
return {'ERROR'}
model_is_loading = True
from sd_internal import runtime
custom_weight_path = os.path.join(SCRIPT_DIR, 'custom-model.ckpt')
ckpt_to_use = "sd-v1-4" if not os.path.exists(custom_weight_path) else "custom-model"
runtime.load_model_ckpt(ckpt_to_use=ckpt_to_use)
model_loaded = True
model_is_loading = False
return {'OK'}
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.post('/image')
def image(req : ImageRequest):
from sd_internal import runtime
r = Request()
r.session_id = req.session_id
r.prompt = req.prompt
r.negative_prompt = req.negative_prompt
r.init_image = req.init_image
r.mask = req.mask
r.num_outputs = req.num_outputs
r.num_inference_steps = req.num_inference_steps
r.guidance_scale = req.guidance_scale
r.width = req.width
r.height = req.height
r.seed = req.seed
r.prompt_strength = req.prompt_strength
r.sampler = req.sampler
# r.allow_nsfw = req.allow_nsfw
r.turbo = req.turbo
r.use_cpu = req.use_cpu
r.use_full_precision = req.use_full_precision
r.save_to_disk_path = req.save_to_disk_path
r.use_upscale: str = req.use_upscale
r.use_face_correction = req.use_face_correction
r.show_only_filtered_image = req.show_only_filtered_image
r.stream_progress_updates = True # the underlying implementation only supports streaming
r.stream_image_progress = req.stream_image_progress
try:
if not req.stream_progress_updates:
r.stream_image_progress = False
res = runtime.mk_img(r)
if req.stream_progress_updates:
return StreamingResponse(res, media_type='application/json')
else: # compatibility mode: buffer the streaming responses, and return the last one
last_result = None
for result in res:
last_result = result
return json.loads(last_result)
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/image/stop')
def stop():
try:
if model_is_loading:
return {'ERROR'}
from sd_internal import runtime
runtime.stop_processing = True
return {'OK'}
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/image/tmp/{session_id}/{img_id}')
def get_image(session_id, img_id):
from sd_internal import runtime
buf = runtime.temp_images[session_id + '/' + img_id]
buf.seek(0)
return StreamingResponse(buf, media_type='image/jpeg')
@app.post('/app_config')
async def setAppConfig(req : SetAppConfigRequest):
try:
config = {
'update_branch': req.update_branch
}
config_json_str = json.dumps(config)
config_bat_str = f'@set update_branch={req.update_branch}'
config_sh_str = f'export update_branch={req.update_branch}'
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
with open(config_json_path, 'w') as f:
f.write(config_json_str)
with open(config_bat_path, 'w') as f:
f.write(config_bat_str)
with open(config_sh_path, 'w') as f:
f.write(config_sh_str)
return {'OK'}
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/app_config')
def getAppConfig():
try:
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
if not os.path.exists(config_json_path):
return HTTPException(status_code=500, detail="No config file")
with open(config_json_path, 'r') as f:
config_json_str = f.read()
config = json.loads(config_json_str)
return config
except Exception as e:
print(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
@app.get('/modifiers.json')
def read_modifiers():
headers = {"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
return FileResponse(os.path.join(SD_UI_DIR, 'modifiers.json'), headers=headers)
@app.get('/output_dir')
def read_home_dir():
return {outpath}
# don't log certain requests
class LogSuppressFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
path = record.getMessage()
for prefix in ACCESS_LOG_SUPPRESS_PATH_PREFIXES:
if path.find(prefix) != -1:
return False
return True
logging.getLogger('uvicorn.access').addFilter(LogSuppressFilter())
# start the browser ui
import webbrowser; webbrowser.open('http://localhost:9000')

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
installer/bin/micromamba_mac_x64 Executable file

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,34 @@
@echo off
@rem This file initializes micromamba and activates the env.
@rem A similar bootstrap file needs to exist for each platform (win, linux, macOS)
@rem Ready to hand-over to the platform-independent installer after this (written in python).
set MAMBA_ROOT_PREFIX=%SD_BASE_DIR%\env\mamba
set INSTALL_ENV_DIR=%SD_BASE_DIR%\env\installer_env
set INSTALLER_YAML_FILE=%SD_BASE_DIR%\installer\yaml\installer-environment.yaml
set MICROMAMBA_BINARY_FILE=%SD_BASE_DIR%\installer\bin\micromamba_win_x64.exe
@rem initialize the mamba dir
if not exist "%MAMBA_ROOT_PREFIX%" mkdir "%MAMBA_ROOT_PREFIX%"
copy "%MICROMAMBA_BINARY_FILE%" "%MAMBA_ROOT_PREFIX%\micromamba.exe"
@rem test the mamba binary
echo Micromamba version:
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version
@rem run the shell hook
if not exist "%MAMBA_ROOT_PREFIX%\Scripts" (
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" shell hook --log-level 4 -s cmd.exe
)
call "%MAMBA_ROOT_PREFIX%\condabin\mamba_hook.bat"
@rem create the installer env
if not exist "%INSTALL_ENV_DIR%" (
call micromamba create -y --prefix "%INSTALL_ENV_DIR%" -f "%INSTALLER_YAML_FILE%"
)
@rem activate
call micromamba activate "%INSTALL_ENV_DIR%"

View File

@ -0,0 +1,44 @@
#!/bin/bash
# This file initializes micromamba and activates the env.
# A similar bootstrap file needs to exist for each platform (win, linux, macOS)
# Ready to hand-over to the platform-independent installer after this (written in python).
OS_NAME=$(uname -s)
case "${OS_NAME}" in
Linux*) OS_NAME="linux";;
Darwin*) OS_NAME="mac";;
*) echo "Unknown OS: $OS_NAME! This only runs on Linux or Mac" && exit
esac
OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) OS_ARCH="x64";;
arm64*) OS_ARCH="arm64";;
*) echo "Unknown system architecture: $OS_ARCH! This only runs on x86_64 or arm64" && exit
esac
export MAMBA_ROOT_PREFIX=$SD_BASE_DIR/env/mamba
INSTALL_ENV_DIR=$SD_BASE_DIR/env/installer_env
INSTALLER_YAML_FILE=$SD_BASE_DIR/installer/yaml/installer-environment.yaml
MICROMAMBA_BINARY_FILE=$SD_BASE_DIR/installer/bin/micromamba_${OS_NAME}_${OS_ARCH}
# initialize the mamba dir
mkdir -p "$MAMBA_ROOT_PREFIX"
cp "$MICROMAMBA_BINARY_FILE" "$MAMBA_ROOT_PREFIX/micromamba"
# test the mamba binary
echo "Micromamba version:"
"$MAMBA_ROOT_PREFIX/micromamba" --version
# run the shell hook
eval "$($MAMBA_ROOT_PREFIX/micromamba shell hook -s posix)"
# create the installer env
if [ ! -e "$INSTALL_ENV_DIR" ]; then
micromamba create -y --prefix "$INSTALL_ENV_DIR" -f "$INSTALLER_YAML_FILE"
fi
# activate
micromamba activate "$INSTALL_ENV_DIR"

View File

@ -0,0 +1,21 @@
@echo off
if exist "%SD_BASE_DIR%\env" exit /b
set suggested_dir=%~d0\stable-diffusion-ui
echo "Please install Stable Diffusion UI at the root of your drive. This avoids problems with path length limits in Windows." & echo.
set /p answer="Press Enter to install at %suggested_dir%, or type 'c' (without quotes) to install at the current location (press enter or type 'c'): "
if /i "%answer:~,1%" NEQ "c" (
if exist "%suggested_dir%" (
echo. & echo "Sorry, %suggested_dir% already exists! Cannot overwrite that folder!" & echo.
pause
exit
)
xcopy "%SD_BASE_DIR%" "%suggested_dir%" /s /i /Y /Q
echo Please run the %START_CMD_FILENAME% file inside %suggested_dir% . Do not use this folder anymore > "%SD_BASE_DIR%/READ_ME - DO_NOT_USE_THIS_FOLDER.txt"
cd %suggested_dir%
)

View File

@ -0,0 +1,78 @@
import argparse
import subprocess
import sys
import json
import os
import platform
import shutil
config_path = os.path.join('config.json')
if not os.path.exists('LICENSE'):
print('Error: This script needs to be run from the root of the stable-diffusion-ui folder! Please cd to the correct folder, and run this again.')
exit(1)
parser = argparse.ArgumentParser()
parser.add_argument(
"--symlink_dir", type=str, default=None, help="the absolute path to the project git repository (to link to)"
)
opt = parser.parse_args()
def run(cmd):
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
for c in iter(lambda: p.stdout.read(1), b""):
sys.stdout.buffer.write(c)
sys.stdout.flush()
p.wait()
return p.returncode == 0
def get_config():
if not os.path.exists(config_path):
return {}
with open(config_path, "r") as f:
return json.load(f)
def save_config(config):
with open(config_path, "w") as f:
json.dump(config, f)
# set the `is_developer_mode` flag to `true` in the config
config = get_config()
config['is_developer_mode'] = True
save_config(config)
print('set is_developer_mode=true in config.json')
# make the symlink, if requested
if opt.symlink_dir is not None:
if not os.path.exists(opt.symlink_dir):
print(f'Symlink directory "{opt.symlink_dir}" was not found! Are you sure it has been escaped correctly?')
exit(1)
installer_target_path = os.path.join(opt.symlink_dir, 'installer')
ui_target_path = os.path.join(opt.symlink_dir, 'ui')
engine_target_path = os.path.join(opt.symlink_dir, 'engine')
shutil.rmtree('installer', ignore_errors=True)
shutil.rmtree('ui', ignore_errors=True)
shutil.rmtree('engine', ignore_errors=True)
if not os.path.exists(ui_target_path) or not os.path.exists(installer_target_path) or not os.path.exists(engine_target_path):
print('The target symlink directory does not contain the required {ui, installer, engine} folders. Are you sure it is the correct git repo for the project?')
exit(1)
if platform.system() == 'Windows':
run(f'mklink /J "installer" "{installer_target_path}"')
run(f'mklink /J "ui" "{ui_target_path}"')
run(f'mklink /J "engine" "{engine_target_path}"')
elif platform.system() in ('Linux', 'Darwin'):
run(f'ln -s "{installer_target_path}" "installer"')
run(f'ln -s "{ui_target_path}" "ui"')
run(f'ln -s "{engine_target_path}" "engine"')
print(f'Created symlinks! Your installation will now automatically use the files present in the repository at {opt.symlink_dir}')

View File

@ -0,0 +1,70 @@
import os
import json
import platform
# config
PROJECT_REPO_URL = 'https://github.com/cmdr2/stable-diffusion-ui.git'
DEFAULT_PROJECT_BRANCH = 'installer_new'
PROJECT_REPO_DIR_NAME = 'project_repo'
STABLE_DIFFUSION_REPO_URL = 'https://github.com/basujindal/stable-diffusion.git'
DEFAULT_STABLE_DIFFUSION_COMMIT = 'f6cfebffa752ee11a7b07497b8529d5971de916c'
STABLE_DIFFUSION_REPO_DIR_NAME = 'stable-diffusion'
PROJECT_ENV_DIR_NAME = 'project_env'
START_CMD_FILE_NAME = "Start Stable Diffusion UI.cmd" if platform.system() == "Windows" else "start.sh"
DEV_CONSOLE_CMD_FILE_NAME = "Developer Console.cmd" if platform.system() == "Windows" else "developer_console.sh"
CONFIG_FILE_NAME = 'config.json'
# top-level folders
ENV_DIR_NAME = 'env'
MODELS_DIR_NAME = 'models'
INSTALLER_DIR_NAME = 'installer'
UI_DIR_NAME = 'ui'
ENGINE_DIR_NAME = 'engine'
# env
SD_BASE_DIR = os.environ['SD_BASE_DIR']
# model folders
STABLE_DIFFUSION_MODELS_DIR_NAME = "stable-diffusion"
GFPGAN_MODELS_DIR_NAME = "gfpgan"
RealESRGAN_MODELS_DIR_NAME = "realesrgan"
# create references to dirs
env_dir_path = os.path.join(SD_BASE_DIR, ENV_DIR_NAME)
installer_dir_path = os.path.join(SD_BASE_DIR, INSTALLER_DIR_NAME)
ui_dir_path = os.path.join(SD_BASE_DIR, UI_DIR_NAME)
engine_dir_path = os.path.join(SD_BASE_DIR, ENGINE_DIR_NAME)
project_repo_dir_path = os.path.join(env_dir_path, PROJECT_REPO_DIR_NAME)
stable_diffusion_repo_dir_path = os.path.join(env_dir_path, STABLE_DIFFUSION_REPO_DIR_NAME)
project_env_dir_path = os.path.join(env_dir_path, PROJECT_ENV_DIR_NAME)
patches_dir_path = os.path.join(installer_dir_path, 'patches')
models_dir_path = os.path.join(SD_BASE_DIR, MODELS_DIR_NAME)
stable_diffusion_models_dir_path = os.path.join(models_dir_path, STABLE_DIFFUSION_MODELS_DIR_NAME)
gfpgan_models_dir_path = os.path.join(models_dir_path, GFPGAN_MODELS_DIR_NAME)
realesrgan_models_dir_path = os.path.join(models_dir_path, RealESRGAN_MODELS_DIR_NAME)
# useful functions
def get_config():
config_path = os.path.join(SD_BASE_DIR, CONFIG_FILE_NAME)
if not os.path.exists(config_path):
return {}
with open(config_path, "r") as f:
return json.load(f)
# app context
config = get_config()
activated_env_dir_path = None

View File

@ -0,0 +1,18 @@
'''
This script is run by the `installer.helpers.modules_exist_in_env()` function
'''
import sys
import pkgutil
modules = sys.argv[1:]
missing_modules = []
for m in modules:
if pkgutil.find_loader(m) is None:
missing_modules.append(m)
if len(missing_modules) == 0:
print('42')
exit()
print('Missing modules', missing_modules)

View File

@ -0,0 +1,80 @@
import os
from os import path
import subprocess
import traceback
from installer import app
def run(cmd, run_in_folder=None, env=None, get_output=False, log_the_cmd=False):
if app.activated_env_dir_path is not None and 'micromamba activate' not in cmd:
cmd = f'micromamba activate "{app.activated_env_dir_path}" && {cmd}'
if run_in_folder is not None:
cmd = f'cd "{run_in_folder}" && {cmd}'
if log_the_cmd:
log('running: ' + cmd)
if get_output:
p = subprocess.Popen(cmd, shell=True, env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
else:
p = subprocess.Popen(cmd, shell=True, env=env)
out, err = p.communicate()
out = out.decode('utf-8') if isinstance(out, bytes) else out
err = err.decode('utf-8') if isinstance(out, bytes) else err
if get_output:
return out, err
def log(msg):
print(msg)
def modules_exist_in_env(modules, env_dir_path=app.project_env_dir_path):
if not path.exists(env_dir_path):
return False
check_modules_script_path = path.join(app.installer_dir_path, 'installer', 'check_modules.py')
module_args = ' '.join(modules)
check_modules_cmd = f'python "{check_modules_script_path}" {module_args}'
env = os.environ.copy()
env['PYTHONPATH'] = app.stable_diffusion_repo_dir_path + ';' + os.path.join(app.project_env_dir_path, 'lib', 'site-packages')
if app.activated_env_dir_path != env_dir_path:
activate_cmd = f'micromamba activate "{env_dir_path}"'
check_modules_cmd = f'{activate_cmd} && {check_modules_cmd}'
# activate and run the modules checker
output, _ = run(check_modules_cmd, get_output=True, env=env)
if 'Missing' in output:
log(output)
return False
return True
def fail_with_install_error(error_msg):
try:
log(traceback.format_stack())
log(f'''
Error: {error_msg}. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/blob/main/Troubleshooting.md
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks!''')
except:
pass
exit(1)
def apply_git_patches(repo_dir_path, patch_file_names):
is_developer_mode = app.config.get('is_developer_mode', False)
if is_developer_mode:
return
for patch_file_name in patch_file_names:
patch_file_path = path.join(app.patches_dir_path, patch_file_name)
run(f"git apply {patch_file_path}", run_in_folder=repo_dir_path)

View File

@ -0,0 +1,34 @@
import os
import sys
from datetime import datetime
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from installer import helpers
from installer.tasks import (
fetch_project_repo,
apply_project_update,
fetch_stable_diffusion_repo,
install_stable_diffusion_packages,
install_ui_packages,
download_weights,
start_ui_server,
)
tasks = [
fetch_project_repo,
apply_project_update,
fetch_stable_diffusion_repo,
install_stable_diffusion_packages,
install_ui_packages,
download_weights,
start_ui_server,
]
helpers.log(f'Starting Stable Diffusion UI at {datetime.now().strftime("%d/%m/%Y %H:%M:%S")}')
def run_tasks():
for task in tasks:
task.run()
run_tasks()

View File

@ -0,0 +1,8 @@
@echo off
rem Never edit this file. If you really, really have to, beware that a script doesn't like
rem being overwritten while it is running (the auto-updater will do that).
rem The trick is to update this file while another script is running, and vice versa.
call python %SD_BASE_DIR%\installer\installer\main.py
pause

9
installer/installer/start.sh Executable file
View File

@ -0,0 +1,9 @@
#!/bin/bash
# Never edit this file. If you really, really have to, beware that a script doesn't like
# being overwritten while it is running (the auto-updater will do that).
# The trick is to update this file while another script is running, and vice versa.
python $SD_BASE_DIR/installer/installer/main.py
read -p "Press enter to continue"

View File

@ -0,0 +1,30 @@
from os import path
import shutil
from installer import app
def run():
is_developer_mode = app.config.get('is_developer_mode', False)
if is_developer_mode:
return
installer_src_path = path.join(app.project_repo_dir_path, 'installer')
ui_src_path = path.join(app.project_repo_dir_path, 'ui')
engine_src_path = path.join(app.project_repo_dir_path, 'engine')
start_cmd_src_path = path.join(app.project_repo_dir_path, app.START_CMD_FILE_NAME)
start_cmd_dst_path = path.join(app.SD_BASE_DIR, app.START_CMD_FILE_NAME)
dev_console_cmd_src_path = path.join(app.project_repo_dir_path, app.DEV_CONSOLE_CMD_FILE_NAME)
dev_console_cmd_dst_path = path.join(app.SD_BASE_DIR, app.DEV_CONSOLE_CMD_FILE_NAME)
shutil.rmtree(app.installer_dir_path, ignore_errors=True)
shutil.rmtree(app.ui_dir_path, ignore_errors=True)
shutil.rmtree(app.engine_dir_path, ignore_errors=True)
shutil.copytree(installer_src_path, app.installer_dir_path, dirs_exist_ok=True)
shutil.copytree(ui_src_path, app.ui_dir_path, dirs_exist_ok=True)
shutil.copytree(engine_src_path, app.engine_dir_path, dirs_exist_ok=True)
shutil.copy(start_cmd_src_path, start_cmd_dst_path)
shutil.copy(dev_console_cmd_src_path, dev_console_cmd_dst_path)

View File

@ -0,0 +1,46 @@
import os
from installer import app, helpers
def run():
fetch_model('Stable Diffusion', 'sd-v1-4.ckpt', model_dir_path=app.stable_diffusion_models_dir_path, download_url='https://me.cmdr2.org/stable-diffusion-ui/sd-v1-4.ckpt', expected_file_sizes=[4265380512, 7703807346, 7703810927])
fetch_model('Face Correction (GFPGAN)', 'GFPGANv1.4.pth', model_dir_path=app.gfpgan_models_dir_path, download_url='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth', expected_file_sizes=[348632874])
fetch_model('Resolution Upscale (RealESRGAN x4)', 'RealESRGAN_x4plus.pth', model_dir_path=app.realesrgan_models_dir_path, download_url='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth', expected_file_sizes=[67040989])
fetch_model('Resolution Upscale (RealESRGAN x4_anime)', 'RealESRGAN_x4plus_anime_6B.pth', model_dir_path=app.realesrgan_models_dir_path, download_url='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth', expected_file_sizes=[17938799])
def fetch_model(model_type, file_name, model_dir_path, download_url, expected_file_sizes):
os.makedirs(model_dir_path, exist_ok=True)
file_path = os.path.join(model_dir_path, file_name)
if model_exists(file_name, file_path, expected_file_sizes):
helpers.log(f'Data files (weights) necessary for {model_type} were already downloaded')
return
helpers.log(f'Downloading data files (weights) for {model_type}..')
helpers.run(f'curl -L -k "{download_url}" > "{file_path}"', log_the_cmd=True)
def model_exists(file_name, file_path, expected_file_sizes):
legacy_file_path = os.path.join(app.stable_diffusion_repo_dir_path, file_name)
file_exists = os.path.exists(file_path)
legacy_file_exists = os.path.exists(legacy_file_path)
if legacy_file_exists:
file_size = os.path.getsize(legacy_file_path)
if file_size in expected_file_sizes:
return True
helpers.log(f'{file_name} is invalid. Was only {file_size} bytes in size. Downloading again..')
os.remove(legacy_file_path)
if file_exists:
file_size = os.path.getsize(file_path)
if file_size in expected_file_sizes:
return True
helpers.log(f'{file_name} is invalid. Was only {file_size} bytes in size. Downloading again..')
os.remove(file_path)
return False

View File

@ -0,0 +1,27 @@
from os import path
from installer import app, helpers
project_repo_git_path = path.join(app.project_repo_dir_path, '.git')
def run():
branch_name = app.config.get('update_branch', app.DEFAULT_PROJECT_BRANCH)
if path.exists(project_repo_git_path):
helpers.log(f"Stable Diffusion UI's git repository was already installed. Updating from {branch_name}..")
helpers.run("git reset --hard", run_in_folder=app.project_repo_dir_path)
helpers.run(f'git -c advice.detachedHead=false checkout "{branch_name}"', run_in_folder=app.project_repo_dir_path)
helpers.run("git pull", run_in_folder=app.project_repo_dir_path)
else:
helpers.log("\nDownloading Stable Diffusion UI..\n")
helpers.log(f"Using the {branch_name} channel\n")
helpers.run(f'git clone {app.PROJECT_REPO_URL} "{app.project_repo_dir_path}"')
if path.exists(project_repo_git_path):
helpers.log("Downloaded Stable Diffusion UI")
else:
helpers.fail_with_install_error(error_msg="Could not download Stable Diffusion UI")
helpers.run(f'git -c advice.detachedHead=false checkout "{branch_name}"', run_in_folder=app.project_repo_dir_path)

View File

@ -0,0 +1,37 @@
from os import path
from installer import app, helpers
stable_diffusion_repo_git_path = path.join(app.stable_diffusion_repo_dir_path, '.git')
is_developer_mode = app.config.get('is_developer_mode', False)
def run():
fetch_repo()
helpers.apply_git_patches(app.stable_diffusion_repo_dir_path, patch_file_names=(
"sd_custom.patch",
))
def fetch_repo():
commit_id = app.config.get('stable_diffusion_commit', app.DEFAULT_STABLE_DIFFUSION_COMMIT)
if path.exists(stable_diffusion_repo_git_path):
helpers.log(f"Stable Diffusion's git repository was already installed. Using commit: {commit_id}..")
if not is_developer_mode:
helpers.run("git reset --hard", run_in_folder=app.stable_diffusion_repo_dir_path)
helpers.run("git fetch origin", run_in_folder=app.stable_diffusion_repo_dir_path)
helpers.run(f'git -c advice.detachedHead=false checkout "{commit_id}"', run_in_folder=app.stable_diffusion_repo_dir_path)
else:
helpers.log("\nDownloading Stable Diffusion..\n")
helpers.log(f"Using commit: {commit_id}\n")
helpers.run(f'git clone {app.STABLE_DIFFUSION_REPO_URL} "{app.stable_diffusion_repo_dir_path}"')
if path.exists(stable_diffusion_repo_git_path):
helpers.log("Downloaded Stable Diffusion")
else:
helpers.fail_with_install_error(error_msg="Could not download Stable Diffusion")
helpers.run(f'git -c advice.detachedHead=false checkout "{commit_id}"', run_in_folder=app.stable_diffusion_repo_dir_path)

View File

@ -0,0 +1,59 @@
import os
import platform
import shutil
from installer import app, helpers
def run():
environment_file_path = get_environment_file_path()
local_env_file_path = os.path.join(app.stable_diffusion_repo_dir_path, 'environment.yaml')
shutil.copy(environment_file_path, local_env_file_path)
if is_valid_env():
helpers.log("Packages necessary for Stable Diffusion were already installed")
return
log_installing_header()
env = os.environ.copy()
env['PYTHONNOUSERSITE'] = '1'
if not os.path.exists(app.project_env_dir_path):
helpers.run(f'micromamba create --prefix {app.project_env_dir_path}', log_the_cmd=True)
helpers.run(f'micromamba install -y --prefix {app.project_env_dir_path} -f {local_env_file_path}', env=env, log_the_cmd=True, run_in_folder=app.stable_diffusion_repo_dir_path)
if is_valid_env():
helpers.log("Installed the packages necessary for Stable Diffusion")
app.activated_env_dir_path = app.project_env_dir_path # so that future `run()` invocations will run in the activated env
else:
helpers.fail_with_install_error(error_msg="Could not install the packages necessary for Stable Diffusion")
apply_patches()
def apply_patches():
gfpgan_repo_dir_path = os.path.join(app.stable_diffusion_repo_dir_path, 'src', 'gfpgan')
helpers.apply_git_patches(gfpgan_repo_dir_path, patch_file_names=(
"gfpgan_custom.patch",
))
def get_environment_file_path():
environment_file_name = 'sd-environment-win-linux-nvidia.yaml'
if platform.system() == 'Darwin':
environment_file_name = 'sd-environment-mac-nvidia.yaml'
return os.path.join(app.installer_dir_path, 'yaml', environment_file_name)
def log_installing_header():
helpers.log('''
Downloading packages necessary for Stable Diffusion..
***** !! This will take some time (depending on the speed of the Internet connection) and may appear to be stuck, but please be patient *****
''')
def is_valid_env():
return helpers.modules_exist_in_env(('torch', 'antlr4', 'transformers', 'numpy', 'gfpgan', 'realesrgan', 'basicsr'))

View File

@ -0,0 +1,39 @@
import os
import shutil
import platform
from installer import app, helpers
def run():
if is_valid_env():
helpers.log("Packages necessary for Stable Diffusion UI were already installed")
return
log_installing_header()
env = os.environ.copy()
env['PYTHONNOUSERSITE'] = '1'
helpers.run(f'micromamba install -y --prefix {app.project_env_dir_path} -c conda-forge uvicorn fastapi', env=env, log_the_cmd=True)
if is_valid_env():
helpers.log("Installed the packages necessary for Stable Diffusion UI")
else:
helpers.fail_with_install_error(error_msg="Could not install the packages necessary for Stable Diffusion UI")
def log_installing_header():
helpers.log('''
Downloading packages necessary for Stable Diffusion UI..
''')
def is_valid_env():
path = os.environ['PATH']
path += ';' + os.path.join(app.project_env_dir_path, 'Scripts' if platform.system() == 'Windows' else 'bin')
if shutil.which("uvicorn", path=path) is None:
helpers.log("uvicorn not found!")
return False
return helpers.modules_exist_in_env(('uvicorn', 'fastapi'))

View File

@ -0,0 +1,23 @@
import os
import platform
from installer import app, helpers
def run():
helpers.log("\nStable Diffusion is ready!\n")
env = os.environ.copy()
env['SD_DIR'] = app.stable_diffusion_repo_dir_path
env['PYTHONPATH'] = app.stable_diffusion_repo_dir_path + ';' + os.path.join(app.project_env_dir_path, 'lib', 'site-packages')
env['SD_UI_PATH'] = app.ui_dir_path
env['PATH'] += ';' + os.path.join(app.project_env_dir_path, 'Scripts' if platform.system() == 'Windows' else 'bin')
helpers.log(f'PYTHONPATH={env["PYTHONPATH"]}')
helpers.run('python --version', log_the_cmd=True)
host = app.config.get('host', 'localhost')
port = app.config.get('port', '9000')
ui_server_cmd = f'uvicorn server:app --app-dir "{app.ui_dir_path}" --port {port} --host {host}'
helpers.run(ui_server_cmd, run_in_folder=app.stable_diffusion_repo_dir_path, log_the_cmd=True, env=env)

View File

@ -0,0 +1,22 @@
diff --git a/gfpgan/utils.py b/gfpgan/utils.py
index 74ee5a8..1357f48 100644
--- a/gfpgan/utils.py
+++ b/gfpgan/utils.py
@@ -117,14 +117,14 @@ class GFPGANer():
# face restoration
for cropped_face in self.face_helper.cropped_faces:
# prepare data
- cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
+ cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=False, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
- output = self.gfpgan(cropped_face_t, return_rgb=False, weight=weight)[0]
+ output = self.gfpgan(cropped_face_t, return_rgb=True, weight=weight)[0]
# convert to image
- restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
+ restored_face = tensor2img(output.squeeze(0), rgb2bgr=False, min_max=(-1, 1))
except RuntimeError as error:
print(f'\tFailed inference for GFPGAN: {error}.')
restored_face = cropped_face

View File

@ -0,0 +1,171 @@
{
"_name_or_path": "clip-vit-large-patch14/",
"architectures": [
"CLIPModel"
],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
"text_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 1,
"prefix": null,
"problem_type": null,
"projection_dim" : 768,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": false,
"vocab_size": 49408
},
"text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"projection_dim": 768
},
"torch_dtype": "float32",
"transformers_version": null,
"vision_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"min_length": 0,
"model_type": "clip_vision_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 16,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 24,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": null,
"patch_size": 14,
"prefix": null,
"problem_type": null,
"projection_dim" : 768,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": false
},
"vision_config_dict": {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768
}
}

View File

@ -0,0 +1,332 @@
diff --git a/optimizedSD/ddpm.py b/optimizedSD/ddpm.py
index b967b55..35ef520 100644
--- a/optimizedSD/ddpm.py
+++ b/optimizedSD/ddpm.py
@@ -22,7 +22,7 @@ from ldm.util import exists, default, instantiate_from_config
from ldm.modules.diffusionmodules.util import make_beta_schedule
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
-from samplers import CompVisDenoiser, get_ancestral_step, to_d, append_dims,linear_multistep_coeff
+from .samplers import CompVisDenoiser, get_ancestral_step, to_d, append_dims,linear_multistep_coeff
def disabled_train(self):
"""Overwrite model.train with this function to make sure train/eval mode
@@ -506,6 +506,8 @@ class UNet(DDPM):
x_latent = noise if x0 is None else x0
# sampling
+ if sampler in ('ddim', 'dpm2', 'heun', 'dpm2_a', 'lms') and not hasattr(self, 'ddim_timesteps'):
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
if sampler == "plms":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
@@ -528,39 +530,46 @@ class UNet(DDPM):
elif sampler == "ddim":
samples = self.ddim_sampling(x_latent, conditioning, S, unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
- mask = mask,init_latent=x_T,use_original_steps=False)
+ mask = mask,init_latent=x_T,use_original_steps=False,
+ callback=callback, img_callback=img_callback)
elif sampler == "euler":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "euler_a":
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
samples = self.euler_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "dpm2":
samples = self.dpm_2_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "heun":
samples = self.heun_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "dpm2_a":
samples = self.dpm_2_ancestral_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
elif sampler == "lms":
samples = self.lms_sampling(self.alphas_cumprod,x_latent, S, conditioning, unconditional_conditioning=unconditional_conditioning,
- unconditional_guidance_scale=unconditional_guidance_scale)
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ img_callback=img_callback)
+
+ yield from samples
if(self.turbo):
self.model1.to("cpu")
self.model2.to("cpu")
- return samples
-
@torch.no_grad()
def plms_sampling(self, cond,b, img,
ddim_use_original_steps=False,
@@ -599,10 +608,10 @@ class UNet(DDPM):
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
- if callback: callback(i)
- if img_callback: img_callback(pred_x0, i)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(pred_x0, i)
- return img
+ yield from img_callback(img, len(iterator)-1)
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
@@ -706,7 +715,8 @@ class UNet(DDPM):
@torch.no_grad()
def ddim_sampling(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
- mask = None,init_latent=None,use_original_steps=False):
+ mask = None,init_latent=None,use_original_steps=False,
+ callback=None, img_callback=None):
timesteps = self.ddim_timesteps
timesteps = timesteps[:t_start]
@@ -730,10 +740,13 @@ class UNet(DDPM):
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
+ if callback: yield from callback(i)
+ if img_callback: yield from img_callback(x_dec, i)
+
if mask is not None:
- return x0 * mask + (1. - mask) * x_dec
+ x_dec = x0 * mask + (1. - mask) * x_dec
- return x_dec
+ yield from img_callback(x_dec, len(iterator)-1)
@torch.no_grad()
@@ -779,13 +792,16 @@ class UNet(DDPM):
@torch.no_grad()
- def euler_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None,callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def euler_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None,callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
cvd = CompVisDenoiser(ac)
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Euler Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
@@ -807,13 +823,18 @@ class UNet(DDPM):
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
dt = sigmas[i + 1] - sigma_hat
# Euler method
x = x + d * dt
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None):
+ def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None,
+ img_callback=None):
"""Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args
@@ -822,6 +843,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Euler Ancestral Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -837,17 +860,22 @@ class UNet(DDPM):
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
d = to_d(x, sigmas[i], denoised)
# Euler method
dt = sigma_down - sigmas[i]
x = x + d * dt
x = x + torch.randn_like(x) * sigma_up
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def heun_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def heun_sampling(self, ac, x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
@@ -855,6 +883,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running Heun Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -876,6 +906,9 @@ class UNet(DDPM):
d = to_d(x, sigma_hat, denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
dt = sigmas[i + 1] - sigma_hat
if sigmas[i + 1] == 0:
# Euler method
@@ -895,11 +928,13 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def dpm_2_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
+ def dpm_2_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.,
+ img_callback=None):
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
extra_args = {} if extra_args is None else extra_args
@@ -907,6 +942,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running DPM2 Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
@@ -924,7 +961,7 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
-
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigma_hat, denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
@@ -945,11 +982,13 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def dpm_2_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None):
+ def dpm_2_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None,
+ img_callback=None):
"""Ancestral sampling with DPM-Solver inspired second-order steps."""
extra_args = {} if extra_args is None else extra_args
@@ -957,6 +996,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running DPM2 Ancestral Sampling with {len(sigmas) - 1} timesteps")
+
s_in = x.new_ones([x.shape[0]]).half()
for i in trange(len(sigmas) - 1, disable=disable):
@@ -973,6 +1014,9 @@ class UNet(DDPM):
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
+
+ if img_callback: yield from img_callback(x, i)
+
d = to_d(x, sigmas[i], denoised)
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
@@ -993,11 +1037,13 @@ class UNet(DDPM):
d_2 = to_d(x_2, sigma_mid, denoised_2)
x = x + d_2 * dt_2
x = x + torch.randn_like(x) * sigma_up
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
@torch.no_grad()
- def lms_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, order=4):
+ def lms_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1, extra_args=None, callback=None, disable=None, order=4,
+ img_callback=None):
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
@@ -1005,6 +1051,8 @@ class UNet(DDPM):
sigmas = cvd.get_sigmas(S)
x = x*sigmas[0]
+ print(f"Running LMS Sampling with {len(sigmas) - 1} timesteps")
+
ds = []
for i in trange(len(sigmas) - 1, disable=disable):
@@ -1017,6 +1065,7 @@ class UNet(DDPM):
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+ if img_callback: yield from img_callback(x, i)
d = to_d(x, sigmas[i], denoised)
ds.append(d)
@@ -1027,4 +1076,5 @@ class UNet(DDPM):
cur_order = min(i + 1, order)
coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
- return x
+
+ yield from img_callback(x, len(sigmas)-1)
diff --git a/optimizedSD/openaimodelSplit.py b/optimizedSD/openaimodelSplit.py
index abc3098..7a32ffe 100644
--- a/optimizedSD/openaimodelSplit.py
+++ b/optimizedSD/openaimodelSplit.py
@@ -13,7 +13,7 @@ from ldm.modules.diffusionmodules.util import (
normalization,
timestep_embedding,
)
-from splitAttention import SpatialTransformer
+from .splitAttention import SpatialTransformer
class AttentionPool2d(nn.Module):

View File

@ -0,0 +1,13 @@
diff --git a/environment.yaml b/environment.yaml
index 7f25da8..306750f 100644
--- a/environment.yaml
+++ b/environment.yaml
@@ -23,6 +23,8 @@ dependencies:
- torch-fidelity==0.3.0
- transformers==4.19.2
- torchmetrics==0.6.0
+ - pywavelets==1.3.0
+ - pandas==1.4.4
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip

View File

@ -3,5 +3,5 @@ channels:
- defaults
- conda-forge
dependencies:
- conda
- git
- python=3.10.5

View File

@ -0,0 +1,47 @@
name: ldm
channels:
- pytorch
- conda-forge
dependencies:
- python==3.10.5
- pip==22.2.2
- pytorch
- torchvision
- albumentations==1.2.1
- coloredlogs==15.0.1
- einops==0.4.1
- grpcio==1.46.4
- humanfriendly==10.0
- imageio==2.21.2
- imageio-ffmpeg==0.4.7
- imgaug==0.4.0
- kornia==0.6.7
- mpmath==1.2.1
- nomkl
- numpy==1.23.2
- omegaconf==2.1.1
- onnx==1.12.0
- onnxruntime==1.12.1
- pudb==2022.1
- pytorch-lightning==1.6.5
- scipy==1.9.1
- streamlit==1.12.2
- sympy==1.10.1
- tensorboard==2.9.0
- torchmetrics==0.9.3
- antlr4-python3-runtime=4.8
- pip:
- opencv-python==4.6.0.66
- realesrgan==0.2.5.0
- test-tube==0.7.5
- transformers==4.21.2
- torch-fidelity==0.3.0
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
- -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN
- -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan
- -e .
variables:
PYTORCH_ENABLE_MPS_FALLBACK: 1

View File

@ -0,0 +1,33 @@
name: ldm
channels:
- pytorch
- defaults
- conda-forge
dependencies:
- python=3.10.5
- pip=20.3
- cudatoolkit=11.3
- pytorch=1.11.0
- torchvision=0.12.0
- numpy=1.23.2
- antlr4-python3-runtime=4.8
- pip:
- albumentations==0.4.3
- opencv-python==4.6.0.66
- pudb==2019.2
- imageio==2.9.0
- imageio-ffmpeg==0.4.2
- pytorch-lightning==1.4.2
- omegaconf==2.1.1
- test-tube>=0.7.5
- streamlit>=0.73.1
- einops==0.3.0
- torch-fidelity==0.3.0
- transformers==4.19.2
- torchmetrics==0.6.0
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
- -e git+https://github.com/TencentARC/GFPGAN#egg=GFPGAN
- -e git+https://github.com/xinntao/Real-ESRGAN#egg=realesrgan
- -e .

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 155 KiB

View File

@ -1,9 +0,0 @@
{
"scripts": {
"prettier-fix": "npx prettier --write \"./**/*.js\"",
"prettier-check": "npx prettier --check \"./**/*.js\""
},
"devDependencies": {
"prettier": "^1.19.1"
}
}

View File

@ -1,56 +0,0 @@
@echo off
echo "Opening Stable Diffusion UI - Developer Console.." & echo.
cd /d %~dp0
set PATH=C:\Windows\System32;C:\Windows\System32\WindowsPowerShell\v1.0;%PATH%
@rem set legacy and new installer's PATH, if they exist
if exist "installer" set PATH=%cd%\installer;%cd%\installer\Library\bin;%cd%\installer\Scripts;%cd%\installer\Library\usr\bin;%PATH%
if exist "installer_files\env" set PATH=%cd%\installer_files\env;%cd%\installer_files\env\Library\bin;%cd%\installer_files\env\Scripts;%cd%\installer_files\Library\usr\bin;%PATH%
set PYTHONPATH=%cd%\installer;%cd%\installer_files\env
@rem activate the installer env
call conda activate
@rem Test the environment
echo "Environment Info:"
call where git
call git --version
call where conda
call conda --version
echo.
echo COMSPEC=%COMSPEC%
echo.
powershell -Command "(Get-WmiObject Win32_VideoController | Select-Object Name, AdapterRAM, DriverDate, DriverVersion)"
@rem activate the legacy environment (if present) and set PYTHONPATH
if exist "installer_files\env" (
set PYTHONPATH=%cd%\installer_files\env\lib\site-packages
set PYTHON=%cd%\installer_files\env\python.exe
echo PYTHON=%PYTHON%
)
if exist "stable-diffusion\env" (
call conda activate .\stable-diffusion\env
set PYTHONPATH=%cd%\stable-diffusion\env\lib\site-packages
set PYTHON=%cd%\stable-diffusion\env\python.exe
echo PYTHON=%PYTHON%
)
@REM call where python
call "%PYTHON%" --version
echo PYTHONPATH=%PYTHONPATH%
if exist "%cd%\profile" (
set HF_HOME=%cd%\profile\.cache\huggingface
)
@rem done
echo.
cmd /k

View File

@ -1,46 +0,0 @@
@echo off
cd /d %~dp0
echo Install dir: %~dp0
set PATH=C:\Windows\System32;C:\Windows\System32\WindowsPowerShell\v1.0;%PATH%
set PYTHONHOME=
if exist "on_sd_start.bat" (
echo ================================================================================
echo.
echo !!!! WARNING !!!!
echo.
echo It looks like you're trying to run the installation script from a source code
echo download. This will not work.
echo.
echo Recommended: Please close this window and download the installer from
echo https://easydiffusion.github.io/docs/installation/
echo.
echo ================================================================================
echo.
pause
exit /b
)
@rem set legacy installer's PATH, if it exists
if exist "installer" set PATH=%cd%\installer;%cd%\installer\Library\bin;%cd%\installer\Scripts;%cd%\installer\Library\usr\bin;%PATH%
@rem set new installer's PATH, if it downloaded any packages
if exist "installer_files\env" set PATH=%cd%\installer_files\env;%cd%\installer_files\env\Library\bin;%cd%\installer_files\env\Scripts;%cd%\installer_files\Library\usr\bin;%PATH%
set PYTHONPATH=%cd%\installer;%cd%\installer_files\env
@rem Test the core requirements
call where git
call git --version
call where conda
call conda --version
echo .
echo COMSPEC=%COMSPEC%
powershell -Command "(Get-WmiObject Win32_VideoController | Select-Object Name, AdapterRAM, DriverDate, DriverVersion)"
@rem Download the rest of the installer and UI
call scripts\on_env_start.bat
@pause

View File

@ -1,77 +0,0 @@
@echo off
setlocal enabledelayedexpansion
@rem This script will install git and conda (if not found on the PATH variable)
@rem using micromamba (an 8mb static-linked single-file binary, conda replacement).
@rem For users who already have git and conda, this step will be skipped.
@rem This enables a user to install this project without manually installing conda and git.
@rem config
set MAMBA_ROOT_PREFIX=%cd%\installer_files\mamba
set INSTALL_ENV_DIR=%cd%\installer_files\env
set LEGACY_INSTALL_ENV_DIR=%cd%\installer
set MICROMAMBA_DOWNLOAD_URL=https://github.com/easydiffusion/easydiffusion/releases/download/v1.1/micromamba.exe
set umamba_exists=F
set PYTHONHOME=
set OLD_APPDATA=%APPDATA%
set OLD_USERPROFILE=%USERPROFILE%
set APPDATA=%cd%\installer_files\appdata
set USERPROFILE=%cd%\profile
@rem figure out whether git and conda needs to be installed
if exist "%INSTALL_ENV_DIR%" set PATH=%INSTALL_ENV_DIR%;%INSTALL_ENV_DIR%\Library\bin;%INSTALL_ENV_DIR%\Scripts;%INSTALL_ENV_DIR%\Library\usr\bin;%PATH%
set PACKAGES_TO_INSTALL=git python=3.9
if not exist "%LEGACY_INSTALL_ENV_DIR%\etc\profile.d\conda.sh" (
if not exist "%INSTALL_ENV_DIR%\etc\profile.d\conda.sh" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% conda
)
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version >.tmp1 2>.tmp2
if "!ERRORLEVEL!" EQU "0" set umamba_exists=T
@rem (if necessary) install git and conda into a contained environment
if "%PACKAGES_TO_INSTALL%" NEQ "" (
@rem download micromamba
if "%umamba_exists%" == "F" (
echo "Downloading micromamba from %MICROMAMBA_DOWNLOAD_URL% to %MAMBA_ROOT_PREFIX%\micromamba.exe"
mkdir "%MAMBA_ROOT_PREFIX%"
call curl -Lk "%MICROMAMBA_DOWNLOAD_URL%" > "%MAMBA_ROOT_PREFIX%\micromamba.exe"
if "!ERRORLEVEL!" NEQ "0" (
echo "There was a problem downloading micromamba. Cannot continue."
pause
exit /b
)
mkdir "%APPDATA%"
mkdir "%USERPROFILE%"
@rem test the mamba binary
echo Micromamba version:
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version
)
@rem create the installer env
if not exist "%INSTALL_ENV_DIR%" (
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" create -y --prefix "%INSTALL_ENV_DIR%"
)
echo "Packages to install:%PACKAGES_TO_INSTALL%"
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" install -y --prefix "%INSTALL_ENV_DIR%" -c conda-forge %PACKAGES_TO_INSTALL%
if not exist "%INSTALL_ENV_DIR%" (
echo "There was a problem while installing%PACKAGES_TO_INSTALL% using micromamba. Cannot continue."
pause
exit /b
)
)
@rem revert to the old APPDATA. only needed it for bypassing a bug in micromamba (with special characters)
set APPDATA=%OLD_APPDATA%
set USERPROFILE=%OLD_USERPROFILE%

View File

@ -1,93 +0,0 @@
#!/bin/bash
# This script will install git and conda (if not found on the PATH variable)
# using micromamba (an 8mb static-linked single-file binary, conda replacement).
# For users who already have git and conda, this step will be skipped.
# This enables a user to install this project without manually installing conda and git.
source ./scripts/functions.sh
set -o pipefail
OS_NAME=$(uname -s)
case "${OS_NAME}" in
Linux*) OS_NAME="linux";;
Darwin*) OS_NAME="osx";;
*) echo "Unknown OS: $OS_NAME! This script runs only on Linux or Mac" && exit
esac
OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) OS_ARCH="64";;
arm64*) OS_ARCH="arm64";;
aarch64*) OS_ARCH="arm64";;
*) echo "Unknown system architecture: $OS_ARCH! This script runs only on x86_64 or arm64" && exit
esac
if ! which curl; then fail "'curl' not found. Please install curl."; fi
if ! which tar; then fail "'tar' not found. Please install tar."; fi
if ! which bzip2; then fail "'bzip2' not found. Please install bzip2."; fi
if pwd | grep ' '; then fail "The installation directory's path contains a space character. Conda will fail to install. Please change the directory."; fi
# https://mamba.readthedocs.io/en/latest/installation.html
if [ "$OS_NAME" == "linux" ] && [ "$OS_ARCH" == "arm64" ]; then OS_ARCH="aarch64"; fi
# config
export MAMBA_ROOT_PREFIX="$(pwd)/installer_files/mamba"
INSTALL_ENV_DIR="$(pwd)/installer_files/env"
LEGACY_INSTALL_ENV_DIR="$(pwd)/installer"
MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${OS_NAME}-${OS_ARCH}/latest"
umamba_exists="F"
# figure out whether git and conda needs to be installed
if [ -e "$INSTALL_ENV_DIR" ]; then export PATH="$INSTALL_ENV_DIR/bin:$PATH"; fi
PACKAGES_TO_INSTALL=""
if [ ! -e "$LEGACY_INSTALL_ENV_DIR/etc/profile.d/conda.sh" ] && [ ! -e "$INSTALL_ENV_DIR/etc/profile.d/conda.sh" ]; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL conda python=3.9"; fi
if ! hash "git" &>/dev/null; then PACKAGES_TO_INSTALL="$PACKAGES_TO_INSTALL git"; fi
if "$MAMBA_ROOT_PREFIX/micromamba" --version &>/dev/null; then umamba_exists="T"; fi
# (if necessary) install git and conda into a contained environment
if [ "$PACKAGES_TO_INSTALL" != "" ]; then
# download micromamba
if [ "$umamba_exists" == "F" ]; then
echo "Downloading micromamba from $MICROMAMBA_DOWNLOAD_URL to $MAMBA_ROOT_PREFIX/micromamba"
mkdir -p "$MAMBA_ROOT_PREFIX"
curl -L "$MICROMAMBA_DOWNLOAD_URL" | tar -xvj -O bin/micromamba > "$MAMBA_ROOT_PREFIX/micromamba"
if [ "$?" != "0" ]; then
echo
echo "EE micromamba download failed"
echo "EE If the lines above contain 'bzip2: Cannot exec', your system doesn't have bzip2 installed"
echo "EE If there are network errors, please check your internet setup"
fail "micromamba download failed"
fi
chmod u+x "$MAMBA_ROOT_PREFIX/micromamba"
# test the mamba binary
echo "Micromamba version:"
"$MAMBA_ROOT_PREFIX/micromamba" --version
fi
# create the installer env
if [ ! -e "$INSTALL_ENV_DIR" ]; then
"$MAMBA_ROOT_PREFIX/micromamba" create -y --prefix "$INSTALL_ENV_DIR" || fail "unable to create the install environment"
fi
if [ ! -e "$INSTALL_ENV_DIR" ]; then
fail "There was a problem while installing$PACKAGES_TO_INSTALL using micromamba. Cannot continue."
fi
echo "Packages to install:$PACKAGES_TO_INSTALL"
"$MAMBA_ROOT_PREFIX/micromamba" install -y --prefix "$INSTALL_ENV_DIR" -c conda-forge $PACKAGES_TO_INSTALL
if [ "$?" != "0" ]; then
fail "Installation of the packages '$PACKAGES_TO_INSTALL' failed."
fi
fi

View File

@ -1,348 +0,0 @@
"""
This script checks and installs the required modules.
This script runs inside the legacy "stable-diffusion" folder
TODO - Maybe replace the bulk of this script with a call to `pip install -f requirements.txt`, with
a custom index URL depending on the platform.
"""
import os, sys
from importlib.metadata import version as pkg_version
import platform
import traceback
import shutil
from pathlib import Path
from pprint import pprint
import re
import torchruntime
from torchruntime.device_db import get_gpus
os_name = platform.system()
modules_to_check = {
"setuptools": "69.5.1",
# "sdkit": "2.0.15.6", # checked later
# "diffusers": "0.21.4", # checked later
"stable-diffusion-sdkit": "2.1.5",
"rich": "12.6.0",
"uvicorn": "0.19.0",
"fastapi": "0.115.6",
"pycloudflared": "0.2.0",
"ruamel.yaml": "0.17.21",
"sqlalchemy": "2.0.19",
"python-multipart": "0.0.6",
# "xformers": "0.0.16",
"huggingface-hub": "0.21.4",
"wandb": "0.17.2",
# "torchruntime": "1.16.2",
"torchsde": "0.2.6",
"basicsr": "1.4.2",
"gfpgan": "1.3.8",
}
modules_to_log = ["torchruntime", "torch", "torchvision", "sdkit", "stable-diffusion-sdkit", "diffusers"]
BLACKWELL_DEVICES = re.compile(r"\b(?:5060|5070|5080|5090)\b")
def version(module_name: str) -> str:
try:
return pkg_version(module_name)
except:
return None
def install(module_name: str, module_version: str, index_url=None):
install_cmd = f'"{sys.executable}" -m pip install --upgrade {module_name}=={module_version}'
if index_url:
install_cmd += f" --index-url {index_url}"
if module_name == "sdkit" and version("sdkit") is not None:
install_cmd += " -q"
if module_name in ("basicsr", "gfpgan"):
install_cmd += " --use-pep517" # potential fix for https://github.com/easydiffusion/easydiffusion/issues/1942
print(">", install_cmd)
os.system(install_cmd)
def update_modules():
if version("torch") is None:
torchruntime.install(["torch", "torchvision"])
else:
torch_version_str = version("torch")
torch_version = version_str_to_tuple(torch_version_str)
is_cpu_torch = "+" not in torch_version_str
print(f"Current torch version: {torch_version} ({torch_version_str})")
if torch_version < (2, 7) or is_cpu_torch:
gpu_infos = get_gpus()
device_names = set(gpu.device_name for gpu in gpu_infos)
if any(BLACKWELL_DEVICES.search(device_name) for device_name in device_names):
if sys.version_info < (3, 9):
print(
"\n###################################\n"
"NVIDIA 50xx series of graphics cards detected!\n\n"
"To use this graphics card, please install the latest version of Easy Diffusion from: https://github.com/easydiffusion/easydiffusion#installation"
"\n###################################\n"
)
sys.exit()
else:
print("Upgrading torch to support NVIDIA 50xx series of graphics cards")
torchruntime.install(["--force", "--upgrade", "torch", "torchvision"])
for module_name, allowed_versions in modules_to_check.items():
if os.path.exists(f"src/{module_name}"):
print(f"Skipping {module_name} update, since it's in developer/editable mode")
continue
allowed_versions, latest_version = get_allowed_versions(module_name, allowed_versions)
if module_name == "setuptools":
if os_name == "Windows":
allowed_versions = ("59.8.0",)
latest_version = "59.8.0"
else:
allowed_versions = ("69.5.1",)
latest_version = "69.5.1"
requires_install = version(module_name) not in allowed_versions
if requires_install:
try:
install(module_name, latest_version)
except:
traceback.print_exc()
fail(module_name)
else:
if version(module_name) != latest_version:
print(
f"WARNING! Tried to install {module_name}=={latest_version}, but the version is still {version(module_name)}!"
)
# different sdkit versions, with the corresponding diffusers
# if sdkit is 2.0.15.x (or lower), then diffusers should be restricted to 0.21.4 (see below for the reason)
# otherwise use the current sdkit version (with the corresponding diffusers version)
expected_sdkit_version_str = "2.0.22.8"
expected_diffusers_version_str = "0.28.2"
legacy_sdkit_version_str = "2.0.15.17"
legacy_diffusers_version_str = "0.21.4"
sdkit_version_str = version("sdkit")
if sdkit_version_str is None: # first install
_install("sdkit", expected_sdkit_version_str)
_install("diffusers", expected_diffusers_version_str)
else:
sdkit_version = version_str_to_tuple(sdkit_version_str)
legacy_sdkit_version = version_str_to_tuple(legacy_sdkit_version_str)
if sdkit_version[:3] <= legacy_sdkit_version[:3]:
# stick to diffusers 0.21.4, since it preserves torch 0.11+ compatibility.
# upgrading beyond this will result in a 2+ GB download of torch on older installations
# and a time-consuming chain of small package updates due to huggingface_hub upgrade.
# for now, the user will need to explicitly upgrade to a newer sdkit, to break this ceiling.
install_pkg_if_necessary("sdkit", legacy_sdkit_version_str)
install_pkg_if_necessary("diffusers", legacy_diffusers_version_str)
else:
torch_version = version_str_to_tuple(version("torch"))
if torch_version < (1, 13):
# install the gpu-compatible torch (if necessary), instead of the default CPU-only one
# from the diffusers dependency chain
torchruntime.install(["--upgrade", "torch", "torchvision"])
install_pkg_if_necessary("sdkit", expected_sdkit_version_str)
install_pkg_if_necessary("diffusers", expected_diffusers_version_str)
# hotfix accelerate
accelerate_version = version("accelerate")
if accelerate_version is None:
install("accelerate", "0.23.0")
else:
accelerate_version = accelerate_version.split(".")
accelerate_version = tuple(map(int, accelerate_version))
if accelerate_version < (0, 23):
install("accelerate", "0.23.0")
# hotfix - 29 May 2024. sdkit has stopped pulling its dependencies for some reason
# temporarily dumping sdkit's requirements here:
if os_name != "Windows":
sdkit_deps = [
"gfpgan",
"piexif",
"realesrgan",
"requests",
"picklescan",
"safetensors==0.3.3",
"k-diffusion==0.0.12",
"compel==2.0.1",
"controlnet-aux==0.0.6",
"invisible-watermark==0.2.0", # required for SD XL
]
for mod in sdkit_deps:
mod_name = mod
mod_force_version_str = None
if "==" in mod:
mod_name, mod_force_version_str = mod.split("==")
curr_mod_version_str = version(mod_name)
if curr_mod_version_str is None:
_install(mod_name, mod_force_version_str)
elif mod_force_version_str is not None:
curr_mod_version = version_str_to_tuple(curr_mod_version_str)
mod_force_version = version_str_to_tuple(mod_force_version_str)
if curr_mod_version != mod_force_version:
_install(mod_name, mod_force_version_str)
for module_name in modules_to_log:
print(f"{module_name}: {version(module_name)}")
def _install(module_name, module_version=None):
if module_version is None:
install_cmd = f'"{sys.executable}" -m pip install {module_name}'
else:
install_cmd = f'"{sys.executable}" -m pip install --upgrade {module_name}=={module_version}'
print(">", install_cmd)
os.system(install_cmd)
def install_pkg_if_necessary(pkg_name, required_version):
if os.path.exists(f"src/{pkg_name}"):
print(f"Skipping {pkg_name} update, since it's in developer/editable mode")
return
pkg_version = version(pkg_name)
if pkg_version != required_version:
_install(pkg_name, required_version)
def version_str_to_tuple(ver_str):
ver_str = ver_str.split("+")[0]
ver_str = re.sub("[^0-9.]", "", ver_str)
ver = ver_str.split(".")
return tuple(map(int, ver))
### utilities
def get_allowed_versions(module_name: str, allowed_versions: tuple):
allowed_versions = (allowed_versions,) if isinstance(allowed_versions, str) else allowed_versions
latest_version = allowed_versions[-1]
return allowed_versions, latest_version
def fail(module_name):
print(
f"""Error installing {module_name}. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues
Thanks!"""
)
exit(1)
### Launcher
def get_config():
config_directory = os.path.dirname(__file__) # this will be "scripts"
config_yaml = os.path.join(config_directory, "..", "config.yaml")
config_json = os.path.join(config_directory, "config.json")
config = None
# migrate the old config yaml location
config_legacy_yaml = os.path.join(config_directory, "config.yaml")
if os.path.isfile(config_legacy_yaml):
shutil.move(config_legacy_yaml, config_yaml)
if os.path.isfile(config_yaml):
from ruamel.yaml import YAML
yaml = YAML(typ="safe")
with open(config_yaml, "r") as configfile:
try:
config = yaml.load(configfile)
except Exception as e:
print(e, file=sys.stderr)
elif os.path.isfile(config_json):
import json
with open(config_json, "r") as configfile:
try:
config = json.load(configfile)
except Exception as e:
print(e, file=sys.stderr)
if config is None:
config = {}
return config
def launch_uvicorn():
config = get_config()
pprint(config)
with open("scripts/install_status.txt", "a") as f:
f.write("sd_weights_downloaded\n")
f.write("sd_install_complete\n")
print("\n\nEasy Diffusion installation complete, starting the server!\n\n")
torchruntime.configure()
if hasattr(torchruntime, "info"):
torchruntime.info()
if os_name == "Windows":
os.environ["PYTHONPATH"] = str(Path(os.environ["INSTALL_ENV_DIR"], "lib", "site-packages"))
else:
os.environ["PYTHONPATH"] = str(Path(os.environ["INSTALL_ENV_DIR"], "lib", "python3.8", "site-packages"))
os.environ["SD_UI_PATH"] = str(Path(Path.cwd(), "ui"))
print(f"PYTHONPATH={os.environ['PYTHONPATH']}")
print(f"Python: {shutil.which('python')}")
print(f"Version: {platform. python_version()}")
bind_ip = "127.0.0.1"
listen_port = 9000
if "net" in config:
print("Checking network settings")
if "listen_port" in config["net"]:
listen_port = config["net"]["listen_port"]
print("Set listen port to ", listen_port)
if "listen_to_network" in config["net"] and config["net"]["listen_to_network"] == True:
if "bind_ip" in config["net"]:
bind_ip = config["net"]["bind_ip"]
else:
bind_ip = "0.0.0.0"
print("Set bind_ip to ", bind_ip)
os.chdir("stable-diffusion")
print("\nLaunching uvicorn\n")
import uvicorn
uvicorn.run(
"main:server_api",
port=listen_port,
log_level="error",
app_dir=os.environ["SD_UI_PATH"],
host=bind_ip,
access_log=False,
)
update_modules()
if len(sys.argv) > 1 and sys.argv[1] == "--launch-uvicorn":
launch_uvicorn()

View File

@ -1,24 +0,0 @@
# Change listen_port if port 9000 is already in use on your system
# Set listen_to_network to true to make Easy Diffusion accessibble on your local network
net:
listen_port: 9000
listen_to_network: false
# Multi GPU setup
render_devices: auto
# Set open_browser_on_start to false to disable opening a new browser tab on each restart
ui:
open_browser_on_start: true
# set update_branch to main to use the stable version, or to beta to use the experimental
# beta version.
update_branch: main
# Set force_save_path to enforce an auto save path. Clients will not be able to change or
# disable auto save when this option is set. Please adapt the path in the examples to your
# needs.
# Windows:
# force_save_path: C:\\Easy Diffusion Images\\
# Linux:
# force_save_path: /data/easy-diffusion-images/

View File

@ -1,55 +0,0 @@
#!/bin/bash
cd "$(dirname "${BASH_SOURCE[0]}")"
if [ "$0" == "bash" ]; then
echo "Opening Stable Diffusion UI - Developer Console.."
echo ""
# set legacy and new installer's PATH, if they exist
if [ -e "installer" ]; then export PATH="$(pwd)/installer/bin:$PATH"; fi
if [ -e "installer_files/env" ]; then export PATH="$(pwd)/installer_files/env/bin:$PATH"; fi
# activate the installer env
CONDA_BASEPATH=$(conda info --base)
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # avoids the 'shell not initialized' error
conda activate
# test the environment
echo "Environment Info:"
which git
git --version
which conda
conda --version
echo ""
# activate the legacy environment (if present) and set PYTHONPATH
if [ -e "installer_files/env" ]; then
export PYTHONPATH="$(pwd)/installer_files/env/lib/python3.8/site-packages"
fi
if [ -e "stable-diffusion/env" ]; then
CONDA_BASEPATH=$(conda info --base)
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # otherwise conda complains about 'shell not initialized' (needed when running in a script)
conda activate ./stable-diffusion/env
export PYTHONPATH="$(pwd)/stable-diffusion/env/lib/python3.8/site-packages"
fi
export PYTHONNOUSERSITE=y
which python
python --version
echo "PYTHONPATH=$PYTHONPATH"
# done
echo ""
else
file_name=$(basename "${BASH_SOURCE[0]}")
bash --init-file "$file_name"
fi

View File

@ -1,39 +0,0 @@
#
# utility functions for all scripts
#
fail() {
echo
echo "EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE"
echo
if [ "$1" != "" ]; then
echo ERROR: $1
else
echo An error occurred.
fi
cat <<EOF
Error downloading Stable Diffusion UI. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues
Thanks!
EOF
read -p "Press any key to continue"
exit 1
}
filesize() {
case "$(uname -s)" in
Linux*) stat -c "%s" $1;;
Darwin*) /usr/bin/stat -f "%z" $1;;
*) echo "Unknown OS: $OS_NAME! This script runs only on Linux or Mac" && exit
esac
}

View File

@ -1,53 +0,0 @@
import os
import argparse
import sys
import shutil
# The config file is in the same directory as this script
config_directory = os.path.dirname(__file__)
config_yaml = os.path.join(config_directory, "..", "config.yaml")
config_json = os.path.join(config_directory, "config.json")
parser = argparse.ArgumentParser(description='Get values from config file')
parser.add_argument('--default', dest='default', action='store',
help='default value, to be used if the setting is not defined in the config file')
parser.add_argument('key', metavar='key', nargs='+',
help='config key to return')
args = parser.parse_args()
config = None
# migrate the old config yaml location
config_legacy_yaml = os.path.join(config_directory, "config.yaml")
if os.path.isfile(config_legacy_yaml):
shutil.move(config_legacy_yaml, config_yaml)
if os.path.isfile(config_yaml):
from ruamel.yaml import YAML
yaml = YAML(typ='safe')
with open(config_yaml, 'r') as configfile:
try:
config = yaml.load(configfile)
except Exception as e:
print(e, file=sys.stderr)
elif os.path.isfile(config_json):
import json
with open(config_json, 'r') as configfile:
try:
config = json.load(configfile)
except Exception as e:
print(e, file=sys.stderr)
if config is None:
config = {}
for k in args.key:
if k in config:
config = config[k]
else:
if args.default != None:
print(args.default)
exit()
print(config)

View File

@ -1,79 +0,0 @@
@echo off
@echo. & echo "Easy Diffusion - v3" & echo.
set PATH=C:\Windows\System32;%PATH%
if exist "scripts\config.bat" (
@call scripts\config.bat
)
if exist "scripts\user_config.bat" (
@call scripts\user_config.bat
)
if exist "stable-diffusion\env" (
@set PYTHONPATH=%PYTHONPATH%;%cd%\stable-diffusion\env\lib\site-packages
)
if exist "scripts\get_config.py" (
@FOR /F "tokens=* USEBACKQ" %%F IN (`python scripts\get_config.py --default=main update_branch`) DO (
@SET update_branch=%%F
)
)
if "%update_branch%"=="" (
set update_branch=main
)
@REM @>nul findstr /m "sd_install_complete" scripts\install_status.txt
@REM @if "%ERRORLEVEL%" NEQ "0" (
@REM for /f "tokens=*" %%a in ('python -c "import os; parts = os.getcwd().split(os.path.sep); print(len(parts))"') do if "%%a" NEQ "2" (
@REM echo. & echo "!!!! WARNING !!!!" & echo.
@REM echo "Your 'stable-diffusion-ui' folder is at %cd%" & echo.
@REM echo "The 'stable-diffusion-ui' folder needs to be at the top of your drive, for e.g. 'C:\stable-diffusion-ui' or 'D:\stable-diffusion-ui' etc."
@REM echo "Not placing this folder at the top of a drive can cause errors on some computers."
@REM echo. & echo "Recommended: Please close this window and move the 'stable-diffusion-ui' folder to the top of a drive. For e.g. 'C:\stable-diffusion-ui'. Then run the installer again." & echo.
@REM echo "Not Recommended: If you're sure that you want to install at the current location, please press any key to continue." & echo.
@REM pause
@REM )
@REM )
@>nul findstr /m "sd_ui_git_cloned" scripts\install_status.txt
@if "%ERRORLEVEL%" EQU "0" (
@echo "Easy Diffusion's git repository was already installed. Updating from %update_branch%.."
@cd sd-ui-files
@call git add -A .
@call git stash
@call git reset --hard
@call git -c advice.detachedHead=false checkout "%update_branch%"
@call git pull
@cd ..
) else (
@echo. & echo "Downloading Easy Diffusion..." & echo.
@echo "Using the %update_branch% channel" & echo.
@call git clone -b "%update_branch%" https://github.com/easydiffusion/easydiffusion.git sd-ui-files && (
@echo sd_ui_git_cloned >> scripts\install_status.txt
) || (
@echo "Error downloading Easy Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues" & echo "Thanks!"
pause
@exit /b
)
)
@xcopy sd-ui-files\ui ui /s /i /Y /q
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
@copy sd-ui-files\scripts\config.yaml.sample scripts\ /Y
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
@copy "sd-ui-files\scripts\Developer Console.cmd" . /Y
@call scripts\on_sd_start.bat
@pause

View File

@ -1,61 +0,0 @@
#!/bin/bash
source ./scripts/functions.sh
printf "\n\nEasy Diffusion - v3\n\n"
export PYTHONNOUSERSITE=y
if [ -f "scripts/config.sh" ]; then
source scripts/config.sh
fi
if [ -f "scripts/user_config.sh" ]; then
source scripts/user_config.sh
fi
export PYTHONPATH=$(pwd)/installer_files/env/lib/python3.8/site-packages:$(pwd)/stable-diffusion/env/lib/python3.8/site-packages
if [ -f "scripts/get_config.py" ]; then
export update_branch="$( python scripts/get_config.py --default=main update_branch )"
fi
if [ "$update_branch" == "" ]; then
export update_branch="main"
fi
if [ -f "scripts/install_status.txt" ] && [ `grep -c sd_ui_git_cloned scripts/install_status.txt` -gt "0" ]; then
echo "Easy Diffusion's git repository was already installed. Updating from $update_branch.."
cd sd-ui-files
git add -A .
git stash
git reset --hard
git -c advice.detachedHead=false checkout "$update_branch"
git pull
cd ..
else
printf "\n\nDownloading Easy Diffusion..\n\n"
printf "Using the $update_branch channel\n\n"
if git clone -b "$update_branch" https://github.com/easydiffusion/easydiffusion.git sd-ui-files ; then
echo sd_ui_git_cloned >> scripts/install_status.txt
else
fail "git clone failed"
fi
fi
rm -rf ui
cp -Rf sd-ui-files/ui .
cp sd-ui-files/scripts/on_sd_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
cp sd-ui-files/scripts/config.yaml.sample scripts/
cp sd-ui-files/scripts/start.sh .
cp sd-ui-files/scripts/developer_console.sh .
cp sd-ui-files/scripts/functions.sh scripts/
exec ./scripts/on_sd_start.sh

View File

@ -1,82 +0,0 @@
@echo off
@REM Caution, this file will make your eyes and brain bleed. It's such an unholy mess.
@REM Note to self: Please rewrite this in Python. For the sake of your own sanity.
@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
@copy sd-ui-files\scripts\config.yaml.sample scripts\ /Y
if exist "%cd%\profile" (
set HF_HOME=%cd%\profile\.cache\huggingface
)
@rem set the correct installer path (current vs legacy)
if exist "%cd%\installer_files\env" (
set INSTALL_ENV_DIR=%cd%\installer_files\env
)
if exist "%cd%\stable-diffusion\env" (
set INSTALL_ENV_DIR=%cd%\stable-diffusion\env
)
@mkdir tmp
@set TMP=%cd%\tmp
@set TEMP=%cd%\tmp
@rem activate the installer env
call conda activate
@if "%ERRORLEVEL%" NEQ "0" (
@echo. & echo "Error activating conda for Easy Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues" & echo "Thanks!" & echo.
pause
exit /b
)
@REM remove the old version of the dev console script, if it's still present
if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
if exist "ui\plugins\ui\merge.plugin.js" del "ui\plugins\ui\merge.plugin.js"
@rem create the stable-diffusion folder, to work with legacy installations
if not exist "stable-diffusion" mkdir stable-diffusion
cd stable-diffusion
@rem activate the old stable-diffusion env, if it exists
if exist "env" (
call conda activate .\env
)
@rem disable the legacy src and ldm folder (otherwise this prevents installing gfpgan and realesrgan)
if exist src rename src src-old
if exist ldm rename ldm ldm-old
if not exist "%INSTALL_ENV_DIR%\DLLs\libssl-1_1-x64.dll" copy "%INSTALL_ENV_DIR%\Library\bin\libssl-1_1-x64.dll" "%INSTALL_ENV_DIR%\DLLs\"
if not exist "%INSTALL_ENV_DIR%\DLLs\libcrypto-1_1-x64.dll" copy "%INSTALL_ENV_DIR%\Library\bin\libcrypto-1_1-x64.dll" "%INSTALL_ENV_DIR%\DLLs\"
cd ..
@rem set any overrides
set HF_HUB_DISABLE_SYMLINKS_WARNING=true
@rem install or upgrade the required modules
set PATH=C:\Windows\System32;%PATH%
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
echo PYTHONPATH=%PYTHONPATH%
set PYTHON=%INSTALL_ENV_DIR%\python.exe
echo PYTHON=%PYTHON%
@rem Download the required packages
@REM call where python
call "%PYTHON%" --version
@rem this is outside check_modules.py to ensure that the required version of torchruntime is present
call "%PYTHON%" -m pip install -q "torchruntime>=1.19.1"
call "%PYTHON%" scripts\check_modules.py --launch-uvicorn
pause
exit /b

View File

@ -1,56 +0,0 @@
#!/bin/bash
cp sd-ui-files/scripts/functions.sh scripts/
cp sd-ui-files/scripts/on_env_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
cp sd-ui-files/scripts/config.yaml.sample scripts/
source ./scripts/functions.sh
# activate the installer env
CONDA_BASEPATH=$(conda info --base)
source "$CONDA_BASEPATH/etc/profile.d/conda.sh" # avoids the 'shell not initialized' error
conda activate || fail "Failed to activate conda"
# remove the old version of the dev console script, if it's still present
if [ -e "open_dev_console.sh" ]; then
rm "open_dev_console.sh"
fi
if [ -e "ui/plugins/ui/merge.plugin.js" ]; then
rm "ui/plugins/ui/merge.plugin.js"
fi
# set the correct installer path (current vs legacy)
if [ -e "installer_files/env" ]; then
export INSTALL_ENV_DIR="$(pwd)/installer_files/env"
fi
if [ -e "stable-diffusion/env" ]; then
export INSTALL_ENV_DIR="$(pwd)/stable-diffusion/env"
fi
# create the stable-diffusion folder, to work with legacy installations
if [ ! -e "stable-diffusion" ]; then mkdir stable-diffusion; fi
cd stable-diffusion
# activate the old stable-diffusion env, if it exists
if [ -e "env" ]; then
conda activate ./env || fail "conda activate failed"
fi
# disable the legacy src and ldm folder (otherwise this prevents installing gfpgan and realesrgan)
if [ -e "src" ]; then mv src src-old; fi
if [ -e "ldm" ]; then mv ldm ldm-old; fi
# this is outside check_modules.py to ensure that the required version of torchruntime is present
python -m pip install -q "torchruntime>=1.19.1"
cd ..
# Download the required packages
python scripts/check_modules.py --launch-uvicorn
read -p "Press any key to continue"

View File

@ -1,42 +0,0 @@
#!/bin/bash
cd "$(dirname "${BASH_SOURCE[0]}")"
if [ -f "on_sd_start.bat" ]; then
echo ================================================================================
echo
echo !!!! WARNING !!!!
echo
echo It looks like you\'re trying to run the installation script from a source code
echo download. This will not work.
echo
echo Recommended: Please close this window and download the installer from
echo https://easydiffusion.github.io/docs/installation/
echo
echo ================================================================================
echo
read
exit 1
fi
unset PYTHONHOME
# set legacy installer's PATH, if it exists
if [ -e "installer" ]; then export PATH="$(pwd)/installer/bin:$PATH"; fi
# Setup the packages required for the installer
scripts/bootstrap.sh || exit 1
# set new installer's PATH, if it downloaded any packages
if [ -e "installer_files/env" ]; then export PATH="$(pwd)/installer_files/env/bin:$PATH"; fi
# Test the bootstrap
which git
git --version || exit 1
which conda
conda --version || exit 1
# Download the rest of the installer and UI
chmod +x scripts/*.sh
scripts/on_env_start.sh

View File

@ -1,2 +0,0 @@
Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Control\FileSystem' -Name LongPathsEnabled -Type DWord -Value 1
pause

18
start.sh Executable file
View File

@ -0,0 +1,18 @@
#!/bin/bash
echo "Stable Diffusion UI - v2.5"
echo ""
export SD_BASE_DIR=$(pwd)
echo "Working in $SD_BASE_DIR"
# Setup the packages required for the installer
installer/bootstrap/bootstrap.sh
# Test the bootstrap
git --version
python --version
# Download the rest of the installer and UI
installer/installer/start.sh

View File

@ -1,458 +0,0 @@
import json
import logging
import os
import shutil
import socket
import sys
import traceback
import copy
from ruamel.yaml import YAML
import urllib
import warnings
from easydiffusion import task_manager
from easydiffusion.utils import log
from rich.logging import RichHandler
from rich.console import Console
from rich.panel import Panel
from sdkit.utils import log as sdkit_log # hack, so we can overwrite the log config
# Remove all handlers associated with the root logger object.
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
LOG_FORMAT = "%(asctime)s.%(msecs)03d %(levelname)s %(threadName)s %(message)s"
logging.basicConfig(
level=logging.INFO,
format=LOG_FORMAT,
datefmt="%X",
handlers=[RichHandler(markup=True, rich_tracebacks=False, show_time=False, show_level=False)],
)
SD_DIR = os.getcwd()
ROOT_DIR = os.path.abspath(os.path.join(SD_DIR, ".."))
SD_UI_DIR = os.getenv("SD_UI_PATH", None)
CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, "..", "scripts"))
BUCKET_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "bucket"))
USER_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "plugins"))
CORE_PLUGINS_DIR = os.path.abspath(os.path.join(SD_UI_DIR, "plugins"))
USER_UI_PLUGINS_DIR = os.path.join(USER_PLUGINS_DIR, "ui")
CORE_UI_PLUGINS_DIR = os.path.join(CORE_PLUGINS_DIR, "ui")
USER_SERVER_PLUGINS_DIR = os.path.join(USER_PLUGINS_DIR, "server")
UI_PLUGINS_SOURCES = ((CORE_UI_PLUGINS_DIR, "core"), (USER_UI_PLUGINS_DIR, "user"))
sys.path.append(os.path.dirname(SD_UI_DIR))
sys.path.append(USER_SERVER_PLUGINS_DIR)
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
PRESERVE_CONFIG_VARS = ["FORCE_FULL_PRECISION"]
TASK_TTL = 15 * 60 # Discard last session's task timeout
APP_CONFIG_DEFAULTS = {
"render_devices": "auto",
"update_branch": "main",
"ui": {
"open_browser_on_start": True,
},
"use_v3_engine": True,
}
IMAGE_EXTENSIONS = [
".png",
".apng",
".jpg",
".jpeg",
".jfif",
".pjpeg",
".pjp",
".jxl",
".gif",
".webp",
".avif",
".svg",
]
CUSTOM_MODIFIERS_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "modifiers"))
CUSTOM_MODIFIERS_PORTRAIT_EXTENSIONS = [
".portrait",
"_portrait",
" portrait",
"-portrait",
]
CUSTOM_MODIFIERS_LANDSCAPE_EXTENSIONS = [
".landscape",
"_landscape",
" landscape",
"-landscape",
]
MODELS_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "models"))
def init():
global MODELS_DIR
os.makedirs(USER_UI_PLUGINS_DIR, exist_ok=True)
os.makedirs(USER_SERVER_PLUGINS_DIR, exist_ok=True)
# https://pytorch.org/docs/stable/storage.html
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
config = getConfig()
config_models_dir = config.get("models_dir", None)
if (config_models_dir is not None and config_models_dir != ""):
MODELS_DIR = config_models_dir
def init_render_threads():
load_server_plugins()
update_render_threads()
def getConfig(default_val=APP_CONFIG_DEFAULTS):
config_yaml_path = os.path.join(CONFIG_DIR, "..", "config.yaml")
# migrate the old config yaml location
config_legacy_yaml = os.path.join(CONFIG_DIR, "config.yaml")
if os.path.isfile(config_legacy_yaml):
shutil.move(config_legacy_yaml, config_yaml_path)
def set_config_on_startup(config: dict):
if getConfig.__use_v3_engine_on_startup is None:
getConfig.__use_v3_engine_on_startup = config.get("use_v3_engine", True)
config["config_on_startup"] = {"use_v3_engine": getConfig.__use_v3_engine_on_startup}
if os.path.isfile(config_yaml_path):
try:
yaml = YAML()
with open(config_yaml_path, "r", encoding="utf-8") as f:
config = yaml.load(f)
if "net" not in config:
config["net"] = {}
if os.getenv("SD_UI_BIND_PORT") is not None:
config["net"]["listen_port"] = int(os.getenv("SD_UI_BIND_PORT"))
else:
config["net"]["listen_port"] = 9000
if os.getenv("SD_UI_BIND_IP") is not None:
config["net"]["listen_to_network"] = os.getenv("SD_UI_BIND_IP") == "0.0.0.0"
else:
config["net"]["listen_to_network"] = True
set_config_on_startup(config)
return config
except Exception as e:
log.warn(traceback.format_exc())
set_config_on_startup(default_val)
return default_val
else:
try:
config_json_path = os.path.join(CONFIG_DIR, "config.json")
if not os.path.exists(config_json_path):
return default_val
log.info("Converting old json config file to yaml")
with open(config_json_path, "r", encoding="utf-8") as f:
config = json.load(f)
# Save config in new format
setConfig(config)
with open(config_json_path + ".txt", "w") as f:
f.write("Moved to config.yaml inside the Easy Diffusion folder. You can open it in any text editor.")
os.remove(config_json_path)
return getConfig(default_val)
except Exception as e:
log.warn(traceback.format_exc())
set_config_on_startup(default_val)
return default_val
getConfig.__use_v3_engine_on_startup = None
def setConfig(config):
global MODELS_DIR
try: # config.yaml
config_yaml_path = os.path.join(CONFIG_DIR, "..", "config.yaml")
config_yaml_path = os.path.abspath(config_yaml_path)
yaml = YAML()
if not hasattr(config, "_yaml_comment"):
config_yaml_sample_path = os.path.join(CONFIG_DIR, "config.yaml.sample")
if os.path.exists(config_yaml_sample_path):
with open(config_yaml_sample_path, "r", encoding="utf-8") as f:
commented_config = yaml.load(f)
for k in config:
commented_config[k] = config[k]
config = commented_config
yaml.indent(mapping=2, sequence=4, offset=2)
if "config_on_startup" in config:
del config["config_on_startup"]
try:
f = open(config_yaml_path + ".tmp", "w", encoding="utf-8")
yaml.dump(config, f)
finally:
f.close() # do this explicitly to avoid NUL bytes (possible rare bug when using 'with')
# verify that the new file is valid, and only then overwrite the old config file
# helps prevent the rare NUL bytes error from corrupting the config file
yaml = YAML()
with open(config_yaml_path + ".tmp", "r", encoding="utf-8") as f:
yaml.load(f)
shutil.move(config_yaml_path + ".tmp", config_yaml_path)
except:
log.error(traceback.format_exc())
if config.get("models_dir"):
MODELS_DIR = config["models_dir"]
def save_to_config(ckpt_model_name, vae_model_name, hypernetwork_model_name, vram_usage_level):
config = getConfig()
if "model" not in config:
config["model"] = {}
config["model"]["stable-diffusion"] = ckpt_model_name
config["model"]["vae"] = vae_model_name
config["model"]["hypernetwork"] = hypernetwork_model_name
if vae_model_name is None or vae_model_name == "":
del config["model"]["vae"]
if hypernetwork_model_name is None or hypernetwork_model_name == "":
del config["model"]["hypernetwork"]
config["vram_usage_level"] = vram_usage_level
setConfig(config)
def update_render_threads():
config = getConfig()
render_devices = config.get("render_devices", "auto")
active_devices = task_manager.get_devices()["active"].keys()
log.debug(f"requesting for render_devices: {render_devices}")
task_manager.update_render_threads(render_devices, active_devices)
def getUIPlugins():
plugins = []
file_names = set()
for plugins_dir, dir_prefix in UI_PLUGINS_SOURCES:
for file in os.listdir(plugins_dir):
if file.endswith(".plugin.js") and file not in file_names:
plugins.append(f"/plugins/{dir_prefix}/{file}")
file_names.add(file)
return plugins
def load_server_plugins():
if not os.path.exists(USER_SERVER_PLUGINS_DIR):
return
import importlib
def load_plugin(file):
mod_path = file.replace(".py", "")
return importlib.import_module(mod_path)
def apply_plugin(file, plugin):
if hasattr(plugin, "get_cond_and_uncond"):
import sdkit.generate.image_generator
sdkit.generate.image_generator.get_cond_and_uncond = plugin.get_cond_and_uncond
log.info(f"Overridden get_cond_and_uncond with the one in the server plugin: {file}")
for file in os.listdir(USER_SERVER_PLUGINS_DIR):
file_path = os.path.join(USER_SERVER_PLUGINS_DIR, file)
if (not os.path.isdir(file_path) and not file_path.endswith("_plugin.py")) or (
os.path.isdir(file_path) and not file_path.endswith("_plugin")
):
continue
try:
log.info(f"Loading server plugin: {file}")
mod = load_plugin(file)
log.info(f"Applying server plugin: {file}")
apply_plugin(file, mod)
except:
log.warn(f"Error while loading a server plugin")
log.warn(traceback.format_exc())
def getIPConfig():
try:
ips = socket.gethostbyname_ex(socket.gethostname())
ips[2].append(ips[0])
return ips[2]
except Exception as e:
log.exception(e)
return []
def open_browser():
config = getConfig()
ui = config.get("ui", {})
net = config.get("net", {})
port = net.get("listen_port", 9000)
if ui.get("open_browser_on_start", True):
import webbrowser
log.info("Opening browser..")
webbrowser.open(f"http://localhost:{port}")
Console().print(
Panel(
"\n"
+ "[white]Easy Diffusion is ready to serve requests.\n\n"
+ "A new browser tab should have been opened by now.\n"
+ f"If not, please open your web browser and navigate to [bold yellow underline]http://localhost:{port}/\n",
title="Easy Diffusion is ready",
style="bold yellow on blue",
)
)
def fail_and_die(fail_type: str, data: str):
suggestions = [
"Run this installer again.",
"If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB",
"If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues",
]
if fail_type == "model_download":
fail_label = f"Error downloading the {data} model"
suggestions.insert(
1,
"If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.",
)
else:
fail_label = "Error while installing Easy Diffusion"
msg = [f"{fail_label}. Sorry about that, please try to:"]
for i, suggestion in enumerate(suggestions):
msg.append(f"{i+1}. {suggestion}")
msg.append("Thanks!")
print("\n".join(msg))
exit(1)
def get_image_modifiers():
modifiers_json_path = os.path.join(SD_UI_DIR, "modifiers.json")
modifier_categories = {}
original_category_order = []
with open(modifiers_json_path, "r", encoding="utf-8") as f:
modifiers_file = json.load(f)
# The trailing slash is needed to support symlinks
if not os.path.isdir(f"{CUSTOM_MODIFIERS_DIR}/"):
return modifiers_file
# convert modifiers from a list of objects to a dict of dicts
for category_item in modifiers_file:
category_name = category_item["category"]
original_category_order.append(category_name)
category = {}
for modifier_item in category_item["modifiers"]:
modifier = {}
for preview_item in modifier_item["previews"]:
modifier[preview_item["name"]] = preview_item["path"]
category[modifier_item["modifier"]] = modifier
modifier_categories[category_name] = category
def scan_directory(directory_path: str, category_name="Modifiers"):
for entry in os.scandir(directory_path):
if entry.is_file():
file_extension = list(filter(lambda e: entry.name.endswith(e), IMAGE_EXTENSIONS))
if len(file_extension) == 0:
continue
modifier_name = entry.name[: -len(file_extension[0])]
modifier_path = f"custom/{entry.path[len(CUSTOM_MODIFIERS_DIR) + 1:]}"
# URL encode path segments
modifier_path = "/".join(
map(
lambda segment: urllib.parse.quote(segment),
modifier_path.split("/"),
)
)
is_portrait = True
is_landscape = True
portrait_extension = list(
filter(
lambda e: modifier_name.lower().endswith(e),
CUSTOM_MODIFIERS_PORTRAIT_EXTENSIONS,
)
)
landscape_extension = list(
filter(
lambda e: modifier_name.lower().endswith(e),
CUSTOM_MODIFIERS_LANDSCAPE_EXTENSIONS,
)
)
if len(portrait_extension) > 0:
is_landscape = False
modifier_name = modifier_name[: -len(portrait_extension[0])]
elif len(landscape_extension) > 0:
is_portrait = False
modifier_name = modifier_name[: -len(landscape_extension[0])]
if category_name not in modifier_categories:
modifier_categories[category_name] = {}
category = modifier_categories[category_name]
if modifier_name not in category:
category[modifier_name] = {}
if is_portrait or "portrait" not in category[modifier_name]:
category[modifier_name]["portrait"] = modifier_path
if is_landscape or "landscape" not in category[modifier_name]:
category[modifier_name]["landscape"] = modifier_path
elif entry.is_dir():
scan_directory(
entry.path,
entry.name if directory_path == CUSTOM_MODIFIERS_DIR else f"{category_name}/{entry.name}",
)
scan_directory(CUSTOM_MODIFIERS_DIR)
custom_categories = sorted(
[cn for cn in modifier_categories.keys() if cn not in original_category_order],
key=str.casefold,
)
# convert the modifiers back into a list of objects
modifier_categories_list = []
for category_name in [*original_category_order, *custom_categories]:
category = {"category": category_name, "modifiers": []}
for modifier_name in sorted(modifier_categories[category_name].keys(), key=str.casefold):
modifier = {"modifier": modifier_name, "previews": []}
for preview_name, preview_path in modifier_categories[category_name][modifier_name].items():
modifier["previews"].append({"name": preview_name, "path": preview_path})
category["modifiers"].append(modifier)
modifier_categories_list.append(category)
return modifier_categories_list

View File

@ -1,107 +0,0 @@
from typing import List
from fastapi import Depends, FastAPI, HTTPException, Response, File
from sqlalchemy.orm import Session
from easydiffusion.easydb import crud, models, schemas
from easydiffusion.easydb.database import SessionLocal, engine
from requests.compat import urlparse
import base64, json
MIME_TYPES = {
"jpg": "image/jpeg",
"jpeg": "image/jpeg",
"gif": "image/gif",
"png": "image/png",
"webp": "image/webp",
"js": "text/javascript",
"htm": "text/html",
"html": "text/html",
"css": "text/css",
"json": "application/json",
"mjs": "application/json",
"yaml": "application/yaml",
"svg": "image/svg+xml",
"txt": "text/plain",
}
def init():
from easydiffusion.server import server_api
models.BucketBase.metadata.create_all(bind=engine)
# Dependency
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
@server_api.get("/bucket/{obj_path:path}")
def bucket_get_object(obj_path: str, db: Session = Depends(get_db)):
filename = get_filename_from_url(obj_path)
path = get_path_from_url(obj_path)
if filename==None:
bucket = crud.get_bucket_by_path(db, path=path)
if bucket == None:
raise HTTPException(status_code=404, detail="Bucket not found")
bucketfiles = db.query(models.BucketFile).with_entities(models.BucketFile.filename).filter(models.BucketFile.bucket_id == bucket.id).all()
bucketfiles = [ x.filename for x in bucketfiles ]
return bucketfiles
else:
bucket = crud.get_bucket_by_path(db, path)
if bucket == None:
raise HTTPException(status_code=404, detail="Bucket not found")
bucket_id = bucket.id
bucketfile = db.query(models.BucketFile).filter(models.BucketFile.bucket_id == bucket_id, models.BucketFile.filename == filename).first()
if bucketfile == None:
raise HTTPException(status_code=404, detail="File not found")
suffix = get_suffix_from_filename(filename)
return Response(content=bucketfile.data, media_type=MIME_TYPES.get(suffix, "application/octet-stream"))
@server_api.post("/bucket/{obj_path:path}")
def bucket_post_object(obj_path: str, file: bytes = File(), db: Session = Depends(get_db)):
filename = get_filename_from_url(obj_path)
path = get_path_from_url(obj_path)
bucket = crud.get_bucket_by_path(db, path)
if bucket == None:
bucket = crud.create_bucket(db=db, bucket=schemas.BucketCreate(path=path))
bucket_id = bucket.id
bucketfile = schemas.BucketFileCreate(filename=filename, data=file)
result = crud.create_bucketfile(db=db, bucketfile=bucketfile, bucket_id=bucket_id)
result.data = base64.encodestring(result.data)
return result
@server_api.post("/buckets/{bucket_id}/items/", response_model=schemas.BucketFile)
def create_bucketfile_in_bucket(
bucket_id: int, bucketfile: schemas.BucketFileCreate, db: Session = Depends(get_db)
):
bucketfile.data = base64.decodestring(bucketfile.data)
result = crud.create_bucketfile(db=db, bucketfile=bucketfile, bucket_id=bucket_id)
result.data = base64.encodestring(result.data)
return result
def get_filename_from_url(url):
path = urlparse(url).path
name = path[path.rfind('/')+1:]
return name or None
def get_path_from_url(url):
path = urlparse(url).path
path = path[0:path.rfind('/')]
return path or None
def get_suffix_from_filename(filename):
return filename[filename.rfind('.')+1:]

View File

@ -1,172 +0,0 @@
import os
import platform
import re
import traceback
import torch
from easydiffusion.utils import log
from torchruntime.utils import (
get_installed_torch_platform,
get_device,
get_device_count,
get_device_name,
SUPPORTED_BACKENDS,
)
from sdkit.utils import mem_get_info, is_cpu_device, has_half_precision_bug
"""
Set `FORCE_FULL_PRECISION` in the environment variables, or in `config.bat`/`config.sh` to set full precision (i.e. float32).
Otherwise the models will load at half-precision (i.e. float16).
Half-precision is fine most of the time. Full precision is only needed for working around GPU bugs (like NVIDIA 16xx GPUs).
"""
COMPARABLE_GPU_PERCENTILE = (
0.65 # if a GPU's free_mem is within this % of the GPU with the most free_mem, it will be picked
)
mem_free_threshold = 0
def get_device_delta(render_devices, active_devices):
"""
render_devices: 'auto' or backends listed in `torchruntime.utils.SUPPORTED_BACKENDS`
active_devices: [backends listed in `torchruntime.utils.SUPPORTED_BACKENDS`]
"""
render_devices = render_devices or "auto"
render_devices = [render_devices] if isinstance(render_devices, str) else render_devices
# check for backend support
validate_render_devices(render_devices)
if "auto" in render_devices:
render_devices = auto_pick_devices(active_devices)
if "cpu" in render_devices:
log.warn("WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!")
active_devices = set(active_devices)
render_devices = set(render_devices)
devices_to_start = render_devices - active_devices
devices_to_stop = active_devices - render_devices
return devices_to_start, devices_to_stop
def validate_render_devices(render_devices):
supported_backends = ("auto",) + SUPPORTED_BACKENDS
unsupported_render_devices = [d for d in render_devices if not d.lower().startswith(supported_backends)]
if unsupported_render_devices:
raise ValueError(
f"Invalid render devices in config: {unsupported_render_devices}. Valid render devices: {supported_backends}"
)
def auto_pick_devices(currently_active_devices):
global mem_free_threshold
torch_platform_name = get_installed_torch_platform()[0]
if is_cpu_device(torch_platform_name):
return [torch_platform_name]
device_count = get_device_count()
log.debug("Autoselecting GPU. Using most free memory.")
devices = []
for device_id in range(device_count):
device_id = f"{torch_platform_name}:{device_id}" if device_count > 1 else torch_platform_name
device = get_device(device_id)
mem_free, mem_total = mem_get_info(device)
mem_free /= float(10**9)
mem_total /= float(10**9)
device_name = get_device_name(device)
log.debug(
f"{device_id} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb"
)
devices.append({"device": device_id, "device_name": device_name, "mem_free": mem_free})
devices.sort(key=lambda x: x["mem_free"], reverse=True)
max_mem_free = devices[0]["mem_free"]
curr_mem_free_threshold = COMPARABLE_GPU_PERCENTILE * max_mem_free
mem_free_threshold = max(curr_mem_free_threshold, mem_free_threshold)
# Auto-pick algorithm:
# 1. Pick the top 75 percentile of the GPUs, sorted by free_mem.
# 2. Also include already-running devices (GPU-only), otherwise their free_mem will
# always be very low (since their VRAM contains the model).
# These already-running devices probably aren't terrible, since they were picked in the past.
# Worst case, the user can restart the program and that'll get rid of them.
devices = [
x["device"] for x in devices if x["mem_free"] >= mem_free_threshold or x["device"] in currently_active_devices
]
return devices
def device_init(context, device_id):
context.device = device_id
if is_cpu_device(context.torch_device):
context.device_name = get_processor_name()
context.half_precision = False
else:
context.device_name = get_device_name(context.torch_device)
# Some graphics cards have bugs in their firmware that prevent image generation at half precision
if needs_to_force_full_precision(context.device_name):
log.warn(f"forcing full precision on this GPU, to avoid corrupted images. GPU: {context.device_name}")
context.half_precision = False
log.info(f'Setting {device_id} as active, with precision: {"half" if context.half_precision else "full"}')
def needs_to_force_full_precision(device_name):
if "FORCE_FULL_PRECISION" in os.environ:
return True
return has_half_precision_bug(device_name.lower())
def get_max_vram_usage_level(device):
"Expects a torch.device as the argument"
if is_cpu_device(device):
return "high"
_, mem_total = mem_get_info(device)
if mem_total < 0.001: # probably a torch platform without a mem_get_info() implementation
return "high"
mem_total /= float(10**9)
if mem_total < 4.5:
return "low"
elif mem_total < 6.5:
return "balanced"
return "high"
def get_processor_name():
try:
import subprocess
if platform.system() == "Windows":
return platform.processor()
elif platform.system() == "Darwin":
if "/usr/sbin" not in os.environ["PATH"].split(os.pathsep):
os.environ["PATH"] = os.environ["PATH"] + os.pathsep + "/usr/sbin"
command = "sysctl -n machdep.cpu.brand_string"
return subprocess.check_output(command, shell=True).decode().strip()
elif platform.system() == "Linux":
command = "cat /proc/cpuinfo"
all_info = subprocess.check_output(command, shell=True).decode().strip()
for line in all_info.split("\n"):
if "model name" in line:
return re.sub(".*model name.*:", "", line, 1).strip()
except:
log.error(traceback.format_exc())
return "cpu"

View File

@ -1,24 +0,0 @@
from sqlalchemy.orm import Session
from easydiffusion.easydb import models, schemas
def get_bucket_by_path(db: Session, path: str):
return db.query(models.Bucket).filter(models.Bucket.path == path).first()
def create_bucket(db: Session, bucket: schemas.BucketCreate):
db_bucket = models.Bucket(path=bucket.path)
db.add(db_bucket)
db.commit()
db.refresh(db_bucket)
return db_bucket
def create_bucketfile(db: Session, bucketfile: schemas.BucketFileCreate, bucket_id: int):
db_bucketfile = models.BucketFile(**bucketfile.dict(), bucket_id=bucket_id)
db.merge(db_bucketfile)
db.commit()
db_bucketfile = db.query(models.BucketFile).filter(models.BucketFile.bucket_id==bucket_id, models.BucketFile.filename==bucketfile.filename).first()
return db_bucketfile

View File

@ -1,14 +0,0 @@
import os
from easydiffusion import app
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
os.makedirs(app.BUCKET_DIR, exist_ok=True)
SQLALCHEMY_DATABASE_URL = "sqlite:///"+os.path.join(app.BUCKET_DIR, "bucket.db")
engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
BucketBase = declarative_base()

View File

@ -1,25 +0,0 @@
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String, BLOB
from sqlalchemy.orm import relationship
from easydiffusion.easydb.database import BucketBase
class Bucket(BucketBase):
__tablename__ = "bucket"
id = Column(Integer, primary_key=True, index=True)
path = Column(String, unique=True, index=True)
bucketfiles = relationship("BucketFile", back_populates="bucket")
class BucketFile(BucketBase):
__tablename__ = "bucketfile"
filename = Column(String, index=True, primary_key=True)
bucket_id = Column(Integer, ForeignKey("bucket.id"), primary_key=True)
data = Column(BLOB, index=False)
bucket = relationship("Bucket", back_populates="bucketfiles")

View File

@ -1,36 +0,0 @@
from typing import List, Union
from pydantic import BaseModel
class BucketFileBase(BaseModel):
filename: str
data: bytes
class BucketFileCreate(BucketFileBase):
pass
class BucketFile(BucketFileBase):
bucket_id: int
class Config:
orm_mode = True
class BucketBase(BaseModel):
path: str
class BucketCreate(BucketBase):
pass
class Bucket(BucketBase):
id: int
bucketfiles: List[BucketFile] = []
class Config:
orm_mode = True

View File

@ -1,431 +0,0 @@
import os
import shutil
from glob import glob
import traceback
from typing import Union
from easydiffusion import app
from easydiffusion.types import ModelsData
from easydiffusion.utils import log
from sdkit import Context
from sdkit.models import load_model, scan_model, unload_model, download_model, get_model_info_from_db
from sdkit.models.model_loader.controlnet_filters import filters as cn_filters
from sdkit.utils import hash_file_quick
from sdkit.models.model_loader.embeddings import get_embedding_token
KNOWN_MODEL_TYPES = [
"stable-diffusion",
"vae",
"hypernetwork",
"gfpgan",
"realesrgan",
"lora",
"codeformer",
"embeddings",
"controlnet",
]
MODEL_EXTENSIONS = {
"stable-diffusion": [".ckpt", ".safetensors"],
"vae": [".vae.pt", ".ckpt", ".safetensors"],
"hypernetwork": [".pt", ".safetensors"],
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors", ".pt"],
"codeformer": [".pth"],
"embeddings": [".pt", ".bin", ".safetensors"],
"controlnet": [".pth", ".safetensors"],
}
DEFAULT_MODELS = {
"stable-diffusion": [
{"file_name": "sd-v1-5.safetensors", "model_id": "1.5-pruned-emaonly-fp16"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
],
}
MODELS_TO_LOAD_ON_START = ["stable-diffusion", "vae", "hypernetwork", "lora"]
known_models = {}
def init():
make_model_folders()
migrate_legacy_model_location() # if necessary
download_default_models_if_necessary()
def load_default_models(context: Context):
from easydiffusion import runtime
runtime.set_vram_optimizations(context)
# init default model paths
for model_type in MODELS_TO_LOAD_ON_START:
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type, fail_if_not_found=False)
try:
load_model(
context,
model_type,
scan_model=context.model_paths[model_type] != None
and not context.model_paths[model_type].endswith(".safetensors"),
)
if hasattr(context, "model_load_errors") and model_type in context.model_load_errors:
del context.model_load_errors[model_type]
except Exception as e:
log.error(f"[red]Error while loading {model_type} model: {context.model_paths[model_type]}[/red]")
if "DefaultCPUAllocator: not enough memory" in str(e):
log.error(
f"[red]Your PC is low on system RAM. Please add some virtual memory (or swap space) by following the instructions at this link: https://www.ibm.com/docs/en/opw/8.2.0?topic=tuning-optional-increasing-paging-file-size-windows-computers[/red]"
)
else:
log.exception(e)
del context.model_paths[model_type]
if not hasattr(context, "model_load_errors"):
context.model_load_errors = {}
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
def unload_all(context: Context):
for model_type in KNOWN_MODEL_TYPES:
unload_model(context, model_type)
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
def resolve_model_to_use(model_name: Union[str, list] = None, model_type: str = None, fail_if_not_found: bool = True):
model_names = model_name if isinstance(model_name, list) else [model_name]
model_paths = []
for m in model_names:
if model_type == "embeddings":
try:
resolve_model_to_use_single(m, model_type)
except FileNotFoundError: # try with spaces
m = m.replace("_", " ")
path = resolve_model_to_use_single(m, model_type, fail_if_not_found)
model_paths.append(path)
return model_paths[0] if len(model_paths) == 1 else model_paths
def resolve_model_to_use_single(model_name: str = None, model_type: str = None, fail_if_not_found: bool = True):
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
default_models = DEFAULT_MODELS.get(model_type, [])
config = app.getConfig()
model_dir = os.path.join(app.MODELS_DIR, model_type)
if not model_name: # When None try user configured model.
# config = getConfig()
if "model" in config and model_type in config["model"]:
model_name = config["model"][model_type]
if model_name:
# Check models directory
model_path = os.path.join(model_dir, model_name)
if os.path.exists(model_path):
return model_path
for model_extension in model_extensions:
if os.path.exists(model_path + model_extension):
return model_path + model_extension
if os.path.exists(model_name + model_extension):
return os.path.abspath(model_name + model_extension)
# Can't find requested model, check the default paths.
if model_type == "stable-diffusion" and not fail_if_not_found:
for default_model in default_models:
default_model_path = os.path.join(model_dir, default_model["file_name"])
if os.path.exists(default_model_path):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}. Using the default one: {default_model_path}"
)
return default_model_path
if model_name and fail_if_not_found:
raise FileNotFoundError(
f"Could not find the desired model {model_name}! Is it present in the {model_dir} folder?"
)
def reload_models_if_necessary(context: Context, models_data: ModelsData, models_to_force_reload: list = []):
models_to_reload = {
model_type: path
for model_type, path in models_data.model_paths.items()
if context.model_paths.get(model_type) != path or (path is not None and context.models.get(model_type) is None)
}
if models_data.model_paths.get("codeformer"):
if "realesrgan" not in models_to_reload and "realesrgan" not in context.models:
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
models_to_reload["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
elif "realesrgan" in models_to_reload and models_to_reload["realesrgan"] is None:
del models_to_reload["realesrgan"] # don't unload realesrgan
for model_type in models_to_force_reload:
if model_type not in models_data.model_paths:
continue
models_to_reload[model_type] = models_data.model_paths[model_type]
for model_type, model_path_in_req in models_to_reload.items():
context.model_paths[model_type] = model_path_in_req
action_fn = unload_model if context.model_paths[model_type] is None else load_model
extra_params = models_data.model_params.get(model_type, {})
try:
action_fn(context, model_type, scan_model=False, **extra_params) # we've scanned them already
if hasattr(context, "model_load_errors") and model_type in context.model_load_errors:
del context.model_load_errors[model_type]
except Exception as e:
log.exception(e)
if action_fn == load_model:
if not hasattr(context, "model_load_errors"):
context.model_load_errors = {}
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
def resolve_model_paths(models_data: ModelsData):
model_paths = models_data.model_paths
for model_type in model_paths:
skip_models = cn_filters + ["latent_upscaler", "nsfw_checker"]
if model_type in skip_models: # doesn't use model paths
continue
if model_type == "codeformer" and model_paths[model_type]:
download_if_necessary("codeformer", "codeformer.pth", "codeformer-0.1.0")
elif model_type == "controlnet" and model_paths[model_type]:
model_id = model_paths[model_type]
model_info = get_model_info_from_db(model_type=model_type, model_id=model_id)
if model_info:
filename = model_info.get("url", "").split("/")[-1]
download_if_necessary("controlnet", filename, model_id, skip_if_others_exist=False)
model_paths[model_type] = resolve_model_to_use(model_paths[model_type], model_type=model_type)
def fail_if_models_did_not_load(context: Context):
for model_type in KNOWN_MODEL_TYPES:
if hasattr(context, "model_load_errors") and model_type in context.model_load_errors:
e = context.model_load_errors[model_type]
raise Exception(f"Could not load the {model_type} model! Reason: " + e)
def download_default_models_if_necessary():
for model_type, models in DEFAULT_MODELS.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
app.fail_and_die(fail_type="model_download", data=model_type)
print(model_type, "model(s) found.")
def download_if_necessary(model_type: str, file_name: str, model_id: str, skip_if_others_exist=True):
model_path = os.path.join(app.MODELS_DIR, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type) and skip_if_others_exist
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=app.MODELS_DIR, download_config_if_available=False)
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in DEFAULT_MODELS.items():
for model in models:
file_name = model["file_name"]
legacy_path = os.path.join(app.SD_DIR, file_name)
if os.path.exists(legacy_path):
shutil.move(legacy_path, os.path.join(app.MODELS_DIR, model_type, file_name))
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{app.MODELS_DIR}/{model_type}/**/*{ext}", recursive=True)):
return True
return False
def make_model_folders():
for model_type in KNOWN_MODEL_TYPES:
model_dir_path = os.path.join(app.MODELS_DIR, model_type)
try:
os.makedirs(model_dir_path, exist_ok=True)
except Exception as e:
from rich.console import Console
from rich.panel import Panel
Console().print(
Panel(
"\n"
+ f"Error while creating the models directory: '{model_dir_path}'\n"
+ f"Error: {e}\n\n"
+ f"[white]Check the 'models_dir:' line in the file '{os.path.join(app.ROOT_DIR, 'config.yaml')}'.[/white]\n",
title="Fatal Error starting Easy Diffusion",
style="bold yellow on red",
)
)
input("Press Enter to terminate...")
exit(1)
help_file_name = f"Place your {model_type} model files here.txt"
help_file_contents = f'Supported extensions: {" or ".join(MODEL_EXTENSIONS.get(model_type))}'
with open(os.path.join(model_dir_path, help_file_name), "w", encoding="utf-8") as f:
f.write(help_file_contents)
def is_malicious_model(file_path):
try:
if file_path.endswith((".safetensors", ".sft", ".gguf")):
return False
scan_result = scan_model(file_path)
if scan_result.issues_count > 0 or scan_result.infected_files > 0:
log.warn(
":warning: [bold red]Scan %s: %d scanned, %d issue, %d infected.[/bold red]"
% (
file_path,
scan_result.scanned_files,
scan_result.issues_count,
scan_result.infected_files,
)
)
return True
else:
log.debug(
"Scan %s: [green]%d scanned, %d issue, %d infected.[/green]"
% (
file_path,
scan_result.scanned_files,
scan_result.issues_count,
scan_result.infected_files,
)
)
return False
except Exception as e:
log.error(f"error while scanning: {file_path}, error: {e}")
return False
def getModels(scan_for_malicious: bool = True):
models = {
"options": {
"stable-diffusion": [],
"vae": [],
"hypernetwork": [],
"lora": [],
"codeformer": [{"codeformer": "CodeFormer"}],
"embeddings": [],
"controlnet": [
{"control_v11p_sd15_canny": "Canny (*)"},
{"control_v11p_sd15_openpose": "OpenPose (*)"},
{"control_v11p_sd15_normalbae": "Normal BAE (*)"},
{"control_v11f1p_sd15_depth": "Depth (*)"},
{"control_v11p_sd15_scribble": "Scribble"},
{"control_v11p_sd15_softedge": "Soft Edge"},
{"control_v11p_sd15_inpaint": "Inpaint"},
{"control_v11p_sd15_lineart": "Line Art"},
{"control_v11p_sd15s2_lineart_anime": "Line Art Anime"},
{"control_v11p_sd15_mlsd": "Straight Lines"},
{"control_v11p_sd15_seg": "Segment"},
{"control_v11e_sd15_shuffle": "Shuffle"},
{"control_v11f1e_sd15_tile": "Tile"},
],
},
}
models_scanned = 0
class MaliciousModelException(Exception):
"Raised when picklescan reports a problem with a model"
def scan_directory(directory, suffixes, directoriesFirst: bool = True, default_entries=[], nameFilter=None):
nonlocal models_scanned
tree = list(default_entries)
for entry in sorted(
os.scandir(directory),
key=lambda entry: (entry.is_file() == directoriesFirst, entry.name.lower()),
):
if entry.is_file():
matching_suffix = list(filter(lambda s: entry.name.endswith(s), suffixes))
if len(matching_suffix) == 0:
continue
matching_suffix = matching_suffix[0]
mtime = entry.stat().st_mtime
mod_time = known_models[entry.path] if entry.path in known_models else -1
if mod_time != mtime:
models_scanned += 1
if scan_for_malicious and is_malicious_model(entry.path):
raise MaliciousModelException(entry.path)
if scan_for_malicious:
known_models[entry.path] = mtime
model_id = entry.name[: -len(matching_suffix)]
if callable(nameFilter):
model_id = nameFilter(model_id)
model_exists = False
for m in tree: # allows default "named" models, like CodeFormer and known ControlNet models
if (isinstance(m, str) and model_id == m) or (isinstance(m, dict) and model_id in m):
model_exists = True
break
if not model_exists:
tree.append(model_id)
elif entry.is_dir():
scan = scan_directory(entry.path, suffixes, directoriesFirst=False, nameFilter=nameFilter)
if len(scan) != 0:
tree.append((entry.name, scan))
return tree
def listModels(model_type, nameFilter=None):
nonlocal models_scanned
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
models_dir = os.path.join(app.MODELS_DIR, model_type)
if not os.path.exists(models_dir):
os.makedirs(models_dir)
try:
default_tree = models["options"].get(model_type, [])
models["options"][model_type] = scan_directory(
models_dir, model_extensions, default_entries=default_tree, nameFilter=nameFilter
)
except MaliciousModelException as e:
models["scan-error"] = str(e)
if scan_for_malicious:
log.info(f"[green]Scanning all model folders for models...[/]")
# custom models
listModels(model_type="stable-diffusion")
listModels(model_type="vae")
listModels(model_type="hypernetwork")
listModels(model_type="gfpgan")
listModels(model_type="lora")
listModels(model_type="embeddings", nameFilter=get_embedding_token)
listModels(model_type="controlnet")
if scan_for_malicious and models_scanned > 0:
log.info(f"[green]Scanned {models_scanned} models. Nothing infected[/]")
return models

View File

@ -1,103 +0,0 @@
import sys
import os
import platform
from importlib.metadata import version as pkg_version
from sdkit.utils import log
from easydiffusion import app
# was meant to be a rewrite of scripts/check_modules.py
# but probably dead for now
manifest = {
"tensorrt": {
"install": [
"wheel",
"nvidia-cudnn-cu11==8.9.4.25",
"tensorrt==9.0.0.post11.dev1 --pre --extra-index-url=https://pypi.nvidia.com --trusted-host pypi.nvidia.com",
],
"uninstall": ["tensorrt"],
# TODO also uninstall tensorrt-libs and nvidia-cudnn, but do it upon restarting (avoid 'file in use' error)
}
}
installing = []
# remove this once TRT releases on pypi
if platform.system() == "Windows":
trt_dir = os.path.join(app.ROOT_DIR, "tensorrt")
if os.path.exists(trt_dir) and os.path.isdir(trt_dir) and len(os.listdir(trt_dir)) > 0:
files = os.listdir(trt_dir)
packages = manifest["tensorrt"]["install"]
packages = tuple(p.replace("-", "_") for p in packages)
wheels = []
for p in packages:
p = p.split(" ")[0]
f = next((f for f in files if f.startswith(p) and f.endswith((".whl", ".tar.gz"))), None)
if f:
wheels.append(os.path.join(trt_dir, f))
manifest["tensorrt"]["install"] = wheels
def get_installed_packages() -> list:
return {module_name: version(module_name) for module_name in manifest if is_installed(module_name)}
def is_installed(module_name) -> bool:
return version(module_name) is not None
def install(module_name):
if is_installed(module_name):
log.info(f"{module_name} has already been installed!")
return
if module_name in installing:
log.info(f"{module_name} is already installing!")
return
if module_name not in manifest:
raise RuntimeError(f"Can't install unknown package: {module_name}!")
commands = manifest[module_name]["install"]
if module_name == "tensorrt":
commands += [
"protobuf==3.20.3 polygraphy==0.47.1 onnx==1.14.0 --extra-index-url=https://pypi.ngc.nvidia.com --trusted-host pypi.ngc.nvidia.com"
]
commands = [f"python -m pip install --upgrade {cmd}" for cmd in commands]
installing.append(module_name)
try:
for cmd in commands:
print(">", cmd)
if os.system(cmd) != 0:
raise RuntimeError(f"Error while running {cmd}. Please check the logs in the command-line.")
finally:
installing.remove(module_name)
def uninstall(module_name):
if not is_installed(module_name):
log.info(f"{module_name} hasn't been installed!")
return
if module_name not in manifest:
raise RuntimeError(f"Can't uninstall unknown package: {module_name}!")
commands = manifest[module_name]["uninstall"]
commands = [f"python -m pip uninstall -y {cmd}" for cmd in commands]
for cmd in commands:
print(">", cmd)
if os.system(cmd) != 0:
raise RuntimeError(f"Error while running {cmd}. Please check the logs in the command-line.")
def version(module_name: str) -> str:
try:
return pkg_version(module_name)
except:
return None

View File

@ -1,51 +0,0 @@
"""
A runtime that runs on a specific device (in a thread).
It can run various tasks like image generation, image filtering, model merge etc by using that thread-local context.
This creates an `sdkit.Context` that's bound to the device specified while calling the `init()` function.
"""
from easydiffusion import device_manager
from easydiffusion.utils import log
from sdkit import Context
from sdkit.utils import get_device_usage
context = Context() # thread-local
"""
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
"""
def init(device):
"""
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
"""
context.stop_processing = False
context.temp_images = {}
context.partial_x_samples = None
context.model_load_errors = {}
context.enable_codeformer = True
from easydiffusion import app
app_config = app.getConfig()
context.test_diffusers = app_config.get("use_v3_engine", True)
log.info("Device usage during initialization:")
get_device_usage(device, log_info=True, process_usage_only=False)
device_manager.device_init(context, device)
def set_vram_optimizations(context: Context):
from easydiffusion import app
config = app.getConfig()
vram_usage_level = config.get("vram_usage_level", "balanced")
if vram_usage_level != context.vram_usage_level:
context.vram_usage_level = vram_usage_level
return True
return False

View File

@ -1,494 +0,0 @@
"""server.py: FastAPI SD-UI Web Host.
Notes:
async endpoints always run on the main thread. Without they run on the thread pool.
"""
import datetime
import mimetypes
import os
import traceback
from typing import List, Union
from easydiffusion import app, model_manager, task_manager, package_manager
from easydiffusion.tasks import RenderTask, FilterTask
from easydiffusion.types import (
GenerateImageRequest,
FilterImageRequest,
MergeRequest,
TaskData,
RenderTaskData,
ModelsData,
OutputFormatData,
SaveToDiskData,
convert_legacy_render_req_to_new,
)
from easydiffusion.utils import log
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Extra
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
from pycloudflared import try_cloudflare
log.info(f"started in {app.SD_DIR}")
log.info(f"started at {datetime.datetime.now():%x %X}")
server_api = FastAPI()
NOCACHE_HEADERS = {
"Cache-Control": "no-cache, no-store, must-revalidate",
"Pragma": "no-cache",
"Expires": "0",
}
PROTECTED_CONFIG_KEYS = ("block_nsfw",) # can't change these via the HTTP API
class NoCacheStaticFiles(StaticFiles):
def __init__(self, directory: str):
# follow_symlink is only available on fastapi >= 0.92.0
if os.path.islink(directory):
super().__init__(directory=os.path.realpath(directory))
else:
super().__init__(directory=directory)
def is_not_modified(self, response_headers, request_headers) -> bool:
if "content-type" in response_headers and (
"javascript" in response_headers["content-type"] or "css" in response_headers["content-type"]
):
response_headers.update(NOCACHE_HEADERS)
return False
return super().is_not_modified(response_headers, request_headers)
class SetAppConfigRequest(BaseModel, extra=Extra.allow):
update_branch: str = None
render_devices: Union[List[str], List[int], str, int] = None
model_vae: str = None
ui_open_browser_on_start: bool = None
listen_to_network: bool = None
listen_port: int = None
use_v3_engine: bool = True
models_dir: str = None
def init():
mimetypes.init()
mimetypes.add_type("text/css", ".css")
if os.path.isdir(app.CUSTOM_MODIFIERS_DIR):
server_api.mount(
"/media/modifier-thumbnails/custom",
NoCacheStaticFiles(directory=app.CUSTOM_MODIFIERS_DIR),
name="custom-thumbnails",
)
server_api.mount(
"/media",
NoCacheStaticFiles(directory=os.path.join(app.SD_UI_DIR, "media")),
name="media",
)
for plugins_dir, dir_prefix in app.UI_PLUGINS_SOURCES:
server_api.mount(
f"/plugins/{dir_prefix}",
NoCacheStaticFiles(directory=plugins_dir),
name=f"plugins-{dir_prefix}",
)
@server_api.post("/app_config")
async def set_app_config(req: SetAppConfigRequest):
return set_app_config_internal(req)
@server_api.get("/get/{key:path}")
def read_web_data(key: str = None, scan_for_malicious: bool = True):
return read_web_data_internal(key, scan_for_malicious=scan_for_malicious)
@server_api.get("/ping") # Get server and optionally session status.
def ping(session_id: str = None):
return ping_internal(session_id)
@server_api.post("/render")
def render(req: dict):
return render_internal(req)
@server_api.post("/filter")
def render(req: dict):
return filter_internal(req)
@server_api.post("/model/merge")
def model_merge(req: dict):
print(req)
return model_merge_internal(req)
@server_api.get("/image/stream/{task_id:int}")
def stream(task_id: int):
return stream_internal(task_id)
@server_api.get("/image/stop")
def stop(task: int):
return stop_internal(task)
@server_api.get("/image/tmp/{task_id:int}/{img_id:int}")
def get_image(task_id: int, img_id: int):
return get_image_internal(task_id, img_id)
@server_api.post("/tunnel/cloudflare/start")
def start_cloudflare_tunnel(req: dict):
return start_cloudflare_tunnel_internal(req)
@server_api.post("/tunnel/cloudflare/stop")
def stop_cloudflare_tunnel(req: dict):
return stop_cloudflare_tunnel_internal(req)
@server_api.post("/package/{package_name:str}")
def modify_package(package_name: str, req: dict):
return modify_package_internal(package_name, req)
@server_api.get("/sha256/{obj_path:path}")
def get_sha256(obj_path: str):
return get_sha256_internal(obj_path)
@server_api.get("/")
def read_root():
return FileResponse(os.path.join(app.SD_UI_DIR, "index.html"), headers=NOCACHE_HEADERS)
@server_api.on_event("shutdown")
def shutdown_event(): # Signal render thread to close on shutdown
task_manager.current_state_error = SystemExit("Application shutting down.")
# API implementations
def set_app_config_internal(req: SetAppConfigRequest):
config = app.getConfig()
if req.update_branch is not None:
config["update_branch"] = req.update_branch
if req.render_devices is not None:
update_render_devices_in_config(config, req.render_devices)
if req.ui_open_browser_on_start is not None:
if "ui" not in config:
config["ui"] = {}
config["ui"]["open_browser_on_start"] = req.ui_open_browser_on_start
if req.listen_to_network is not None:
if "net" not in config:
config["net"] = {}
config["net"]["listen_to_network"] = bool(req.listen_to_network)
if req.listen_port is not None:
if "net" not in config:
config["net"] = {}
config["net"]["listen_port"] = int(req.listen_port)
config["use_v3_engine"] = req.use_v3_engine
config["models_dir"] = req.models_dir
for property, property_value in req.dict().items():
if property_value is not None and property not in req.__fields__ and property not in PROTECTED_CONFIG_KEYS:
config[property] = property_value
try:
app.setConfig(config)
if req.render_devices:
app.update_render_threads()
return JSONResponse({"status": "OK"}, headers=NOCACHE_HEADERS)
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def update_render_devices_in_config(config, render_devices):
from easydiffusion.device_manager import validate_render_devices
try:
render_devices = render_devices.split(",")
validate_render_devices(render_devices)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
config["render_devices"] = render_devices
def read_web_data_internal(key: str = None, **kwargs):
if not key: # /get without parameters, stable-diffusion easter egg.
raise HTTPException(status_code=418, detail="StableDiffusion is drawing a teapot!") # HTTP418 I'm a teapot
elif key == "app_config":
config = app.getConfig()
if "models_dir" not in config:
config["models_dir"] = app.MODELS_DIR
return JSONResponse(config, headers=NOCACHE_HEADERS)
elif key == "system_info":
config = app.getConfig()
output_dir = config.get("force_save_path", os.path.join(os.path.expanduser("~"), app.OUTPUT_DIRNAME))
system_info = {
"devices": task_manager.get_devices(),
"hosts": app.getIPConfig(),
"default_output_dir": output_dir,
"enforce_output_dir": ("force_save_path" in config),
"enforce_output_metadata": ("force_save_metadata" in config),
}
system_info["devices"]["config"] = config.get("render_devices", "auto")
return JSONResponse(system_info, headers=NOCACHE_HEADERS)
elif key == "models":
scan_for_malicious = kwargs.get("scan_for_malicious", True)
return JSONResponse(model_manager.getModels(scan_for_malicious), headers=NOCACHE_HEADERS)
elif key == "modifiers":
return JSONResponse(app.get_image_modifiers(), headers=NOCACHE_HEADERS)
elif key == "ui_plugins":
return JSONResponse(app.getUIPlugins(), headers=NOCACHE_HEADERS)
else:
raise HTTPException(status_code=404, detail=f"Request for unknown {key}") # HTTP404 Not Found
def ping_internal(session_id: str = None):
if task_manager.is_alive() <= 0: # Check that render threads are alive.
if task_manager.current_state_error:
raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
raise HTTPException(status_code=500, detail="Render thread is dead.")
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration):
raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
# Alive
response = {"status": str(task_manager.current_state)}
if session_id:
session = task_manager.get_cached_session(session_id, update_ttl=True)
response["tasks"] = {id(t): t.status for t in session.tasks}
response["devices"] = task_manager.get_devices()
response["packages_installed"] = package_manager.get_installed_packages()
response["packages_installing"] = package_manager.installing
if cloudflare.address != None:
response["cloudflare"] = cloudflare.address
return JSONResponse(response, headers=NOCACHE_HEADERS)
def render_internal(req: dict):
try:
req = convert_legacy_render_req_to_new(req)
# separate out the request data into rendering and task-specific data
render_req: GenerateImageRequest = GenerateImageRequest.parse_obj(req)
task_data: RenderTaskData = RenderTaskData.parse_obj(req)
models_data: ModelsData = ModelsData.parse_obj(req)
output_format: OutputFormatData = OutputFormatData.parse_obj(req)
save_data: SaveToDiskData = SaveToDiskData.parse_obj(req)
# Overwrite user specified save path
config = app.getConfig()
if "force_save_path" in config:
save_data.save_to_disk_path = config["force_save_path"]
render_req.init_image_mask = req.get("mask") # hack: will rename this in the HTTP API in a future revision
app.save_to_config(
models_data.model_paths.get("stable-diffusion"),
models_data.model_paths.get("vae"),
models_data.model_paths.get("hypernetwork"),
task_data.vram_usage_level,
)
# enqueue the task
task = RenderTask(render_req, task_data, models_data, output_format, save_data)
return enqueue_task(task)
except HTTPException as e:
raise e
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def filter_internal(req: dict):
try:
filter_req: FilterImageRequest = FilterImageRequest.parse_obj(req)
task_data: TaskData = TaskData.parse_obj(req)
models_data: ModelsData = ModelsData.parse_obj(req)
output_format: OutputFormatData = OutputFormatData.parse_obj(req)
save_data: SaveToDiskData = SaveToDiskData.parse_obj(req)
# enqueue the task
task = FilterTask(filter_req, task_data, models_data, output_format, save_data)
return enqueue_task(task)
except HTTPException as e:
raise e
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def enqueue_task(task):
try:
task_manager.enqueue_task(task)
response = {
"status": str(task_manager.current_state),
"queue": len(task_manager.tasks_queue),
"stream": f"/image/stream/{task.id}",
"task": task.id,
}
return JSONResponse(response, headers=NOCACHE_HEADERS)
except ChildProcessError as e: # Render thread is dead
raise HTTPException(status_code=500, detail=f"Rendering thread has died.") # HTTP500 Internal Server Error
except ConnectionRefusedError as e: # Unstarted task pending limit reached, deny queueing too many.
raise HTTPException(status_code=503, detail=str(e)) # HTTP503 Service Unavailable
def model_merge_internal(req: dict):
try:
from easydiffusion.utils.save_utils import filename_regex
from sdkit.train import merge_models
mergeReq: MergeRequest = MergeRequest.parse_obj(req)
merge_models(
model_manager.resolve_model_to_use(mergeReq.model0, "stable-diffusion"),
model_manager.resolve_model_to_use(mergeReq.model1, "stable-diffusion"),
mergeReq.ratio,
os.path.join(
app.MODELS_DIR,
"stable-diffusion",
filename_regex.sub("_", mergeReq.out_path),
),
mergeReq.use_fp16,
)
return JSONResponse({"status": "OK"}, headers=NOCACHE_HEADERS)
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def stream_internal(task_id: int):
# TODO Move to WebSockets ??
task = task_manager.get_cached_task(task_id, update_ttl=True)
if not task:
raise HTTPException(status_code=404, detail=f"Request {task_id} not found.") # HTTP404 NotFound
# if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
if task.buffer_queue.empty() and not task.lock.locked():
if task.response:
# log.info(f'Session {session_id} sending cached response')
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
raise HTTPException(status_code=425, detail="Too Early, task not started yet.") # HTTP425 Too Early
# log.info(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
return StreamingResponse(task.read_buffer_generator(), media_type="application/json")
def stop_internal(task: int):
if not task:
if (
task_manager.current_state == task_manager.ServerStates.Online
or task_manager.current_state == task_manager.ServerStates.Unavailable
):
raise HTTPException(status_code=409, detail="Not currently running any tasks.") # HTTP409 Conflict
task_manager.current_state_error = StopAsyncIteration("")
return {"OK"}
task_id = task
task = task_manager.get_cached_task(task_id, update_ttl=False)
if not task:
raise HTTPException(status_code=404, detail=f"Task {task_id} was not found.") # HTTP404 Not Found
if isinstance(task.error, StopAsyncIteration):
raise HTTPException(status_code=409, detail=f"Task {task_id} is already stopped.") # HTTP409 Conflict
task.error = StopAsyncIteration(f"Task {task_id} stop requested.")
return {"OK"}
def get_image_internal(task_id: int, img_id: int):
task = task_manager.get_cached_task(task_id, update_ttl=True)
if not task:
raise HTTPException(status_code=410, detail=f"Task {task_id} could not be found.") # HTTP404 NotFound
if not task.temp_images[img_id]:
raise HTTPException(status_code=425, detail="Too Early, task data is not available yet.") # HTTP425 Too Early
try:
img_data = task.temp_images[img_id]
img_data.seek(0)
return StreamingResponse(img_data, media_type="image/jpeg")
except KeyError as e:
raise HTTPException(status_code=500, detail=str(e))
# ---- Cloudflare Tunnel ----
class CloudflareTunnel:
def __init__(self):
config = app.getConfig()
self.urls = None
self.port = config.get("net", {}).get("listen_port")
def start(self):
if self.port:
self.urls = try_cloudflare(self.port)
def stop(self):
if self.urls:
try_cloudflare.terminate(self.port)
self.urls = None
@property
def address(self):
if self.urls:
return self.urls.tunnel
else:
return None
cloudflare = CloudflareTunnel()
def start_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.start()
log.info(f"- Started cloudflare tunnel. Using address: {cloudflare.address}")
return JSONResponse({"address": cloudflare.address})
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def stop_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.stop()
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def modify_package_internal(package_name: str, req: dict):
try:
cmd = req["command"]
if cmd not in ("install", "uninstall"):
raise RuntimeError(f"Unknown command: {cmd}")
cmd = getattr(package_manager, cmd)
cmd(package_name)
return JSONResponse({"status": "OK"}, headers=NOCACHE_HEADERS)
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def get_sha256_internal(obj_path):
from easydiffusion.utils import sha256sum
path = obj_path.split("/")
type = path.pop(0)
try:
model_path = model_manager.resolve_model_to_use("/".join(path), type)
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=404)
try:
digest = sha256sum(model_path)
return {"digest": digest}
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))

Some files were not shown because too many files have changed in this diff Show More