Compare commits

..

1 Commits

Author SHA1 Message Date
645b596eb0 Revert "Frontend of the batch merger" 2023-01-25 19:45:52 +05:30
115 changed files with 15538 additions and 27682 deletions

2
.github/FUNDING.yml vendored
View File

@ -1,3 +1,3 @@
# These are supported funding model platforms
ko_fi: easydiffusion
ko_fi: cmdr2_stablediffusion_ui

1
.gitignore vendored
View File

@ -3,4 +3,3 @@ installer
installer.tar
dist
.idea/*
node_modules/*

View File

@ -1,9 +0,0 @@
*.min.*
*.py
*.json
*.html
/*
!/ui
/ui/easydiffusion
!/ui/plugins
!/ui/media

View File

@ -1,7 +0,0 @@
{
"printWidth": 120,
"tabWidth": 4,
"semi": false,
"arrowParens": "always",
"trailingComma": "es5"
}

File diff suppressed because it is too large Load Diff

View File

@ -1,160 +1,24 @@
# What's new?
## v3.0
### Major Changes
- **ControlNet** - Full support for ControlNet, with native integration of the common ControlNet models. Just select a control image, then choose the ControlNet filter/model and run. No additional configuration or download necessary. Supports custom ControlNets as well.
- **SDXL** - Full support for SDXL. No configuration necessary, just put the SDXL model in the `models/stable-diffusion` folder.
- **Multiple LoRAs** - Use multiple LoRAs, including SDXL and SD2-compatible LoRAs. Put them in the `models/lora` folder.
- **Embeddings** - Use textual inversion embeddings easily, by putting them in the `models/embeddings` folder and using their names in the prompt (or by clicking the `+ Embeddings` button to select embeddings visually). Thanks @JeLuf.
- **Seamless Tiling** - Generate repeating textures that can be useful for games and other art projects. Works best in 512x512 resolution. Thanks @JeLuf.
- **Inpainting Models** - Full support for inpainting models, including custom inpainting models. No configuration (or yaml files) necessary.
- **Faster than v2.5** - Nearly 40% faster than Easy Diffusion v2.5, and can be even faster if you enable xFormers.
- **Even less VRAM usage** - Less than 2 GB for 512x512 images on 'low' VRAM usage setting (SD 1.5). Can generate large images with SDXL.
- **WebP images** - Supports saving images in the lossless webp format.
- **Undo/Redo in the UI** - Remove tasks or images from the queue easily, and undo the action if you removed anything accidentally. Thanks @JeLuf.
- **Three new samplers, and latent upscaler** - Added `DEIS`, `DDPM` and `DPM++ 2m SDE` as additional samplers. Thanks @ogmaresca and @rbertus2000.
- **Significantly faster 'Upscale' and 'Fix Faces' buttons on the images**
- **Major rewrite of the code** - We've switched to using diffusers under-the-hood, which allows us to release new features faster, and focus on making the UI and installer even easier to use.
### Detailed changelog
* 3.0.2 - 29 Aug 2023 - Fixed incorrect matching of embeddings from prompts.
* 3.0.2 - 24 Aug 2023 - Fix broken seamless tiling.
* 3.0.2 - 23 Aug 2023 - Fix styling on mobile devices.
* 3.0.2 - 22 Aug 2023 - Full support for inpainting models, including custom models. Support SD 1.x and SD 2.x inpainting models. Does not require you to specify a yaml config file.
* 3.0.2 - 22 Aug 2023 - Reduce VRAM consumption of controlnet in 'low' VRAM mode, and allow accelerating controlnets using xformers.
* 3.0.2 - 22 Aug 2023 - Improve auto-detection of SD 2.0 and 2.1 models, removing the need for custom yaml files for SD 2.x models. Improve the model load time by speeding-up the black image test.
* 3.0.1 - 18 Aug 2023 - Rotate an image if EXIF rotation is present. For e.g. this is common in images taken with a smartphone.
* 3.0.1 - 18 Aug 2023 - Resize control images to the task dimensions, to avoid memory errors with high-res control images.
* 3.0.1 - 18 Aug 2023 - Show controlnet filter preview in the task entry.
* 3.0.1 - 18 Aug 2023 - Fix drag-and-drop and 'Use these Settings' for LoRA and ControlNet.
* 3.0.1 - 18 Aug 2023 - Auto-save LoRA models and strengths.
* 3.0.1 - 17 Aug 2023 - Automatically use the correct yaml config file for custom SDXL models, even if a yaml file isn't present in the folder.
* 3.0.1 - 17 Aug 2023 - Fix broken embeddings with SDXL.
* 3.0.1 - 16 Aug 2023 - Fix broken LoRA with SDXL.
* 3.0.1 - 15 Aug 2023 - Fix broken seamless tiling.
* 3.0.1 - 15 Aug 2023 - Fix textual inversion embeddings not working in `low` VRAM usage mode.
* 3.0.1 - 15 Aug 2023 - Fix for custom VAEs not working in `low` VRAM usage mode.
* 3.0.1 - 14 Aug 2023 - Slider to change the image dimensions proportionally (in Image Settings). Thanks @JeLuf.
* 3.0.1 - 14 Aug 2023 - Show an error to the user if an embedding isn't compatible with the model, instead of failing silently without informing the user. Thanks @JeLuf.
* 3.0.1 - 14 Aug 2023 - Disable watermarking for SDXL img2img. Thanks @AvidGameFan.
* 3.0.0 - 3 Aug 2023 - Enabled diffusers for everyone by default. The old v2 engine can be used by disabling the "Use v3 engine" option in the Settings tab.
## v2.5
### Major Changes
- **Nearly twice as fast** - significantly faster speed of image generation. Code contributions are welcome to make our project even faster: https://github.com/easydiffusion/sdkit/#is-it-fast
- **Mac M1/M2 support** - Experimental support for Mac M1/M2. Thanks @michaelgallacher, @JeLuf and vishae.
- **AMD support for Linux** - Experimental support for AMD GPUs on Linux. Thanks @DianaNites and @JeLuf.
- **Nearly twice as fast** - significantly faster speed of image generation. We're now pretty close to automatic1111's speed. Code contributions are welcome to make our project even faster: https://github.com/easydiffusion/sdkit/#is-it-fast
- **Full support for Stable Diffusion 2.1 (including CPU)** - supports loading v1.4 or v2.0 or v2.1 models seamlessly. No need to enable "Test SD2", and no need to add `sd2_` to your SD 2.0 model file names. Works on CPU as well.
- **Memory optimized Stable Diffusion 2.1** - you can now use Stable Diffusion 2.1 models, with the same low VRAM optimizations that we've always had for SD 1.4. Please note, the SD 2.0 and 2.1 models require more GPU and System RAM, as compared to the SD 1.4 and 1.5 models.
- **11 new samplers!** - explore the new samplers, some of which can generate great images in less than 10 inference steps! We've added the Karras and UniPC samplers. Thanks @Schorny for the UniPC samplers.
- **Model Merging** - You can now merge two models (`.ckpt` or `.safetensors`) and output `.ckpt` or `.safetensors` models, optionally in `fp16` precision. Details: https://github.com/easydiffusion/easydiffusion/wiki/Model-Merging . Thanks @JeLuf.
- **Memory optimized Stable Diffusion 2.1** - you can now use 768x768 models for SD 2.1, with the same low VRAM optimizations that we've always had for SD 1.4. Please note, 4 GB graphics cards can still only support images upto 512x512 resolution.
- **6 new samplers!** - explore the new samplers, some of which can generate great images in less than 10 inference steps!
- **Model Merging** - You can now merge two models (`.ckpt` or `.safetensors`) and output `.ckpt` or `.safetensors` models, optionally in `fp16` precision. Details: https://github.com/cmdr2/stable-diffusion-ui/wiki/Model-Merging
- **Fast loading/unloading of VAEs** - No longer needs to reload the entire Stable Diffusion model, each time you change the VAE
- **Database of known models** - automatically picks the right configuration for known models. E.g. we automatically detect and apply "v" parameterization (required for some SD 2.0 models), and "fp32" attention precision (required for some SD 2.1 models).
- **Color correction for img2img** - an option to preserve the color profile (histogram) of the initial image. This is especially useful if you're getting red-tinted images after inpainting/masking.
- **Three GPU Memory Usage Settings** - `High` (fastest, maximum VRAM usage), `Balanced` (default - almost as fast, significantly lower VRAM usage), `Low` (slowest, very low VRAM usage). The `Low` setting is applied automatically for GPUs with less than 4 GB of VRAM.
- **Find models in sub-folders** - This allows you to organize your models into sub-folders inside `models/stable-diffusion`, instead of keeping them all in a single folder. Thanks @patriceac and @ogmaresca.
- **Custom Modifier Categories** - Ability to create custom modifiers with thumbnails, and custom categories (and hierarchy of categories). Details: https://github.com/easydiffusion/easydiffusion/wiki/Custom-Modifiers . Thanks @ogmaresca.
- **Embed metadata, or save as TXT/JSON** - You can now embed the metadata directly into the images, or save them as text or json files (choose in the Settings tab). Thanks @patriceac.
- **Find models in sub-folders** - This allows you to organize your models into sub-folders inside `models/stable-diffusion`, instead of keeping them all in a single folder.
- **Save metadata as JSON** - You can now save the metadata files as either text or json files (choose in the Settings tab).
- **Major rewrite of the code** - Most of the codebase has been reorganized and rewritten, to make it more manageable and easier for new developers to contribute features. We've separated our core engine into a new project called `sdkit`, which allows anyone to easily integrate Stable Diffusion (and related modules like GFPGAN etc) into their programming projects (via a simple `pip install sdkit`): https://github.com/easydiffusion/sdkit/
- **Name change** - Last, and probably the least, the UI is now called "Easy Diffusion". It indicates the focus of this project - an easy way for people to play with Stable Diffusion.
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
### Detailed changelog
* 2.5.48 - 1 Aug 2023 - (beta-only) Full support for ControlNets. You can select a control image to guide the AI. You can pick a filter to pre-process the image, and one of the known (or custom) controlnet models. Supports `OpenPose`, `Canny`, `Straight Lines`, `Depth`, `Line Art`, `Scribble`, `Soft Edge`, `Shuffle` and `Segment`.
* 2.5.47 - 30 Jul 2023 - An option to use `Strict Mask Border` while inpainting, to avoid touching areas outside the mask. But this might show a slight outline of the mask, which you will have to touch up separately.
* 2.5.47 - 29 Jul 2023 - (beta-only) Fix long prompts with SDXL.
* 2.5.47 - 29 Jul 2023 - (beta-only) Fix red dots in some SDXL images.
* 2.5.47 - 29 Jul 2023 - Significantly faster `Fix Faces` and `Upscale` buttons (on the image). They no longer need to generate the image from scratch, instead they just upscale/fix the generated image in-place.
* 2.5.47 - 28 Jul 2023 - Lots of internal code reorganization, in preparation for supporting Controlnets. No user-facing changes.
* 2.5.46 - 27 Jul 2023 - (beta-only) Full support for SD-XL models (base and refiner)!
* 2.5.45 - 24 Jul 2023 - (beta-only) Hide the samplers that won't be supported in the new diffusers version.
* 2.5.45 - 22 Jul 2023 - (beta-only) Fix the recently-broken inpainting models.
* 2.5.45 - 16 Jul 2023 - (beta-only) Fix the image quality of LoRAs, which had degraded in v2.5.44.
* 2.5.44 - 15 Jul 2023 - (beta-only) Support for multiple LoRA files.
* 2.5.43 - 9 Jul 2023 - (beta-only) Support for loading Textual Inversion embeddings. You can find the option in the Image Settings panel. Thanks @JeLuf.
* 2.5.43 - 9 Jul 2023 - Improve the startup time of the UI.
* 2.5.42 - 4 Jul 2023 - Keyboard shortcuts for the Image Editor. Thanks @JeLuf.
* 2.5.42 - 28 Jun 2023 - Allow dropping images from folders to use as an Initial Image.
* 2.5.42 - 26 Jun 2023 - Show a popup for Image Modifiers, allowing a larger screen space, better UX on mobile screens, and more room for us to develop and improve the Image Modifiers panel. Thanks @Hakorr.
* 2.5.42 - 26 Jun 2023 - (beta-only) Show a welcome screen for users of the diffusers beta, with instructions on how to use the new prompt syntax, and known bugs. Thanks @JeLuf.
* 2.5.42 - 26 Jun 2023 - Use YAML files for config. You can now edit the `config.yaml` file (using a text editor, like Notepad). This file is present inside the Easy Diffusion folder, and is easier to read and edit (for humans) than JSON. Thanks @JeLuf.
* 2.5.41 - 24 Jun 2023 - (beta-only) Fix broken inpainting in low VRAM usage mode.
* 2.5.41 - 24 Jun 2023 - (beta-only) Fix a recent regression where the LoRA would not get applied when changing SD models.
* 2.5.41 - 23 Jun 2023 - Fix a regression where latent upscaler stopped working on PCs without a graphics card.
* 2.5.41 - 20 Jun 2023 - Automatically fix black images if fp32 attention precision is required in diffusers.
* 2.5.41 - 19 Jun 2023 - Another fix for multi-gpu rendering (in all VRAM usage modes).
* 2.5.41 - 13 Jun 2023 - Fix multi-gpu bug with "low" VRAM usage mode while generating images.
* 2.5.41 - 12 Jun 2023 - Fix multi-gpu bug with CodeFormer.
* 2.5.41 - 6 Jun 2023 - Allow changing the strength of CodeFormer, and slightly improved styling of the CodeFormer options.
* 2.5.41 - 5 Jun 2023 - Allow sharing an Easy Diffusion instance via https://try.cloudflare.com/ . You can find this option at the bottom of the Settings tab. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - Show an option to download for tiled images. Shows a button on the generated image. Creates larger images by tiling them with the image generated by Easy Diffusion. Thanks @JeLuf.
* 2.5.41 - 5 Jun 2023 - (beta-only) Allow LoRA strengths between -2 and 2. Thanks @ogmaresca.
* 2.5.40 - 5 Jun 2023 - Reduce the VRAM usage of Latent Upscaling when using "balanced" VRAM usage mode.
* 2.5.40 - 5 Jun 2023 - Fix the "realesrgan" key error when using CodeFormer with more than 1 image in a batch.
* 2.5.40 - 3 Jun 2023 - Added CodeFormer as another option for fixing faces and eyes. CodeFormer tends to perform better than GFPGAN for many images. Thanks @patriceac for the implementation, and for contacting the CodeFormer team (who were supportive of it being integrated into Easy Diffusion).
* 2.5.39 - 25 May 2023 - (beta-only) Seamless Tiling - make seamlessly tiled images, e.g. rock and grass textures. Thanks @JeLuf.
* 2.5.38 - 24 May 2023 - Better reporting of errors, and show an explanation if the user cannot disable the "Use CPU" setting.
* 2.5.38 - 23 May 2023 - Add Latent Upscaler as another option for upscaling images. Thanks @JeLuf for the implementation of the Latent Upscaler model.
* 2.5.37 - 19 May 2023 - (beta-only) Two more samplers: DDPM and DEIS. Also disables the samplers that aren't working yet in the Diffusers version. Thanks @ogmaresca.
* 2.5.37 - 19 May 2023 - (beta-only) Support CLIP-Skip. You can set this option under the models dropdown. Thanks @JeLuf.
* 2.5.37 - 19 May 2023 - (beta-only) More VRAM optimizations for all modes in diffusers. The VRAM usage for diffusers in "low" and "balanced" should now be equal or less than the non-diffusers version. Performs softmax in half precision, like sdkit does.
* 2.5.36 - 16 May 2023 - (beta-only) More VRAM optimizations for "balanced" VRAM usage mode.
* 2.5.36 - 11 May 2023 - (beta-only) More VRAM optimizations for "low" VRAM usage mode.
* 2.5.36 - 10 May 2023 - (beta-only) Bug fix for "meta" error when using a LoRA in 'low' VRAM usage mode.
* 2.5.35 - 8 May 2023 - Allow dragging a zoomed-in image (after opening an image with the "expand" button). Thanks @ogmaresca.
* 2.5.35 - 3 May 2023 - (beta-only) First round of VRAM Optimizations for the "Test Diffusers" version. This change significantly reduces the amount of VRAM used by the diffusers version during image generation. The VRAM usage is still not equal to the "non-diffusers" version, but more optimizations are coming soon.
* 2.5.34 - 22 Apr 2023 - Don't start the browser in an incognito new profile (on Windows). Thanks @JeLuf.
* 2.5.33 - 21 Apr 2023 - Install PyTorch 2.0 on new installations (on Windows and Linux).
* 2.5.32 - 19 Apr 2023 - Automatically check for black images, and set full-precision if necessary (for attn). This means custom models based on Stable Diffusion v2.1 will just work, without needing special command-line arguments or editing of yaml config files.
* 2.5.32 - 18 Apr 2023 - Automatic support for AMD graphics cards on Linux. Thanks @DianaNites and @JeLuf.
* 2.5.31 - 10 Apr 2023 - Reduce VRAM usage while upscaling.
* 2.5.31 - 6 Apr 2023 - Allow seeds upto `4,294,967,295`. Thanks @ogmaresca.
* 2.5.31 - 6 Apr 2023 - Buttons to show the previous/next image in the image popup. Thanks @ogmaresca.
* 2.5.30 - 5 Apr 2023 - Fix a bug where the JPEG image quality wasn't being respected when embedding the metadata into it. Thanks @JeLuf.
* 2.5.30 - 1 Apr 2023 - (beta-only) Slider to control the strength of the LoRA model.
* 2.5.30 - 28 Mar 2023 - Refactor task entry config to use a generating method. Added ability for plugins to easily add to this. Removed confusing sentence from `contributing.md`
* 2.5.30 - 28 Mar 2023 - Allow the user to undo the deletion of tasks or images, instead of showing a pop-up each time. The new `Undo` button will be present at the top of the UI. Thanks @JeLuf.
* 2.5.30 - 28 Mar 2023 - Support saving lossless WEBP images. Thanks @ogmaresca.
* 2.5.30 - 28 Mar 2023 - Lots of bug fixes for the UI (Read LoRA flag in metadata files, new prompt weight format with scrollwheel, fix overflow with lots of tabs, clear button in image editor, shorter filenames in download). Thanks @patriceac, @JeLuf and @ogmaresca.
* 2.5.29 - 27 Mar 2023 - (beta-only) Fix a bug where some non-square images would fail while inpainting with a `The size of tensor a must match size of tensor b` error.
* 2.5.29 - 27 Mar 2023 - (beta-only) Fix the `incorrect number of channels` error, when given a PNG image with an alpha channel in `Test Diffusers`.
* 2.5.29 - 27 Mar 2023 - (beta-only) Fix broken inpainting in `Test Diffusers`.
* 2.5.28 - 24 Mar 2023 - (beta-only) Support for weighted prompts and long prompt lengths (not limited to 77 tokens). This change requires enabling the `Test Diffusers` setting in beta (in the Settings tab), and restarting the program.
* 2.5.27 - 21 Mar 2023 - (beta-only) LoRA support, accessible by enabling the `Test Diffusers` setting (in the Settings tab in the UI). This change switches the internal engine to diffusers (if the `Test Diffusers` setting is enabled). If the `Test Diffusers` flag is disabled, it'll have no impact for the user.
* 2.5.26 - 15 Mar 2023 - Allow styling the buttons displayed on an image. Update the API to allow multiple buttons and text labels in a single row. Thanks @ogmaresca.
* 2.5.26 - 15 Mar 2023 - View images in full-screen, by either clicking on the image, or clicking the "Full screen" icon next to the Seed number on the image. Thanks @ogmaresca for the internal API.
* 2.5.25 - 14 Mar 2023 - Button to download all the images, and all the metadata as a zip file. This is available at the top of the UI, as well as on each image. Thanks @JeLuf.
* 2.5.25 - 14 Mar 2023 - Lots of UI tweaks and bug fixes. Thanks @patriceac and @JeLuf.
* 2.5.24 - 11 Mar 2023 - Button to load an image mask from a file.
* 2.5.24 - 10 Mar 2023 - Logo change. Image credit: @lazlo_vii.
* 2.5.23 - 8 Mar 2023 - Experimental support for Mac M1/M2. Thanks @michaelgallacher, @JeLuf and vishae!
* 2.5.23 - 8 Mar 2023 - Ability to create custom modifiers with thumbnails, and custom categories (and hierarchy of categories). More details - https://github.com/easydiffusion/easydiffusion/wiki/Custom-Modifiers . Thanks @ogmaresca.
* 2.5.22 - 28 Feb 2023 - Minor styling changes to UI buttons, and the models dropdown.
* 2.5.22 - 28 Feb 2023 - Lots of UI-related bug fixes. Thanks @patriceac.
* 2.5.21 - 22 Feb 2023 - An option to control the size of the image thumbnails. You can use the `Display options` in the top-right corner to change this. Thanks @JeLuf.
* 2.5.20 - 20 Feb 2023 - Support saving images in WEBP format (which consumes less disk space, with similar quality). Thanks @ogmaresca.
* 2.5.20 - 18 Feb 2023 - A setting to block NSFW images from being generated. You can enable this setting in the Settings tab.
* 2.5.19 - 17 Feb 2023 - Initial support for server-side plugins. Currently supports overriding the `get_cond_and_uncond()` function.
* 2.5.18 - 17 Feb 2023 - 5 new samplers! UniPC samplers, some of which produce images in less than 15 steps. Thanks @Schorny.
* 2.5.16 - 13 Feb 2023 - Searchable dropdown for models. This is useful if you have a LOT of models. You can type part of the model name, to auto-search through your models. Thanks @patriceac for the feature, and @AssassinJN for help in UI tweaks!
* 2.5.16 - 13 Feb 2023 - Lots of fixes and improvements to the installer. First round of changes to add Mac support. Thanks @JeLuf.
* 2.5.16 - 13 Feb 2023 - UI bug fixes for the inpainter editor. Thanks @patriceac.
* 2.5.16 - 13 Feb 2023 - Fix broken task reorder. Thanks @JeLuf.
* 2.5.16 - 13 Feb 2023 - Remove a task if all the images inside it have been removed. Thanks @AssassinJN.
* 2.5.16 - 10 Feb 2023 - Embed metadata into the JPG/PNG images, if selected in the "Settings" tab (under "Metadata format"). Thanks @patriceac.
* 2.5.16 - 10 Feb 2023 - Sort models alphabetically in the models dropdown. Thanks @ogmaresca.
* 2.5.16 - 10 Feb 2023 - Support multiple GFPGAN models. Download new GFPGAN models into the `models/gfpgan` folder, and refresh the UI to use it. Thanks @JeLuf.
* 2.5.16 - 10 Feb 2023 - Allow a server to enforce a fixed directory path to save images. This is useful if the server is exposed to a lot of users. This can be set in the `config.json` file as `force_save_path: "/path/to/fixed/save/dir"`. E.g. `force_save_path: "D:/user_images"`. Thanks @JeLuf.
* 2.5.16 - 10 Feb 2023 - The "Make Images" button now shows the correct amount of images it'll create when using operators like `{}` or `|`. For e.g. if the prompt is `Photo of a {woman, man}`, then the button will say `Make 2 Images`. Thanks @JeLuf.
* 2.5.16 - 10 Feb 2023 - A bunch of UI-related bug fixes. Thanks @patriceac.
* 2.5.15 - 8 Feb 2023 - Allow using 'balanced' VRAM usage mode on GPUs with 4 GB or less of VRAM. This mode used to be called 'Turbo' in the previous version.
* 2.5.14 - 8 Feb 2023 - Fix broken auto-save settings. We renamed `sampler` to `sampler_name`, which caused old settings to fail.
* 2.5.14 - 6 Feb 2023 - Simplify the UI for merging models, and some other minor UI tweaks. Better error reporting if a model failed to load.
* 2.5.14 - 3 Feb 2023 - Fix the 'Make Similar Images' button, which was producing incorrect images (weren't very similar).
* 2.5.13 - 1 Feb 2023 - Fix the remaining GPU memory leaks, including a better fix (more comprehensive) for the change in 2.5.12 (27 Jan).
* 2.5.12 - 27 Jan 2023 - Fix a memory leak, which made the UI unresponsive after an out-of-memory error. The allocated memory is now freed-up after an error.
* 2.5.11 - 25 Jan 2023 - UI for Merging Models. Thanks @JeLuf. More info: https://github.com/easydiffusion/easydiffusion/wiki/Model-Merging
* 2.5.10 - 24 Jan 2023 - Reduce the VRAM usage for img2img in 'balanced' mode (without reducing the rendering speed), to make it similar to v2.4 of this UI.
* 2.5.9 - 23 Jan 2023 - Fix a bug where img2img would produce poorer-quality images for the same settings, as compared to version 2.4 of this UI.
* 2.5.9 - 23 Jan 2023 - Reduce the VRAM usage for 'balanced' mode (without reducing the rendering speed), to make it similar to v2.4 of the UI.
@ -183,8 +47,8 @@ Our focus continues to remain on an easy installation experience, and an easy us
- **Automatic scanning for malicious model files** - using `picklescan`, and support for `safetensor` model format. Thanks @JeLuf
- **Image Editor** - for drawing simple images for guiding the AI. Thanks @mdiller
- **Use pre-trained hypernetworks** - for improving the quality of images. Thanks @C0bra5
- **Support for custom VAE models**. You can place your VAE files in the `models/vae` folder, and refresh the browser page to use them. More info: https://github.com/easydiffusion/easydiffusion/wiki/VAE-Variational-Auto-Encoder
- **Experimental support for multiple GPUs!** It should work automatically. Just open one browser tab per GPU, and spread your tasks across your GPUs. For e.g. open our UI in two browser tabs if you have two GPUs. You can customize which GPUs it should use in the "Settings" tab, otherwise let it automatically pick the best GPUs. Thanks @madrang . More info: https://github.com/easydiffusion/easydiffusion/wiki/Run-on-Multiple-GPUs
- **Support for custom VAE models**. You can place your VAE files in the `models/vae` folder, and refresh the browser page to use them. More info: https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder
- **Experimental support for multiple GPUs!** It should work automatically. Just open one browser tab per GPU, and spread your tasks across your GPUs. For e.g. open our UI in two browser tabs if you have two GPUs. You can customize which GPUs it should use in the "Settings" tab, otherwise let it automatically pick the best GPUs. Thanks @madrang . More info: https://github.com/cmdr2/stable-diffusion-ui/wiki/Run-on-Multiple-GPUs
- **Cleaner UI design** - Show settings and help in new tabs, instead of dropdown popups (which were buggy). Thanks @mdiller
- **Progress bar.** Thanks @mdiller
- **Custom Image Modifiers** - You can now save your custom image modifiers! Your saved modifiers can include special characters like `{}, (), [], |`

View File

@ -1,6 +1,6 @@
Hi there, these instructions are meant for the developers of this project.
If you only want to use the Stable Diffusion UI, you've downloaded the wrong file. In that case, please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation
If you only want to use the Stable Diffusion UI, you've downloaded the wrong file. In that case, please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation
Thanks
@ -13,7 +13,7 @@ If you would like to contribute to this project, there is a discord for discussi
This is in-flux, but one way to get a development environment running for editing the UI of this project is:
(swap `.sh` or `.bat` in instructions depending on your environment, and be sure to adjust any paths to match where you're working)
1) Install the project to a new location using the [usual installation process](https://github.com/easydiffusion/easydiffusion#installation), e.g. to `/projects/stable-diffusion-ui-archive`
1) Install the project to a new location using the [usual installation process](https://github.com/cmdr2/stable-diffusion-ui#installation), e.g. to `/projects/stable-diffusion-ui-archive`
2) Start the newly installed project, and check that you can view and generate images on `localhost:9000`
3) Next, please clone the project repository using `git clone` (e.g. to `/projects/stable-diffusion-ui-repo`)
4) Close the server (started in step 2), and edit `/projects/stable-diffusion-ui-archive/scripts/on_env_start.sh` (or `on_env_start.bat`)
@ -42,6 +42,8 @@ or for Windows
10) Congrats, now any changes you make in your repo `ui` folder are linked to this running archive of the app and can be previewed in the browser.
11) Please update CHANGES.md in your pull requests.
Check the `ui/frontend/build/README.md` for instructions on running and building the React code.
## Development environment for Installer changes
Build the Windows installer using Windows, and the Linux installer using Linux. Don't mix the two, and don't use WSL. An Ubuntu VM is fine for building the Linux installer on a Windows host.

View File

@ -1,24 +1,24 @@
Congrats on downloading Easy Diffusion, version 3!
Congrats on downloading Stable Diffusion UI, version 2!
If you haven't downloaded Easy Diffusion yet, please download from https://github.com/easydiffusion/easydiffusion#installation
If you haven't downloaded Stable Diffusion UI yet, please download from https://github.com/cmdr2/stable-diffusion-ui#installation
After downloading, to install please follow these instructions:
For Windows:
- Please double-click the "Easy-Diffusion-Windows.exe" file and follow the instructions.
- Please double-click the "Start Stable Diffusion UI.cmd" file inside the "stable-diffusion-ui" folder.
For Linux and Mac:
- Please open a terminal, and go to the "easy-diffusion" directory. Then run ./start.sh
For Linux:
- Please open a terminal, and go to the "stable-diffusion-ui" directory. Then run ./start.sh
That file will automatically install everything. After that it will start the Easy Diffusion interface in a web browser.
That file will automatically install everything. After that it will start the Stable Diffusion interface in a web browser.
To start Easy Diffusion in the future, please run the same command mentioned above.
To start the UI in the future, please run the same command mentioned above.
If you have any problems, please:
1. Try the troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting
1. Try the troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting
2. Or, seek help from the community at https://discord.com/invite/u9yhsFmEkB
3. Or, file an issue at https://github.com/easydiffusion/easydiffusion/issues
3. Or, file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks
cmdr2 (and contributors to the project)
cmdr2 (and contributors to the project)

1
NSIS/.gitignore vendored
View File

@ -1 +0,0 @@
*.exe

Binary file not shown.

Before

Width:  |  Height:  |  Size: 565 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 223 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 454 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

View File

@ -1 +0,0 @@
!define EXISTING_INSTALLATION_DIR "D:\path\to\installed\easy-diffusion"

View File

@ -1,24 +1,20 @@
; Script generated by the HM NIS Edit Script Wizard.
Target amd64-unicode
Target x86-unicode
Unicode True
SetCompressor /FINAL lzma
RequestExecutionLevel user
!AddPluginDir /amd64-unicode "."
!AddPluginDir /x86-unicode "."
; HM NIS Edit Wizard helper defines
!define PRODUCT_NAME "Easy Diffusion"
!define PRODUCT_VERSION "2.5"
!define PRODUCT_NAME "Stable Diffusion UI"
!define PRODUCT_VERSION "Installer 2.35"
!define PRODUCT_PUBLISHER "cmdr2 and contributors"
!define PRODUCT_WEB_SITE "https://stable-diffusion-ui.github.io"
!define PRODUCT_DIR_REGKEY "Software\Microsoft\Easy Diffusion\App Paths\installer.exe"
!define PRODUCT_DIR_REGKEY "Software\Microsoft\Cmdr2\App Paths\installer.exe"
; MUI 1.67 compatible ------
!include "MUI.nsh"
!include "LogicLib.nsh"
!include "nsDialogs.nsh"
!include "nsisconf.nsh"
Var Dialog
Var Label
Var Button
@ -110,7 +106,7 @@ Function DirectoryLeave
StrCpy $5 $INSTDIR 3
System::Call 'Kernel32::GetVolumeInformation(t "$5",t,i ${NSIS_MAX_STRLEN},*i,*i,*i,t.r1,i ${NSIS_MAX_STRLEN})i.r0'
${If} $0 <> 0
${AndIf} $1 != "NTFS"
${AndIf} $1 == "NTFS"
MessageBox mb_ok "$5 has filesystem type '$1'.$\nOnly NTFS filesystems are supported.$\nPlease choose a different drive."
Abort
${EndIf}
@ -144,7 +140,7 @@ Function MediaPackDialog
Abort
${EndIf}
${NSD_CreateLabel} 0 0 100% 48u "The Windows Media Feature Pack is missing on this computer. It is required for Easy Diffusion.$\nYou can continue the installation after installing the Windows Media Feature Pack."
${NSD_CreateLabel} 0 0 100% 48u "The Windows Media Feature Pack is missing on this computer. It is required for the Stable Diffusion UI.$\nYou can continue the installation after installing the Windows Media Feature Pack."
Pop $Label
${NSD_CreateButton} 10% 49u 80% 12u "Download Meda Feature Pack from Microsoft"
@ -157,20 +153,16 @@ Function MediaPackDialog
nsDialogs::Show
FunctionEnd
Function FinishPageAction
CreateShortCut "$DESKTOP\Easy Diffusion.lnk" "$INSTDIR\Start Stable Diffusion UI.cmd" "" "$INSTDIR\installer_files\cyborg_flower_girl.ico"
FunctionEnd
;---------------------------------------------------------------------------------------------------------
; MUI Settings
;---------------------------------------------------------------------------------------------------------
!define MUI_ABORTWARNING
!define MUI_ICON "cyborg_flower_girl.ico"
!define MUI_ICON "sd.ico"
!define MUI_WELCOMEFINISHPAGE_BITMAP "cyborg_flower_girl.bmp"
!define MUI_WELCOMEFINISHPAGE_BITMAP "astro.bmp"
; Welcome page
!define MUI_WELCOMEPAGE_TEXT "This installer will guide you through the installation of Easy Diffusion.$\n$\n\
!define MUI_WELCOMEPAGE_TEXT "This installer will guide you through the installation of Stable Diffusion UI.$\n$\n\
Click Next to continue."
!insertmacro MUI_PAGE_WELCOME
Page custom MediaPackDialog
@ -186,11 +178,6 @@ Page custom MediaPackDialog
!insertmacro MUI_PAGE_INSTFILES
; Finish page
!define MUI_FINISHPAGE_SHOWREADME ""
!define MUI_FINISHPAGE_SHOWREADME_NOTCHECKED
!define MUI_FINISHPAGE_SHOWREADME_TEXT "Create Desktop Shortcut"
!define MUI_FINISHPAGE_SHOWREADME_FUNCTION FinishPageAction
!define MUI_FINISHPAGE_RUN "$INSTDIR\Start Stable Diffusion UI.cmd"
!insertmacro MUI_PAGE_FINISH
@ -201,8 +188,8 @@ Page custom MediaPackDialog
;---------------------------------------------------------------------------------------------------------
Name "${PRODUCT_NAME} ${PRODUCT_VERSION}"
OutFile "Install Easy Diffusion.exe"
InstallDir "C:\EasyDiffusion\"
OutFile "Install Stable Diffusion UI.exe"
InstallDir "C:\Stable-Diffusion-UI\"
InstallDirRegKey HKLM "${PRODUCT_DIR_REGKEY}" ""
ShowInstDetails show
@ -213,42 +200,15 @@ Section "MainSection" SEC01
File "..\CreativeML Open RAIL-M License"
File "..\How to install and run.txt"
File "..\LICENSE"
File "..\scripts\Start Stable Diffusion UI.cmd"
File /r "${EXISTING_INSTALLATION_DIR}\installer_files"
File /r "${EXISTING_INSTALLATION_DIR}\profile"
File /r "${EXISTING_INSTALLATION_DIR}\sd-ui-files"
SetOutPath "$INSTDIR\installer_files"
File "cyborg_flower_girl.ico"
File "..\Start Stable Diffusion UI.cmd"
SetOutPath "$INSTDIR\scripts"
File "${EXISTING_INSTALLATION_DIR}\scripts\install_status.txt"
File "..\scripts\bootstrap.bat"
File "..\scripts\install_status.txt"
File "..\scripts\on_env_start.bat"
File "C:\windows\system32\curl.exe"
CreateDirectory "$INSTDIR\models"
CreateDirectory "$INSTDIR\models\stable-diffusion"
CreateDirectory "$INSTDIR\models\gfpgan"
CreateDirectory "$INSTDIR\models\realesrgan"
CreateDirectory "$INSTDIR\models\vae"
CreateDirectory "$SMPROGRAMS\Easy Diffusion"
CreateShortCut "$SMPROGRAMS\Easy Diffusion\Easy Diffusion.lnk" "$INSTDIR\Start Stable Diffusion UI.cmd" "" "$INSTDIR\installer_files\cyborg_flower_girl.ico"
DetailPrint 'Downloading the Stable Diffusion 1.4 model...'
NScurl::http get "https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt" "$INSTDIR\models\stable-diffusion\sd-v1-4.ckpt" /CANCEL /INSIST /END
DetailPrint 'Downloading the GFPGAN model...'
NScurl::http get "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth" "$INSTDIR\models\gfpgan\GFPGANv1.4.pth" /CANCEL /INSIST /END
DetailPrint 'Downloading the RealESRGAN_x4plus model...'
NScurl::http get "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth" "$INSTDIR\models\realesrgan\RealESRGAN_x4plus.pth" /CANCEL /INSIST /END
DetailPrint 'Downloading the RealESRGAN_x4plus_anime model...'
NScurl::http get "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth" "$INSTDIR\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" /CANCEL /INSIST /END
DetailPrint 'Downloading the default VAE (sd-vae-ft-mse-original) model...'
NScurl::http get "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt" "$INSTDIR\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" /CANCEL /INSIST /END
DetailPrint 'Downloading the CLIP model (clip-vit-large-patch14)...'
NScurl::http get "https://huggingface.co/openai/clip-vit-large-patch14/resolve/8d052a0f05efbaefbc9e8786ba291cfdf93e5bff/pytorch_model.bin" "$INSTDIR\profile\.cache\huggingface\hub\models--openai--clip-vit-large-patch14\snapshots\8d052a0f05efbaefbc9e8786ba291cfdf93e5bff\pytorch_model.bin" /CANCEL /INSIST /END
CreateDirectory "$INSTDIR\profile"
CreateDirectory "$SMPROGRAMS\Stable Diffusion UI"
CreateShortCut "$SMPROGRAMS\Stable Diffusion UI\Start Stable Diffusion UI.lnk" "$INSTDIR\Start Stable Diffusion UI.cmd"
SectionEnd
;---------------------------------------------------------------------------------------------------------
@ -294,7 +254,7 @@ Function .onInit
${If} $4 < "8000"
MessageBox MB_OK|MB_ICONEXCLAMATION "Warning!$\n$\nYour system has less than 8GB of memory (RAM).$\n$\n\
You can still try to install Easy Diffusion,$\nbut it might have problems to start, or run$\nvery slowly."
You can still try to install Stable Diffusion UI,$\nbut it might have problems to start, or run$\nvery slowly."
${EndIf}
FunctionEnd

View File

@ -1,9 +0,0 @@
// placeholder until a more formal and legal-sounding privacy policy document is written. but the information below is true.
This is a summary of whether Easy Diffusion uses your data or tracks you:
* The short answer is - Easy Diffusion does *not* use your data, and does *not* track you.
* Easy Diffusion does not send your prompts or usage or analytics to anyone. There is no tracking. We don't even know how many people use Easy Diffusion, let alone their prompts.
* Easy Diffusion fetches updates to the code whenever it starts up. It does this by contacting GitHub directly, via SSL (secure connection). Only your computer and GitHub and [this repository](https://github.com/easydiffusion/easydiffusion) are involved, and no third party is involved. Some countries intercepts SSL connections, that's not something we can do much about. GitHub does *not* share statistics (even with me) about how many people fetched code updates.
* Easy Diffusion fetches the models from huggingface.co and github.com, if they don't exist on your PC. For e.g. if the safety checker (NSFW) model doesn't exist, it'll try to download it.
* Easy Diffusion fetches code packages from pypi.org, which is the standard hosting service for all Python projects. That's where packages installed via `pip install` are stored.
* Occasionally, antivirus software are known to *incorrectly* flag and delete some model files, which will result in Easy Diffusion re-downloading `pytorch_model.bin`. This *incorrect deletion* affects other Stable Diffusion UIs as well, like Invoke AI - https://itch.io/post/7509488

View File

@ -3,6 +3,6 @@ Hi there,
What you have downloaded is meant for the developers of this project, not for users.
If you only want to use the Stable Diffusion UI, you've downloaded the wrong file.
Please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation
Please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation
Thanks

143
README.md
View File

@ -1,51 +1,40 @@
# Easy Diffusion 3.0
### The easiest way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your computer.
# Stable Diffusion UI
### The easiest way to install and use [Stable Diffusion](https://github.com/CompVis/stable-diffusion) on your own computer. Does not require technical knowledge, does not require pre-installed software. 1-click install, powerful features, friendly community.
Does not require technical knowledge, does not require pre-installed software. 1-click install, powerful features, friendly community.
[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB) (for support, and development discussion) | [Troubleshooting guide for common problems](https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting)
[Installation guide](#installation) | [Troubleshooting guide](https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting) | <sub>[![Discord Server](https://img.shields.io/discord/1014774730907209781?label=Discord)](https://discord.com/invite/u9yhsFmEkB)</sub> <sup>(for support queries, and development discussions)</sup>
### New:
Experimental support for Stable Diffusion 2.0 is available in beta!
---
![262597678-11089485-2514-4a11-88fb-c3acc81fc9ec](https://github.com/easydiffusion/easydiffusion/assets/844287/050b5e15-e909-45bf-8162-a38234830e38)
----
# Installation
# Step 1: Download and prepare the installer
Click the download button for your operating system:
<p float="left">
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/latest/download/Easy-Diffusion-Linux.zip"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-linux.png" width="200" /></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/latest/download/Easy-Diffusion-Mac.zip"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-mac.png" width="200" /></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/latest/download/Easy-Diffusion-Windows.exe"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-win.png" width="200" /></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.4.13/stable-diffusion-ui-windows.zip"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-win.png" width="200" /></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/releases/download/v2.4.13/stable-diffusion-ui-linux.zip"><img src="https://github.com/cmdr2/stable-diffusion-ui/raw/main/media/download-linux.png" width="200" /></a>
</p>
**Hardware requirements:**
- **Windows:** NVIDIA graphics card¹ (minimum 2 GB RAM), or run on your CPU.
- **Linux:** NVIDIA¹ or AMD² graphics card (minimum 2 GB RAM), or run on your CPU.
- **Mac:** M1 or M2, or run on your CPU.
- Minimum 8 GB of system RAM.
- Atleast 25 GB of space on the hard disk.
## On Windows:
1. Unzip/extract the folder `stable-diffusion-ui` which should be in your downloads folder, unless you changed your default downloads destination.
2. Move the `stable-diffusion-ui` folder to your `C:` drive (or any other drive like `D:`, at the top root level). `C:\stable-diffusion-ui` or `D:\stable-diffusion-ui` as examples. This will avoid a common problem with Windows (file path length limits).
## On Linux:
1. Unzip/extract the folder `stable-diffusion-ui` which should be in your downloads folder, unless you changed your default downloads destination.
2. Open a terminal window, and navigate to the `stable-diffusion-ui` directory.
¹) [CUDA Compute capability](https://en.wikipedia.org/wiki/CUDA#GPUs_supported) level of 3.7 or higher required.
²) ROCm 5.2 support required.
# Step 2: Run the program
## On Windows:
Double-click `Start Stable Diffusion UI.cmd`.
If Windows SmartScreen prevents you from running the program click `More info` and then `Run anyway`.
## On Linux:
Run `./start.sh` (or `bash start.sh`) in a terminal.
The installer will take care of whatever is needed. If you face any problems, you can join the friendly [Discord community](https://discord.com/invite/u9yhsFmEkB) and ask for assistance.
## On Windows:
1. Run the downloaded `Easy-Diffusion-Windows.exe` file.
2. Run `Easy Diffusion` once the installation finishes. You can also start from your Start Menu, or from your desktop (if you created a shortcut).
# Step 3: There is no Step 3. It's that simple!
If Windows SmartScreen prevents you from running the program click `More info` and then `Run anyway`.
**Tip:** On Windows 10, please install at the top level in your drive, e.g. `C:\EasyDiffusion` or `D:\EasyDiffusion`. This will avoid a common problem with Windows 10 (file path length limits).
## On Linux/Mac:
1. Unzip/extract the folder `easy-diffusion` which should be in your downloads folder, unless you changed your default downloads destination.
2. Open a terminal window, and navigate to the `easy-diffusion` directory.
3. Run `./start.sh` (or `bash start.sh`) in a terminal.
# To remove/uninstall:
Just delete the `EasyDiffusion` folder to uninstall all the downloaded packages.
**To Uninstall:** Just delete the `stable-diffusion-ui` folder to uninstall all the downloaded packages.
----
@ -55,48 +44,33 @@ Just delete the `EasyDiffusion` folder to uninstall all the downloaded packages.
### User experience
- **Hassle-free installation**: Does not require technical knowledge, does not require pre-installed software. Just download and run!
- **Clutter-free UI**: A friendly and simple UI, while providing a lot of powerful features.
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish.
- **Intelligent Model Detection**: Automatically figures out the YAML config file to use for the chosen model (via a models database).
- **Live Preview**: See the image as the AI is drawing it.
- **Image Modifiers**: A library of *modifier tags* like *"Realistic"*, *"Pencil Sketch"*, *"ArtStation"* etc. Experiment with various styles quickly.
- **Multiple Prompts File**: Queue multiple prompts by entering one prompt per line, or by running a text file.
- **Save generated images to disk**: Save your images to your PC!
- **UI Themes**: Customize the program to your liking.
- **Searchable models dropdown**: organize your models into sub-folders, and search through them in the UI.
### Powerful image generation
- **Supports**: "*Text to Image*", "*Image to Image*" and "*InPainting*"
- **ControlNet**: For advanced control over the image, e.g. by setting the pose or drawing the outline for the AI to fill in.
- **16 Samplers**: `PLMS`, `DDIM`, `DEIS`, `Heun`, `Euler`, `Euler Ancestral`, `DPM2`, `DPM2 Ancestral`, `LMS`, `DPM Solver`, `DPM++ 2s Ancestral`, `DPM++ 2m`, `DPM++ 2m SDE`, `DPM++ SDE`, `DDPM`, `UniPC`.
- **Stable Diffusion XL and 2.1**: Generate higher-quality images using the latest Stable Diffusion XL models.
- **Textual Inversion Embeddings**: For guiding the AI strongly towards a particular concept.
### Image generation
- **Supports**: "*Text to Image*" and "*Image to Image*".
- **In-Painting**: Specify areas of your image to paint into.
- **Simple Drawing Tool**: Draw basic images to guide the AI, without needing an external drawing program.
- **Face Correction (GFPGAN)**
- **Upscaling (RealESRGAN)**
- **Loopback**: Use the output image as the input image for the next image task.
- **Loopback**: Use the output image as the input image for the next img2img task.
- **Negative Prompt**: Specify aspects of the image to *remove*.
- **Attention/Emphasis**: `+` in the prompt increases the model's attention to enclosed words, and `-` decreases it. E.g. `apple++ falling from a tree`.
- **Weighted Prompts**: Use weights for specific words in your prompt to change their importance, e.g. `(red)2.4 (dragon)1.2`.
- **Attention/Emphasis**: () in the prompt increases the model's attention to enclosed words, and [] decreases it.
- **Weighted Prompts**: Use weights for specific words in your prompt to change their importance, e.g. `red:2.4 dragon:1.2`.
- **Prompt Matrix**: Quickly create multiple variations of your prompt, e.g. `a photograph of an astronaut riding a horse | illustration | cinematic lighting`.
- **Prompt Set**: Quickly create multiple variations of your prompt, e.g. `a photograph of an astronaut on the {moon,earth}`
- **Lots of Samplers**: ddim, plms, heun, euler, euler_a, dpm2, dpm2_a, lms.
- **1-click Upscale/Face Correction**: Upscale or correct an image after it has been generated.
- **Make Similar Images**: Click to generate multiple variations of a generated image.
- **NSFW Setting**: A setting in the UI to control *NSFW content*.
- **JPEG/PNG/WEBP output**: Multiple file formats.
- **JPEG/PNG output**: Multiple file formats.
### Advanced features
- **Custom Models**: Use your own `.ckpt` or `.safetensors` file, by placing it inside the `models/stable-diffusion` folder!
- **Stable Diffusion XL and 2.1 support**
- **Merge Models**
- **Stable Diffusion 2.0 support (experimental)**: available in beta channel.
- **Use custom VAE models**
- **Textual Inversion Embeddings**
- **ControlNet**
- **Use custom GFPGAN models**
- **UI Plugins**: Choose from a growing list of [community-generated UI plugins](https://github.com/easydiffusion/easydiffusion/wiki/UI-Plugins), or write your own plugin to add features to the project!
- **Use pre-trained Hypernetworks**
- **UI Plugins**: Choose from a growing list of [community-generated UI plugins](https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Plugins), or write your own plugin to add features to the project!
### Performance and security
- **Fast**: Creates a 512x512 image with euler_a in 5 seconds, on an NVIDIA 3060 12GB.
- **Low Memory Usage**: Create 512x512 images with less than 2 GB of GPU RAM, and 768x768 images with less than 3 GB of GPU RAM!
- **Low Memory Usage**: Creates 512x512 images with less than 4GB of GPU RAM!
- **Use CPU setting**: If you don't have a compatible graphics card, but still want to run it on your CPU.
- **Multi-GPU support**: Automatically spreads your tasks across multiple GPUs (if available), for faster performance!
- **Auto scan for malicious models**: Uses picklescan to prevent malicious models.
@ -104,36 +78,55 @@ Just delete the `EasyDiffusion` folder to uninstall all the downloaded packages.
- **Auto-updater**: Gets you the latest improvements and bug-fixes to a rapidly evolving project.
- **Developer Console**: A developer-mode for those who want to modify their Stable Diffusion code, and edit the conda environment.
### Usability:
- **Live Preview**: See the image as the AI is drawing it.
- **Task Queue**: Queue up all your ideas, without waiting for the current task to finish.
- **Image Modifiers**: A library of *modifier tags* like *"Realistic"*, *"Pencil Sketch"*, *"ArtStation"* etc. Experiment with various styles quickly.
- **Multiple Prompts File**: Queue multiple prompts by entering one prompt per line, or by running a text file.
- **Save generated images to disk**: Save your images to your PC!
- **UI Themes**: Customize the program to your liking.
**(and a lot more)**
----
## Easy for new users, powerful features for advanced users:
![image](https://github.com/easydiffusion/easydiffusion/assets/844287/efbbac9f-42ce-4aef-8625-fd23c74a8241)
## Easy for new users:
![Screenshot of the initial UI](media/shot-v10-simple.jpg?raw=true)
## Powerful features for advanced users:
![Screenshot of advanced settings](media/shot-v10.jpg?raw=true)
## Live Preview
Useful for judging (and stopping) an image quickly, without waiting for it to finish rendering.
![live-512](https://user-images.githubusercontent.com/844287/192097249-729a0a1e-a677-485e-9ccc-16a9e848fabe.gif)
## Task Queue
![Screenshot of task queue](https://user-images.githubusercontent.com/844287/217043984-0b35f73b-1318-47cb-9eed-a2a91b430490.png)
![Screenshot of task queue](media/task-queue-v1.jpg?raw=true)
# System Requirements
1. Windows 10/11, or Linux. Experimental support for Mac is coming soon.
2. An NVIDIA graphics card, preferably with 4GB or more of VRAM. If you don't have a compatible graphics card, it'll automatically run in the slower "CPU Mode".
3. Minimum 8 GB of RAM and 25GB of disk space.
You don't need to install or struggle with Python, Anaconda, Docker etc. The installer will take care of whatever is needed.
----
# How to use?
Please refer to our [guide](https://github.com/easydiffusion/easydiffusion/wiki/How-to-Use) to understand how to use the features in this UI.
Please refer to our [guide](https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use) to understand how to use the features in this UI.
# Bugs reports and code contributions welcome
If there are any problems or suggestions, please feel free to ask on the [discord server](https://discord.com/invite/u9yhsFmEkB) or [file an issue](https://github.com/easydiffusion/easydiffusion/issues).
If there are any problems or suggestions, please feel free to ask on the [discord server](https://discord.com/invite/u9yhsFmEkB) or [file an issue](https://github.com/cmdr2/stable-diffusion-ui/issues).
We could really use help on these aspects (click to view tasks that need your help):
* [User Interface](https://github.com/users/cmdr2/projects/1/views/1)
* [Engine](https://github.com/users/cmdr2/projects/3/views/1)
* [Installer](https://github.com/users/cmdr2/projects/4/views/1)
* [Documentation](https://github.com/users/cmdr2/projects/5/views/1)
If you have any code contributions in mind, please feel free to say Hi to us on the [discord server](https://discord.com/invite/u9yhsFmEkB). We use the Discord server for development-related discussions, and for helping users.
# Credits
* Stable Diffusion: https://github.com/Stability-AI/stablediffusion
* CodeFormer: https://github.com/sczhou/CodeFormer (license: https://github.com/sczhou/CodeFormer/blob/master/LICENSE)
* GFPGAN: https://github.com/TencentARC/GFPGAN
* RealESRGAN: https://github.com/xinntao/Real-ESRGAN
* k-diffusion: https://github.com/crowsonkb/k-diffusion
* Code contributors and artists on the cmdr2 UI: https://github.com/cmdr2/stable-diffusion-ui and Discord (https://discord.com/invite/u9yhsFmEkB)
* Lots of contributors on the internet
# Disclaimer
The authors of this project are not responsible for any content generated using this interface.

View File

@ -2,7 +2,7 @@
@echo "Hi there, what you are running is meant for the developers of this project, not for users." & echo.
@echo "If you only want to use the Stable Diffusion UI, you've downloaded the wrong file."
@echo "Please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation" & echo.
@echo "Please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation" & echo.
@echo "If you are actually a developer of this project, please type Y and press enter" & echo.
set /p answer=Are you a developer of this project (Y/N)?
@ -15,7 +15,6 @@ mkdir dist\win\stable-diffusion-ui\scripts
copy scripts\on_env_start.bat dist\win\stable-diffusion-ui\scripts\
copy scripts\bootstrap.bat dist\win\stable-diffusion-ui\scripts\
copy scripts\config.yaml.sample dist\win\stable-diffusion-ui\scripts\config.yaml
copy "scripts\Start Stable Diffusion UI.cmd" dist\win\stable-diffusion-ui\
copy LICENSE dist\win\stable-diffusion-ui\
copy "CreativeML Open RAIL-M License" dist\win\stable-diffusion-ui\

View File

@ -2,7 +2,7 @@
printf "Hi there, what you are running is meant for the developers of this project, not for users.\n\n"
printf "If you only want to use the Stable Diffusion UI, you've downloaded the wrong file.\n"
printf "Please download and follow the instructions at https://github.com/easydiffusion/easydiffusion#installation \n\n"
printf "Please download and follow the instructions at https://github.com/cmdr2/stable-diffusion-ui#installation\n\n"
printf "If you are actually a developer of this project, please type Y and press enter\n\n"
read -p "Are you a developer of this project (Y/N) " yn
@ -29,7 +29,6 @@ mkdir -p dist/linux-mac/stable-diffusion-ui/scripts
cp scripts/on_env_start.sh dist/linux-mac/stable-diffusion-ui/scripts/
cp scripts/bootstrap.sh dist/linux-mac/stable-diffusion-ui/scripts/
cp scripts/functions.sh dist/linux-mac/stable-diffusion-ui/scripts/
cp scripts/config.yaml.sample dist/linux-mac/stable-diffusion-ui/scripts/config.yaml
cp scripts/start.sh dist/linux-mac/stable-diffusion-ui/
cp LICENSE dist/linux-mac/stable-diffusion-ui/
cp "CreativeML Open RAIL-M License" dist/linux-mac/stable-diffusion-ui/

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@ -1,9 +0,0 @@
{
"scripts": {
"prettier-fix": "npx prettier --write \"./**/*.js\"",
"prettier-check": "npx prettier --check \"./**/*.js\""
},
"devDependencies": {
"prettier": "^1.19.1"
}
}

Binary file not shown.

View File

@ -2,8 +2,6 @@
echo "Opening Stable Diffusion UI - Developer Console.." & echo.
cd /d %~dp0
set PATH=C:\Windows\System32;%PATH%
@rem set legacy and new installer's PATH, if they exist
@ -23,8 +21,6 @@ call git --version
call where conda
call conda --version
echo.
echo COMSPEC=%COMSPEC%
echo.
@rem activate the legacy environment (if present) and set PYTHONPATH
@ -41,10 +37,6 @@ call python --version
echo PYTHONPATH=%PYTHONPATH%
if exist "%cd%\profile" (
set HF_HOME=%cd%\profile\.cache\huggingface
)
@rem done
echo.

View File

@ -1,45 +1,27 @@
@echo off
cd /d %~dp0
echo Install dir: %~dp0
set PATH=C:\Windows\System32;%PATH%
set PYTHONHOME=
if exist "on_sd_start.bat" (
echo ================================================================================
echo.
echo !!!! WARNING !!!!
echo.
echo It looks like you're trying to run the installation script from a source code
echo download. This will not work.
echo.
echo Recommended: Please close this window and download the installer from
echo https://stable-diffusion-ui.github.io/docs/installation/
echo.
echo ================================================================================
echo.
pause
exit /b
)
@rem set legacy installer's PATH, if it exists
if exist "installer" set PATH=%cd%\installer;%cd%\installer\Library\bin;%cd%\installer\Scripts;%cd%\installer\Library\usr\bin;%PATH%
@rem Setup the packages required for the installer
call scripts\bootstrap.bat
@rem set new installer's PATH, if it downloaded any packages
if exist "installer_files\env" set PATH=%cd%\installer_files\env;%cd%\installer_files\env\Library\bin;%cd%\installer_files\env\Scripts;%cd%\installer_files\Library\usr\bin;%PATH%
set PYTHONPATH=%cd%\installer;%cd%\installer_files\env
@rem Test the core requirements
@rem Test the bootstrap
call where git
call git --version
call where conda
call conda --version
echo .
echo COMSPEC=%COMSPEC%
@rem Download the rest of the installer and UI
call scripts\on_env_start.bat
@pause

View File

@ -1,5 +1,4 @@
@echo off
setlocal enabledelayedexpansion
@rem This script will install git and conda (if not found on the PATH variable)
@rem using micromamba (an 8mb static-linked single-file binary, conda replacement).
@ -11,7 +10,7 @@ setlocal enabledelayedexpansion
set MAMBA_ROOT_PREFIX=%cd%\installer_files\mamba
set INSTALL_ENV_DIR=%cd%\installer_files\env
set LEGACY_INSTALL_ENV_DIR=%cd%\installer
set MICROMAMBA_DOWNLOAD_URL=https://github.com/easydiffusion/easydiffusion/releases/download/v1.1/micromamba.exe
set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe
set umamba_exists=F
set OLD_APPDATA=%APPDATA%
@ -29,10 +28,10 @@ if not exist "%LEGACY_INSTALL_ENV_DIR%\etc\profile.d\conda.sh" (
)
call git --version >.tmp1 2>.tmp2
if "!ERRORLEVEL!" NEQ "0" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% git
if "%ERRORLEVEL%" NEQ "0" set PACKAGES_TO_INSTALL=%PACKAGES_TO_INSTALL% git
call "%MAMBA_ROOT_PREFIX%\micromamba.exe" --version >.tmp1 2>.tmp2
if "!ERRORLEVEL!" EQU "0" set umamba_exists=T
if "%ERRORLEVEL%" EQU "0" set umamba_exists=T
@rem (if necessary) install git and conda into a contained environment
if "%PACKAGES_TO_INSTALL%" NEQ "" (
@ -43,7 +42,7 @@ if "%PACKAGES_TO_INSTALL%" NEQ "" (
mkdir "%MAMBA_ROOT_PREFIX%"
call curl -Lk "%MICROMAMBA_DOWNLOAD_URL%" > "%MAMBA_ROOT_PREFIX%\micromamba.exe"
if "!ERRORLEVEL!" NEQ "0" (
if "%ERRORLEVEL%" NEQ "0" (
echo "There was a problem downloading micromamba. Cannot continue."
pause
exit /b

View File

@ -21,16 +21,9 @@ OS_ARCH=$(uname -m)
case "${OS_ARCH}" in
x86_64*) OS_ARCH="64";;
arm64*) OS_ARCH="arm64";;
aarch64*) OS_ARCH="arm64";;
*) echo "Unknown system architecture: $OS_ARCH! This script runs only on x86_64 or arm64" && exit
esac
if ! which curl; then fail "'curl' not found. Please install curl."; fi
if ! which tar; then fail "'tar' not found. Please install tar."; fi
if ! which bzip2; then fail "'bzip2' not found. Please install bzip2."; fi
if pwd | grep ' '; then fail "The installation directory's path contains a space character. Conda will fail to install. Please change the directory."; fi
# https://mamba.readthedocs.io/en/latest/installation.html
if [ "$OS_NAME" == "linux" ] && [ "$OS_ARCH" == "arm64" ]; then OS_ARCH="aarch64"; fi
@ -58,7 +51,7 @@ if [ "$PACKAGES_TO_INSTALL" != "" ]; then
echo "Downloading micromamba from $MICROMAMBA_DOWNLOAD_URL to $MAMBA_ROOT_PREFIX/micromamba"
mkdir -p "$MAMBA_ROOT_PREFIX"
curl -L "$MICROMAMBA_DOWNLOAD_URL" | tar -xvj -O bin/micromamba > "$MAMBA_ROOT_PREFIX/micromamba"
curl -L "$MICROMAMBA_DOWNLOAD_URL" | tar -xvj bin/micromamba -O > "$MAMBA_ROOT_PREFIX/micromamba"
if [ "$?" != "0" ]; then
echo

View File

@ -1,165 +1,13 @@
"""
This script checks and installs the required modules.
'''
This script checks if the given modules exist
'''
This script runs inside the legacy "stable-diffusion" folder
import sys
import pkgutil
TODO - Maybe replace the bulk of this script with a call to `pip install -f requirements.txt`, with
a custom index URL depending on the platform.
"""
import os
from importlib.metadata import version as pkg_version
import platform
import traceback
os_name = platform.system()
modules_to_check = {
"torch": ("1.11.0", "1.13.1", "2.0.0"),
"torchvision": ("0.12.0", "0.14.1", "0.15.1"),
"sdkit": "2.0.3",
"stable-diffusion-sdkit": "2.1.4",
"rich": "12.6.0",
"uvicorn": "0.19.0",
"fastapi": "0.85.1",
"pycloudflared": "0.2.0",
"ruamel.yaml": "0.17.21",
"sqlalchemy": "2.0.19",
"python-multipart": "0.0.6",
# "xformers": "0.0.16",
}
modules_to_log = ["torch", "torchvision", "sdkit", "stable-diffusion-sdkit"]
def version(module_name: str) -> str:
try:
return pkg_version(module_name)
except:
return None
def install(module_name: str, module_version: str):
if module_name == "xformers" and (os_name == "Darwin" or is_amd_on_linux()):
return
index_url = None
if module_name in ("torch", "torchvision"):
module_version, index_url = apply_torch_install_overrides(module_version)
if is_amd_on_linux(): # hack until AMD works properly on torch 2.0 (avoids black images on some cards)
if module_name == "torch":
module_version = "1.13.1+rocm5.2"
elif module_name == "torchvision":
module_version = "0.14.1+rocm5.2"
elif os_name == "Darwin":
if module_name == "torch":
module_version = "1.13.1"
elif module_name == "torchvision":
module_version = "0.14.1"
install_cmd = f"python -m pip install --upgrade {module_name}=={module_version}"
if index_url:
install_cmd += f" --index-url {index_url}"
if module_name == "sdkit" and version("sdkit") is not None:
install_cmd += " -q"
print(">", install_cmd)
os.system(install_cmd)
def init():
for module_name, allowed_versions in modules_to_check.items():
if os.path.exists(f"../src/{module_name}"):
print(f"Skipping {module_name} update, since it's in developer/editable mode")
continue
allowed_versions, latest_version = get_allowed_versions(module_name, allowed_versions)
requires_install = False
if module_name in ("torch", "torchvision"):
if version(module_name) is None: # allow any torch version
requires_install = True
elif os_name == "Darwin" and ( # force mac to downgrade from torch 2.0
version("torch").startswith("2.") or version("torchvision").startswith("0.15.")
):
requires_install = True
elif version(module_name) not in allowed_versions:
requires_install = True
if requires_install:
try:
install(module_name, latest_version)
except:
traceback.print_exc()
fail(module_name)
if module_name in modules_to_log:
print(f"{module_name}: {version(module_name)}")
### utilities
def get_allowed_versions(module_name: str, allowed_versions: tuple):
allowed_versions = (allowed_versions,) if isinstance(allowed_versions, str) else allowed_versions
latest_version = allowed_versions[-1]
if module_name in ("torch", "torchvision"):
allowed_versions = include_cuda_versions(allowed_versions)
return allowed_versions, latest_version
def apply_torch_install_overrides(module_version: str):
index_url = None
if os_name == "Windows":
module_version += "+cu117"
index_url = "https://download.pytorch.org/whl/cu117"
elif is_amd_on_linux():
index_url = "https://download.pytorch.org/whl/rocm5.2"
return module_version, index_url
def include_cuda_versions(module_versions: tuple) -> tuple:
"Adds CUDA-specific versions to the list of allowed version numbers"
allowed_versions = tuple(module_versions)
allowed_versions += tuple(f"{v}+cu116" for v in module_versions)
allowed_versions += tuple(f"{v}+cu117" for v in module_versions)
allowed_versions += tuple(f"{v}+rocm5.2" for v in module_versions)
allowed_versions += tuple(f"{v}+rocm5.4.2" for v in module_versions)
return allowed_versions
def is_amd_on_linux():
if os_name == "Linux":
try:
with open("/proc/bus/pci/devices", "r") as f:
device_info = f.read()
if "amdgpu" in device_info and "nvidia" not in device_info:
return True
except:
return False
return False
def fail(module_name):
print(
f"""Error installing {module_name}. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues
Thanks!"""
)
exit(1)
### start
init()
modules = sys.argv[1:]
missing_modules = []
for m in modules:
if pkgutil.find_loader(m) is None:
print('module', m, 'not found')
exit(1)

View File

@ -1,24 +0,0 @@
# Change listen_port if port 9000 is already in use on your system
# Set listen_to_network to true to make Easy Diffusion accessibble on your local network
net:
listen_port: 9000
listen_to_network: false
# Multi GPU setup
render_devices: auto
# Set open_browser_on_start to false to disable opening a new browser tab on each restart
ui:
open_browser_on_start: true
# set update_branch to main to use the stable version, or to beta to use the experimental
# beta version.
update_branch: main
# Set force_save_path to enforce an auto save path. Clients will not be able to change or
# disable auto save when this option is set. Please adapt the path in the examples to your
# needs.
# Windows:
# force_save_path: C:\\Easy Diffusion Images\\
# Linux:
# force_save_path: /data/easy-diffusion-images/

View File

@ -39,8 +39,6 @@ if [ "$0" == "bash" ]; then
export PYTHONPATH="$(pwd)/stable-diffusion/env/lib/python3.8/site-packages"
fi
export PYTHONNOUSERSITE=y
which python
python --version

View File

@ -15,9 +15,9 @@ fail() {
Error downloading Stable Diffusion UI. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting
2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks!
@ -28,12 +28,5 @@ EOF
}
filesize() {
case "$(uname -s)" in
Linux*) stat -c "%s" $1;;
Darwin*) /usr/bin/stat -f "%z" $1;;
*) echo "Unknown OS: $OS_NAME! This script runs only on Linux or Mac" && exit
esac
}

View File

@ -1,53 +0,0 @@
import os
import argparse
import sys
import shutil
# The config file is in the same directory as this script
config_directory = os.path.dirname(__file__)
config_yaml = os.path.join(config_directory, "..", "config.yaml")
config_json = os.path.join(config_directory, "config.json")
parser = argparse.ArgumentParser(description='Get values from config file')
parser.add_argument('--default', dest='default', action='store',
help='default value, to be used if the setting is not defined in the config file')
parser.add_argument('key', metavar='key', nargs='+',
help='config key to return')
args = parser.parse_args()
config = None
# migrate the old config yaml location
config_legacy_yaml = os.path.join(config_directory, "config.yaml")
if os.path.isfile(config_legacy_yaml):
shutil.move(config_legacy_yaml, config_yaml)
if os.path.isfile(config_yaml):
from ruamel.yaml import YAML
yaml = YAML(typ='safe')
with open(config_yaml, 'r') as configfile:
try:
config = yaml.load(configfile)
except Exception as e:
print(e, file=sys.stderr)
elif os.path.isfile(config_json):
import json
with open(config_json, 'r') as configfile:
try:
config = json.load(configfile)
except Exception as e:
print(e, file=sys.stderr)
if config is None:
config = {}
for k in args.key:
if k in config:
config = config[k]
else:
if args.default != None:
print(args.default)
exit()
print(config)

View File

@ -1,6 +1,6 @@
@echo off
@echo. & echo "Easy Diffusion - v3" & echo.
@echo. & echo "Stable Diffusion UI - v2" & echo.
set PATH=C:\Windows\System32;%PATH%
@ -8,20 +8,6 @@ if exist "scripts\config.bat" (
@call scripts\config.bat
)
if exist "scripts\user_config.bat" (
@call scripts\user_config.bat
)
if exist "stable-diffusion\env" (
@set PYTHONPATH=%PYTHONPATH%;%cd%\stable-diffusion\env\lib\site-packages
)
if exist "scripts\get_config.py" (
@FOR /F "tokens=* USEBACKQ" %%F IN (`python scripts\get_config.py --default=main update_branch`) DO (
@SET update_branch=%%F
)
)
if "%update_branch%"=="" (
set update_branch=main
)
@ -42,25 +28,23 @@ if "%update_branch%"=="" (
@>nul findstr /m "sd_ui_git_cloned" scripts\install_status.txt
@if "%ERRORLEVEL%" EQU "0" (
@echo "Easy Diffusion's git repository was already installed. Updating from %update_branch%.."
@echo "Stable Diffusion UI's git repository was already installed. Updating from %update_branch%.."
@cd sd-ui-files
@call git add -A .
@call git stash
@call git reset --hard
@call git -c advice.detachedHead=false checkout "%update_branch%"
@call git pull
@cd ..
) else (
@echo. & echo "Downloading Easy Diffusion..." & echo.
@echo. & echo "Downloading Stable Diffusion UI.." & echo.
@echo "Using the %update_branch% channel" & echo.
@call git clone -b "%update_branch%" https://github.com/easydiffusion/easydiffusion.git sd-ui-files && (
@call git clone -b "%update_branch%" https://github.com/cmdr2/stable-diffusion-ui.git sd-ui-files && (
@echo sd_ui_git_cloned >> scripts\install_status.txt
) || (
@echo "Error downloading Easy Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues" & echo "Thanks!"
@echo "Error downloading Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
@exit /b
)
@ -68,9 +52,8 @@ if "%update_branch%"=="" (
@xcopy sd-ui-files\ui ui /s /i /Y /q
@copy sd-ui-files\scripts\on_sd_start.bat scripts\ /Y
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
@copy sd-ui-files\scripts\config.yaml.sample scripts\ /Y
@copy "sd-ui-files\scripts\Start Stable Diffusion UI.cmd" . /Y
@copy "sd-ui-files\scripts\Developer Console.cmd" . /Y

View File

@ -2,45 +2,31 @@
source ./scripts/functions.sh
printf "\n\nEasy Diffusion - v3\n\n"
export PYTHONNOUSERSITE=y
printf "\n\nStable Diffusion UI\n\n"
if [ -f "scripts/config.sh" ]; then
source scripts/config.sh
fi
if [ -f "scripts/user_config.sh" ]; then
source scripts/user_config.sh
fi
export PYTHONPATH=$(pwd)/installer_files/env/lib/python3.8/site-packages:$(pwd)/stable-diffusion/env/lib/python3.8/site-packages
if [ -f "scripts/get_config.py" ]; then
export update_branch="$( python scripts/get_config.py --default=main update_branch )"
fi
if [ "$update_branch" == "" ]; then
export update_branch="main"
fi
if [ -f "scripts/install_status.txt" ] && [ `grep -c sd_ui_git_cloned scripts/install_status.txt` -gt "0" ]; then
echo "Easy Diffusion's git repository was already installed. Updating from $update_branch.."
echo "Stable Diffusion UI's git repository was already installed. Updating from $update_branch.."
cd sd-ui-files
git add -A .
git stash
git reset --hard
git -c advice.detachedHead=false checkout "$update_branch"
git pull
cd ..
else
printf "\n\nDownloading Easy Diffusion..\n\n"
printf "\n\nDownloading Stable Diffusion UI..\n\n"
printf "Using the $update_branch channel\n\n"
if git clone -b "$update_branch" https://github.com/easydiffusion/easydiffusion.git sd-ui-files ; then
if git clone -b "$update_branch" https://github.com/cmdr2/stable-diffusion-ui.git sd-ui-files ; then
echo sd_ui_git_cloned >> scripts/install_status.txt
else
fail "git clone failed"
@ -52,10 +38,9 @@ cp -Rf sd-ui-files/ui .
cp sd-ui-files/scripts/on_sd_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
cp sd-ui-files/scripts/config.yaml.sample scripts/
cp sd-ui-files/scripts/start.sh .
cp sd-ui-files/scripts/developer_console.sh .
cp sd-ui-files/scripts/functions.sh scripts/
exec ./scripts/on_sd_start.sh
./scripts/on_sd_start.sh
read -p "Press any key to continue"

View File

@ -4,12 +4,11 @@
@REM Note to self: Please rewrite this in Python. For the sake of your own sanity.
@copy sd-ui-files\scripts\on_env_start.bat scripts\ /Y
@copy sd-ui-files\scripts\bootstrap.bat scripts\ /Y
@copy sd-ui-files\scripts\check_modules.py scripts\ /Y
@copy sd-ui-files\scripts\get_config.py scripts\ /Y
@copy sd-ui-files\scripts\config.yaml.sample scripts\ /Y
if exist "%cd%\profile" (
set HF_HOME=%cd%\profile\.cache\huggingface
set USERPROFILE=%cd%\profile
)
@rem set the correct installer path (current vs legacy)
@ -27,7 +26,7 @@ if exist "%cd%\stable-diffusion\env" (
@rem activate the installer env
call conda activate
@if "%ERRORLEVEL%" NEQ "0" (
@echo. & echo "Error activating conda for Easy Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues" & echo "Thanks!" & echo.
@echo. & echo "Error activating conda for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
@ -35,6 +34,8 @@ call conda activate
@REM remove the old version of the dev console script, if it's still present
if exist "Open Developer Console.cmd" del "Open Developer Console.cmd"
@call python -c "import os; import shutil; frm = 'sd-ui-files\\ui\\hotfix\\9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
@rem create the stable-diffusion folder, to work with legacy installations
if not exist "stable-diffusion" mkdir stable-diffusion
cd stable-diffusion
@ -48,28 +49,112 @@ if exist "env" (
if exist src rename src src-old
if exist ldm rename ldm ldm-old
if not exist "..\models\stable-diffusion" mkdir "..\models\stable-diffusion"
if not exist "..\models\gfpgan" mkdir "..\models\gfpgan"
if not exist "..\models\realesrgan" mkdir "..\models\realesrgan"
if not exist "..\models\vae" mkdir "..\models\vae"
if not exist "%INSTALL_ENV_DIR%\DLLs\libssl-1_1-x64.dll" copy "%INSTALL_ENV_DIR%\Library\bin\libssl-1_1-x64.dll" "%INSTALL_ENV_DIR%\DLLs\"
if not exist "%INSTALL_ENV_DIR%\DLLs\libcrypto-1_1-x64.dll" copy "%INSTALL_ENV_DIR%\Library\bin\libcrypto-1_1-x64.dll" "%INSTALL_ENV_DIR%\DLLs\"
@rem migrate the legacy models to the correct path (if already downloaded)
if exist "sd-v1-4.ckpt" move sd-v1-4.ckpt ..\models\stable-diffusion\
if exist "custom-model.ckpt" move custom-model.ckpt ..\models\stable-diffusion\
if exist "GFPGANv1.3.pth" move GFPGANv1.3.pth ..\models\gfpgan\
if exist "RealESRGAN_x4plus.pth" move RealESRGAN_x4plus.pth ..\models\realesrgan\
if exist "RealESRGAN_x4plus_anime_6B.pth" move RealESRGAN_x4plus_anime_6B.pth ..\models\realesrgan\
@rem install torch and torchvision
call python ..\scripts\check_modules.py torch torchvision
if "%ERRORLEVEL%" EQU "0" (
echo "torch and torchvision have already been installed."
) else (
echo "Installing torch and torchvision.."
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call pip install --upgrade torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 || (
echo "Error installing torch. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
@rem install/upgrade sdkit
call python ..\scripts\check_modules.py sdkit sdkit.models ldm transformers numpy antlr4 gfpgan realesrgan
if "%ERRORLEVEL%" EQU "0" (
echo "sdkit is already installed."
@rem skip sdkit upgrade if in developer-mode
if not exist "..\src\sdkit" (
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call pip install --upgrade sdkit -q || (
echo "Error updating sdkit"
)
)
) else (
echo "Installing sdkit: https://pypi.org/project/sdkit/"
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call pip install sdkit || (
echo "Error installing sdkit. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
call python -c "from importlib.metadata import version; print('sdkit version:', version('sdkit'))"
@rem upgrade stable-diffusion-sdkit
call pip install --upgrade stable-diffusion-sdkit -q || (
echo "Error updating stable-diffusion-sdkit"
)
call python -c "from importlib.metadata import version; print('stable-diffusion version:', version('stable-diffusion-sdkit'))"
@rem install rich
call python ..\scripts\check_modules.py rich
if "%ERRORLEVEL%" EQU "0" (
echo "rich has already been installed."
) else (
echo "Installing rich.."
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call pip install rich || (
echo "Error installing rich. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
@rem install or upgrade the required modules
set PATH=C:\Windows\System32;%PATH%
@REM prevent from using packages from the user's home directory, to avoid conflicts
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
call python ..\scripts\check_modules.py uvicorn fastapi
@if "%ERRORLEVEL%" EQU "0" (
echo "Packages necessary for Stable Diffusion UI were already installed"
) else (
@echo. & echo "Downloading packages necessary for Stable Diffusion UI.." & echo.
@rem Download the required packages
call python ..\scripts\check_modules.py
if "%ERRORLEVEL%" NEQ "0" (
pause
exit /b
set PYTHONNOUSERSITE=1
set PYTHONPATH=%INSTALL_ENV_DIR%\lib\site-packages
@call conda install -c conda-forge -y uvicorn fastapi || (
echo "Error installing the packages necessary for Stable Diffusion UI. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!"
pause
exit /b
)
)
call WHERE uvicorn > .tmp
@>nul findstr /m "uvicorn" .tmp
@if "%ERRORLEVEL%" NEQ "0" (
@echo. & echo "UI packages not found! Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues" & echo "Thanks!" & echo.
@echo. & echo "UI packages not found! Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
@ -79,13 +164,169 @@ call WHERE uvicorn > .tmp
@echo conda_sd_ui_deps_installed >> ..\scripts\install_status.txt
)
@if exist "..\models\stable-diffusion\sd-v1-4.ckpt" (
for %%I in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zI" EQU "4265380512" (
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the HuggingFace 4 GB Model."
) else (
for %%J in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zJ" EQU "7703807346" (
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the HuggingFace 7 GB Model."
) else (
for %%K in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zK" EQU "7703810927" (
echo "Data files (weights) necessary for Stable Diffusion were already downloaded. Using the Waifu Model."
) else (
echo. & echo "The model file present at models\stable-diffusion\sd-v1-4.ckpt is invalid. It is only %%~zK bytes in size. Re-downloading.." & echo.
del "..\models\stable-diffusion\sd-v1-4.ckpt"
)
)
)
)
@if not exist "..\models\stable-diffusion\sd-v1-4.ckpt" (
@echo. & echo "Downloading data files (weights) for Stable Diffusion.." & echo.
@call curl -L -k https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt > ..\models\stable-diffusion\sd-v1-4.ckpt
@if exist "..\models\stable-diffusion\sd-v1-4.ckpt" (
for %%I in ("..\models\stable-diffusion\sd-v1-4.ckpt") do if "%%~zI" NEQ "4265380512" (
echo. & echo "Error: The downloaded model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for Stable Diffusion. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "..\models\gfpgan\GFPGANv1.3.pth" (
for %%I in ("..\models\gfpgan\GFPGANv1.3.pth") do if "%%~zI" EQU "348632874" (
echo "Data files (weights) necessary for GFPGAN (Face Correction) were already downloaded"
) else (
echo. & echo "The GFPGAN model file present at models\gfpgan\GFPGANv1.3.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "..\models\gfpgan\GFPGANv1.3.pth"
)
)
@if not exist "..\models\gfpgan\GFPGANv1.3.pth" (
@echo. & echo "Downloading data files (weights) for GFPGAN (Face Correction).." & echo.
@call curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > ..\models\gfpgan\GFPGANv1.3.pth
@if exist "..\models\gfpgan\GFPGANv1.3.pth" (
for %%I in ("..\models\gfpgan\GFPGANv1.3.pth") do if "%%~zI" NEQ "348632874" (
echo. & echo "Error: The downloaded GFPGAN model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for GFPGAN (Face Correction). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "..\models\realesrgan\RealESRGAN_x4plus.pth" (
for %%I in ("..\models\realesrgan\RealESRGAN_x4plus.pth") do if "%%~zI" EQU "67040989" (
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus were already downloaded"
) else (
echo. & echo "The RealESRGAN model file present at models\realesrgan\RealESRGAN_x4plus.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "..\models\realesrgan\RealESRGAN_x4plus.pth"
)
)
@if not exist "..\models\realesrgan\RealESRGAN_x4plus.pth" (
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.." & echo.
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > ..\models\realesrgan\RealESRGAN_x4plus.pth
@if exist "..\models\realesrgan\RealESRGAN_x4plus.pth" (
for %%I in ("..\models\realesrgan\RealESRGAN_x4plus.pth") do if "%%~zI" NEQ "67040989" (
echo. & echo "Error: The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" (
for %%I in ("..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" EQU "17938799" (
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus_anime were already downloaded"
) else (
echo. & echo "The RealESRGAN model file present at models\realesrgan\RealESRGAN_x4plus_anime_6B.pth is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth"
)
)
@if not exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" (
@echo. & echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.." & echo.
@call curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > ..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth
@if exist "..\models\realesrgan\RealESRGAN_x4plus_anime_6B.pth" (
for %%I in ("RealESRGAN_x4plus_anime_6B.pth") do if "%%~zI" NEQ "17938799" (
echo. & echo "Error: The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime. Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" EQU "334695179" (
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
) else (
echo. & echo "The default VAE (sd-vae-ft-mse-original) file present at models\vae\vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only %%~zI bytes in size. Re-downloading.." & echo.
del "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt"
)
)
@if not exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
@echo. & echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).." & echo.
@call curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt
@if exist "..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt" (
for %%I in ("..\models\vae\vae-ft-mse-840000-ema-pruned.ckpt") do if "%%~zI" NEQ "334695179" (
echo. & echo "Error: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: %%~zI" & echo.
echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
) else (
@echo. & echo "Error downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:" & echo " 1. Run this installer again." & echo " 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" & echo " 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB" & echo " 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues" & echo "Thanks!" & echo.
pause
exit /b
)
)
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
@echo sd_weights_downloaded >> ..\scripts\install_status.txt
@echo sd_install_complete >> ..\scripts\install_status.txt
)
@echo. & echo "Easy Diffusion installation complete! Starting the server!" & echo.
@echo. & echo "Stable Diffusion is ready!" & echo.
@set SD_DIR=%cd%
@ -97,28 +338,14 @@ call python --version
@cd ..
@set SD_UI_PATH=%cd%\ui
@FOR /F "tokens=* USEBACKQ" %%F IN (`python scripts\get_config.py --default=9000 net listen_port`) DO (
@SET ED_BIND_PORT=%%F
)
@FOR /F "tokens=* USEBACKQ" %%F IN (`python scripts\get_config.py --default=False net listen_to_network`) DO (
if "%%F" EQU "True" (
@FOR /F "tokens=* USEBACKQ" %%G IN (`python scripts\get_config.py --default=0.0.0.0 net bind_ip`) DO (
@SET ED_BIND_IP=%%G
)
) else (
@SET ED_BIND_IP=127.0.0.1
)
)
@cd stable-diffusion
@rem set any overrides
set HF_HUB_DISABLE_SYMLINKS_WARNING=true
@python -m uvicorn main:server_api --app-dir "%SD_UI_PATH%" --port %ED_BIND_PORT% --host %ED_BIND_IP% --log-level error
@if NOT DEFINED SD_UI_BIND_PORT set SD_UI_BIND_PORT=9000
@if NOT DEFINED SD_UI_BIND_IP set SD_UI_BIND_IP=0.0.0.0
@uvicorn main:server_api --app-dir "%SD_UI_PATH%" --port %SD_UI_BIND_PORT% --host %SD_UI_BIND_IP% --log-level error
@pause

View File

@ -1,13 +1,10 @@
#!/bin/bash
cp sd-ui-files/scripts/functions.sh scripts/
source ./scripts/functions.sh
cp sd-ui-files/scripts/on_env_start.sh scripts/
cp sd-ui-files/scripts/bootstrap.sh scripts/
cp sd-ui-files/scripts/check_modules.py scripts/
cp sd-ui-files/scripts/get_config.py scripts/
cp sd-ui-files/scripts/config.yaml.sample scripts/
source ./scripts/functions.sh
# activate the installer env
CONDA_BASEPATH=$(conda info --base)
@ -20,6 +17,11 @@ if [ -e "open_dev_console.sh" ]; then
rm "open_dev_console.sh"
fi
python -c "import os; import shutil; frm = 'sd-ui-files/ui/hotfix/9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'; dst = os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'transformers', '9c24e6cd9f499d02c4f21a033736dabd365962dc80fe3aeb57a8f85ea45a20a3.26fead7ea4f0f843f6eb4055dfd25693f1a71f3c6871b184042d4b126244e142'); shutil.copyfile(frm, dst) if os.path.exists(dst) else print(''); print('Hotfixed broken JSON file from OpenAI');"
# Caution, this file will make your eyes and brain bleed. It's such an unholy mess.
# Note to self: Please rewrite this in Python. For the sake of your own sanity.
# set the correct installer path (current vs legacy)
if [ -e "installer_files/env" ]; then
export INSTALL_ENV_DIR="$(pwd)/installer_files/env"
@ -41,14 +43,236 @@ fi
if [ -e "src" ]; then mv src src-old; fi
if [ -e "ldm" ]; then mv ldm ldm-old; fi
# Download the required packages
if ! python ../scripts/check_modules.py; then
read -p "Press any key to continue"
exit 1
mkdir -p "../models/stable-diffusion"
mkdir -p "../models/gfpgan"
mkdir -p "../models/realesrgan"
mkdir -p "../models/vae"
# migrate the legacy models to the correct path (if already downloaded)
if [ -e "sd-v1-4.ckpt" ]; then mv sd-v1-4.ckpt ../models/stable-diffusion/; fi
if [ -e "custom-model.ckpt" ]; then mv custom-model.ckpt ../models/stable-diffusion/; fi
if [ -e "GFPGANv1.3.pth" ]; then mv GFPGANv1.3.pth ../models/gfpgan/; fi
if [ -e "RealESRGAN_x4plus.pth" ]; then mv RealESRGAN_x4plus.pth ../models/realesrgan/; fi
if [ -e "RealESRGAN_x4plus_anime_6B.pth" ]; then mv RealESRGAN_x4plus_anime_6B.pth ../models/realesrgan/; fi
# install torch and torchvision
if python ../scripts/check_modules.py torch torchvision; then
echo "torch and torchvision have already been installed."
else
echo "Installing torch and torchvision.."
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if pip install --upgrade torch torchvision --extra-index-url https://download.pytorch.org/whl/cu116 ; then
echo "Installed."
else
fail "torch install failed"
fi
fi
if ! command -v uvicorn &> /dev/null; then
fail "UI packages not found!"
# install/upgrade sdkit
if python ../scripts/check_modules.py sdkit sdkit.models ldm transformers numpy antlr4 gfpgan realesrgan ; then
echo "sdkit is already installed."
# skip sdkit upgrade if in developer-mode
if [ ! -e "../src/sdkit" ]; then
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
pip install --upgrade sdkit -q
fi
else
echo "Installing sdkit: https://pypi.org/project/sdkit/"
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if pip install sdkit ; then
echo "Installed."
else
fail "sdkit install failed"
fi
fi
python -c "from importlib.metadata import version; print('sdkit version:', version('sdkit'))"
# upgrade stable-diffusion-sdkit
pip install --upgrade stable-diffusion-sdkit -q
python -c "from importlib.metadata import version; print('stable-diffusion version:', version('stable-diffusion-sdkit'))"
# install rich
if python ../scripts/check_modules.py rich; then
echo "rich has already been installed."
else
echo "Installing rich.."
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if pip install rich ; then
echo "Installed."
else
fail "Install failed for rich"
fi
fi
if python ../scripts/check_modules.py uvicorn fastapi ; then
echo "Packages necessary for Stable Diffusion UI were already installed"
else
printf "\n\nDownloading packages necessary for Stable Diffusion UI..\n\n"
export PYTHONNOUSERSITE=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
if conda install -c conda-forge -y uvicorn fastapi ; then
echo "Installed. Testing.."
else
fail "'conda install uvicorn' failed"
fi
if ! command -v uvicorn &> /dev/null; then
fail "UI packages not found!"
fi
fi
if [ -f "../models/stable-diffusion/sd-v1-4.ckpt" ]; then
model_size=`find "../models/stable-diffusion/sd-v1-4.ckpt" -printf "%s"`
if [ "$model_size" -eq "4265380512" ] || [ "$model_size" -eq "7703807346" ] || [ "$model_size" -eq "7703810927" ]; then
echo "Data files (weights) necessary for Stable Diffusion were already downloaded"
else
printf "\n\nThe model file present at models/stable-diffusion/sd-v1-4.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
rm ../models/stable-diffusion/sd-v1-4.ckpt
fi
fi
if [ ! -f "../models/stable-diffusion/sd-v1-4.ckpt" ]; then
echo "Downloading data files (weights) for Stable Diffusion.."
curl -L -k https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt > ../models/stable-diffusion/sd-v1-4.ckpt
if [ -f "../models/stable-diffusion/sd-v1-4.ckpt" ]; then
model_size=`find "../models/stable-diffusion/sd-v1-4.ckpt" -printf "%s"`
if [ ! "$model_size" == "4265380512" ]; then
fail "The downloaded model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for Stable Diffusion"
fi
fi
if [ -f "../models/gfpgan/GFPGANv1.3.pth" ]; then
model_size=`find "../models/gfpgan/GFPGANv1.3.pth" -printf "%s"`
if [ "$model_size" -eq "348632874" ]; then
echo "Data files (weights) necessary for GFPGAN (Face Correction) were already downloaded"
else
printf "\n\nThe model file present at models/gfpgan/GFPGANv1.3.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
rm ../models/gfpgan/GFPGANv1.3.pth
fi
fi
if [ ! -f "../models/gfpgan/GFPGANv1.3.pth" ]; then
echo "Downloading data files (weights) for GFPGAN (Face Correction).."
curl -L -k https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth > ../models/gfpgan/GFPGANv1.3.pth
if [ -f "../models/gfpgan/GFPGANv1.3.pth" ]; then
model_size=`find "../models/gfpgan/GFPGANv1.3.pth" -printf "%s"`
if [ ! "$model_size" -eq "348632874" ]; then
fail "The downloaded GFPGAN model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for GFPGAN (Face Correction)."
fi
fi
if [ -f "../models/realesrgan/RealESRGAN_x4plus.pth" ]; then
model_size=`find "../models/realesrgan/RealESRGAN_x4plus.pth" -printf "%s"`
if [ "$model_size" -eq "67040989" ]; then
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus were already downloaded"
else
printf "\n\nThe model file present at models/realesrgan/RealESRGAN_x4plus.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
rm ../models/realesrgan/RealESRGAN_x4plus.pth
fi
fi
if [ ! -f "../models/realesrgan/RealESRGAN_x4plus.pth" ]; then
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus.."
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth > ../models/realesrgan/RealESRGAN_x4plus.pth
if [ -f "../models/realesrgan/RealESRGAN_x4plus.pth" ]; then
model_size=`find "../models/realesrgan/RealESRGAN_x4plus.pth" -printf "%s"`
if [ ! "$model_size" -eq "67040989" ]; then
fail "The downloaded ESRGAN x4plus model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus"
fi
fi
if [ -f "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" ]; then
model_size=`find "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
if [ "$model_size" -eq "17938799" ]; then
echo "Data files (weights) necessary for ESRGAN (Resolution Upscaling) x4plus_anime were already downloaded"
else
printf "\n\nThe model file present at models/realesrgan/RealESRGAN_x4plus_anime_6B.pth is invalid. It is only $model_size bytes in size. Re-downloading.."
rm ../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth
fi
fi
if [ ! -f "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" ]; then
echo "Downloading data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime.."
curl -L -k https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth > ../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth
if [ -f "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" ]; then
model_size=`find "../models/realesrgan/RealESRGAN_x4plus_anime_6B.pth" -printf "%s"`
if [ ! "$model_size" -eq "17938799" ]; then
fail "The downloaded ESRGAN x4plus_anime model file was invalid! Bytes downloaded: $model_size"
fi
else
fail "Error downloading the data files (weights) for ESRGAN (Resolution Upscaling) x4plus_anime."
fi
fi
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
if [ "$model_size" -eq "334695179" ]; then
echo "Data files (weights) necessary for the default VAE (sd-vae-ft-mse-original) were already downloaded"
else
printf "\n\nThe model file present at models/vae/vae-ft-mse-840000-ema-pruned.ckpt is invalid. It is only $model_size bytes in size. Re-downloading.."
rm ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
fi
fi
if [ ! -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
echo "Downloading data files (weights) for the default VAE (sd-vae-ft-mse-original).."
curl -L -k https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt > ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt
if [ -f "../models/vae/vae-ft-mse-840000-ema-pruned.ckpt" ]; then
model_size=`find ../models/vae/vae-ft-mse-840000-ema-pruned.ckpt -printf "%s"`
if [ ! "$model_size" -eq "334695179" ]; then
printf "\n\nError: The downloaded default VAE (sd-vae-ft-mse-original) file was invalid! Bytes downloaded: $model_size\n\n"
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
read -p "Press any key to continue"
exit
fi
else
printf "\n\nError downloading the data files (weights) for the default VAE (sd-vae-ft-mse-original). Sorry about that, please try to:\n 1. Run this installer again.\n 2. If that doesn't fix it, please try the common troubleshooting steps at https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting\n 3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB\n 4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues\nThanks!\n\n"
read -p "Press any key to continue"
exit
fi
fi
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
@ -56,11 +280,10 @@ if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
echo sd_install_complete >> ../scripts/install_status.txt
fi
printf "\n\nEasy Diffusion installation complete, starting the server!\n\n"
printf "\n\nStable Diffusion is ready!\n\n"
SD_PATH=`pwd`
export PYTORCH_ENABLE_MPS_FALLBACK=1
export PYTHONPATH="$INSTALL_ENV_DIR/lib/python3.8/site-packages"
echo "PYTHONPATH=$PYTHONPATH"
@ -69,17 +292,8 @@ python --version
cd ..
export SD_UI_PATH=`pwd`/ui
export ED_BIND_PORT="$( python scripts/get_config.py --default=9000 net listen_port )"
case "$( python scripts/get_config.py --default=False net listen_to_network )" in
"True")
export ED_BIND_IP=$( python scripts/get_config.py --default=0.0.0.0 net bind_ip)
;;
"False")
export ED_BIND_IP=127.0.0.1
;;
esac
cd stable-diffusion
uvicorn main:server_api --app-dir "$SD_UI_PATH" --port "$ED_BIND_PORT" --host "$ED_BIND_IP" --log-level error
uvicorn main:server_api --app-dir "$SD_UI_PATH" --port ${SD_UI_BIND_PORT:-9000} --host ${SD_UI_BIND_IP:-0.0.0.0} --log-level error
read -p "Press any key to continue"

View File

@ -2,25 +2,6 @@
cd "$(dirname "${BASH_SOURCE[0]}")"
if [ -f "on_sd_start.bat" ]; then
echo ================================================================================
echo
echo !!!! WARNING !!!!
echo
echo It looks like you\'re trying to run the installation script from a source code
echo download. This will not work.
echo
echo Recommended: Please close this window and download the installer from
echo https://stable-diffusion-ui.github.io/docs/installation/
echo
echo ================================================================================
echo
read
exit 1
fi
unset PYTHONHOME
# set legacy installer's PATH, if it exists
if [ -e "installer" ]; then export PATH="$(pwd)/installer/bin:$PATH"; fi

View File

@ -1,287 +1,152 @@
import json
import logging
import os
import shutil
import socket
import sys
import json
import traceback
import copy
from ruamel.yaml import YAML
import logging
from rich.logging import RichHandler
import urllib
import warnings
from sdkit.utils import log as sdkit_log # hack, so we can overwrite the log config
from easydiffusion import task_manager
from easydiffusion.utils import log
from rich.logging import RichHandler
from rich.console import Console
from rich.panel import Panel
from sdkit.utils import log as sdkit_log # hack, so we can overwrite the log config
# Remove all handlers associated with the root logger object.
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
LOG_FORMAT = "%(asctime)s.%(msecs)03d %(levelname)s %(threadName)s %(message)s"
LOG_FORMAT = '%(asctime)s.%(msecs)03d %(levelname)s %(threadName)s %(message)s'
logging.basicConfig(
level=logging.INFO,
format=LOG_FORMAT,
datefmt="%X",
handlers=[RichHandler(markup=True, rich_tracebacks=False, show_time=False, show_level=False)],
level=logging.INFO,
format=LOG_FORMAT,
datefmt="%X",
handlers=[RichHandler(markup=True, rich_tracebacks=True, show_time=False, show_level=False)]
)
SD_DIR = os.getcwd()
ROOT_DIR = os.path.abspath(os.path.join(SD_DIR, ".."))
SD_UI_DIR = os.getenv("SD_UI_PATH", None)
CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, "..", "scripts"))
MODELS_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "models"))
BUCKET_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "bucket"))
USER_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "plugins"))
CORE_PLUGINS_DIR = os.path.abspath(os.path.join(SD_UI_DIR, "plugins"))
USER_UI_PLUGINS_DIR = os.path.join(USER_PLUGINS_DIR, "ui")
CORE_UI_PLUGINS_DIR = os.path.join(CORE_PLUGINS_DIR, "ui")
USER_SERVER_PLUGINS_DIR = os.path.join(USER_PLUGINS_DIR, "server")
UI_PLUGINS_SOURCES = ((CORE_UI_PLUGINS_DIR, "core"), (USER_UI_PLUGINS_DIR, "user"))
SD_UI_DIR = os.getenv('SD_UI_PATH', None)
sys.path.append(os.path.dirname(SD_UI_DIR))
sys.path.append(USER_SERVER_PLUGINS_DIR)
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
PRESERVE_CONFIG_VARS = ["FORCE_FULL_PRECISION"]
TASK_TTL = 15 * 60 # Discard last session's task timeout
CONFIG_DIR = os.path.abspath(os.path.join(SD_UI_DIR, '..', 'scripts'))
MODELS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'models'))
USER_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_DIR, '..', 'plugins', 'ui'))
CORE_UI_PLUGINS_DIR = os.path.abspath(os.path.join(SD_UI_DIR, 'plugins', 'ui'))
UI_PLUGINS_SOURCES = ((CORE_UI_PLUGINS_DIR, 'core'), (USER_UI_PLUGINS_DIR, 'user'))
OUTPUT_DIRNAME = "Stable Diffusion UI" # in the user's home folder
TASK_TTL = 15 * 60 # Discard last session's task timeout
APP_CONFIG_DEFAULTS = {
# auto: selects the cuda device with the most free memory, cuda: use the currently active cuda device.
"render_devices": "auto", # valid entries: 'auto', 'cpu' or 'cuda:N' (where N is a GPU index)
"update_branch": "main",
"ui": {
"open_browser_on_start": True,
'render_devices': 'auto', # valid entries: 'auto', 'cpu' or 'cuda:N' (where N is a GPU index)
'update_branch': 'main',
'ui': {
'open_browser_on_start': True,
},
"test_diffusers": True,
}
IMAGE_EXTENSIONS = [
".png",
".apng",
".jpg",
".jpeg",
".jfif",
".pjpeg",
".pjp",
".jxl",
".gif",
".webp",
".avif",
".svg",
]
CUSTOM_MODIFIERS_DIR = os.path.abspath(os.path.join(SD_DIR, "..", "modifiers"))
CUSTOM_MODIFIERS_PORTRAIT_EXTENSIONS = [
".portrait",
"_portrait",
" portrait",
"-portrait",
]
CUSTOM_MODIFIERS_LANDSCAPE_EXTENSIONS = [
".landscape",
"_landscape",
" landscape",
"-landscape",
]
def init():
os.makedirs(USER_UI_PLUGINS_DIR, exist_ok=True)
os.makedirs(USER_SERVER_PLUGINS_DIR, exist_ok=True)
# https://pytorch.org/docs/stable/storage.html
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
def init_render_threads():
load_server_plugins()
update_render_threads()
def getConfig(default_val=APP_CONFIG_DEFAULTS):
config_yaml_path = os.path.join(CONFIG_DIR, "..", "config.yaml")
# migrate the old config yaml location
config_legacy_yaml = os.path.join(CONFIG_DIR, "config.yaml")
if os.path.isfile(config_legacy_yaml):
shutil.move(config_legacy_yaml, config_yaml_path)
def set_config_on_startup(config: dict):
if getConfig.__test_diffusers_on_startup is None:
getConfig.__test_diffusers_on_startup = config.get("test_diffusers", True)
config["config_on_startup"] = {"test_diffusers": getConfig.__test_diffusers_on_startup}
if os.path.isfile(config_yaml_path):
try:
yaml = YAML()
with open(config_yaml_path, "r", encoding="utf-8") as f:
config = yaml.load(f)
if "net" not in config:
config["net"] = {}
if os.getenv("SD_UI_BIND_PORT") is not None:
config["net"]["listen_port"] = int(os.getenv("SD_UI_BIND_PORT"))
else:
config["net"]["listen_port"] = 9000
if os.getenv("SD_UI_BIND_IP") is not None:
config["net"]["listen_to_network"] = os.getenv("SD_UI_BIND_IP") == "0.0.0.0"
else:
config["net"]["listen_to_network"] = True
set_config_on_startup(config)
try:
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
if not os.path.exists(config_json_path):
return default_val
with open(config_json_path, 'r', encoding='utf-8') as f:
config = json.load(f)
if 'net' not in config:
config['net'] = {}
if os.getenv('SD_UI_BIND_PORT') is not None:
config['net']['listen_port'] = int(os.getenv('SD_UI_BIND_PORT'))
if os.getenv('SD_UI_BIND_IP') is not None:
config['net']['listen_to_network'] = (os.getenv('SD_UI_BIND_IP') == '0.0.0.0')
return config
except Exception as e:
log.warn(traceback.format_exc())
set_config_on_startup(default_val)
return default_val
else:
try:
config_json_path = os.path.join(CONFIG_DIR, "config.json")
if not os.path.exists(config_json_path):
return default_val
log.info("Converting old json config file to yaml")
with open(config_json_path, "r", encoding="utf-8") as f:
config = json.load(f)
# Save config in new format
setConfig(config)
with open(config_json_path + ".txt", "w") as f:
f.write("Moved to config.yaml inside the Easy Diffusion folder. You can open it in any text editor.")
os.remove(config_json_path)
return getConfig(default_val)
except Exception as e:
log.warn(traceback.format_exc())
set_config_on_startup(default_val)
return default_val
getConfig.__test_diffusers_on_startup = None
except Exception as e:
log.warn(traceback.format_exc())
return default_val
def setConfig(config):
try: # config.yaml
config_yaml_path = os.path.join(CONFIG_DIR, "..", "config.yaml")
yaml = YAML()
if not hasattr(config, "_yaml_comment"):
config_yaml_sample_path = os.path.join(CONFIG_DIR, "config.yaml.sample")
if os.path.exists(config_yaml_sample_path):
with open(config_yaml_sample_path, "r", encoding="utf-8") as f:
commented_config = yaml.load(f)
for k in config:
commented_config[k] = config[k]
config = commented_config
yaml.indent(mapping=2, sequence=4, offset=2)
if "config_on_startup" in config:
del config["config_on_startup"]
try:
f = open(config_yaml_path + ".tmp", "w", encoding="utf-8")
yaml.dump(config, f)
finally:
f.close() # do this explicitly to avoid NUL bytes (possible rare bug when using 'with')
# verify that the new file is valid, and only then overwrite the old config file
# helps prevent the rare NUL bytes error from corrupting the config file
yaml = YAML()
with open(config_yaml_path + ".tmp", "r", encoding="utf-8") as f:
yaml.load(f)
shutil.move(config_yaml_path + ".tmp", config_yaml_path)
try: # config.json
config_json_path = os.path.join(CONFIG_DIR, 'config.json')
with open(config_json_path, 'w', encoding='utf-8') as f:
json.dump(config, f)
except:
log.error(traceback.format_exc())
try: # config.bat
config_bat_path = os.path.join(CONFIG_DIR, 'config.bat')
config_bat = []
if 'update_branch' in config:
config_bat.append(f"@set update_branch={config['update_branch']}")
config_bat.append(f"@set SD_UI_BIND_PORT={config['net']['listen_port']}")
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
config_bat.append(f"@set SD_UI_BIND_IP={bind_ip}")
if len(config_bat) > 0:
with open(config_bat_path, 'w', encoding='utf-8') as f:
f.write('\r\n'.join(config_bat))
except:
log.error(traceback.format_exc())
try: # config.sh
config_sh_path = os.path.join(CONFIG_DIR, 'config.sh')
config_sh = ['#!/bin/bash']
if 'update_branch' in config:
config_sh.append(f"export update_branch={config['update_branch']}")
config_sh.append(f"export SD_UI_BIND_PORT={config['net']['listen_port']}")
bind_ip = '0.0.0.0' if config['net']['listen_to_network'] else '127.0.0.1'
config_sh.append(f"export SD_UI_BIND_IP={bind_ip}")
if len(config_sh) > 1:
with open(config_sh_path, 'w', encoding='utf-8') as f:
f.write('\n'.join(config_sh))
except:
log.error(traceback.format_exc())
def save_to_config(ckpt_model_name, vae_model_name, hypernetwork_model_name, vram_usage_level):
config = getConfig()
if "model" not in config:
config["model"] = {}
if 'model' not in config:
config['model'] = {}
config["model"]["stable-diffusion"] = ckpt_model_name
config["model"]["vae"] = vae_model_name
config["model"]["hypernetwork"] = hypernetwork_model_name
config['model']['stable-diffusion'] = ckpt_model_name
config['model']['vae'] = vae_model_name
config['model']['hypernetwork'] = hypernetwork_model_name
if vae_model_name is None or vae_model_name == "":
del config["model"]["vae"]
del config['model']['vae']
if hypernetwork_model_name is None or hypernetwork_model_name == "":
del config["model"]["hypernetwork"]
del config['model']['hypernetwork']
config["vram_usage_level"] = vram_usage_level
config['vram_usage_level'] = vram_usage_level
setConfig(config)
def update_render_threads():
config = getConfig()
render_devices = config.get("render_devices", "auto")
active_devices = task_manager.get_devices()["active"].keys()
render_devices = config.get('render_devices', 'auto')
active_devices = task_manager.get_devices()['active'].keys()
log.debug(f"requesting for render_devices: {render_devices}")
log.debug(f'requesting for render_devices: {render_devices}')
task_manager.update_render_threads(render_devices, active_devices)
def getUIPlugins():
plugins = []
file_names = set()
for plugins_dir, dir_prefix in UI_PLUGINS_SOURCES:
for file in os.listdir(plugins_dir):
if file.endswith(".plugin.js") and file not in file_names:
plugins.append(f"/plugins/{dir_prefix}/{file}")
file_names.add(file)
if file.endswith('.plugin.js'):
plugins.append(f'/plugins/{dir_prefix}/{file}')
return plugins
def load_server_plugins():
if not os.path.exists(USER_SERVER_PLUGINS_DIR):
return
import importlib
def load_plugin(file):
mod_path = file.replace(".py", "")
return importlib.import_module(mod_path)
def apply_plugin(file, plugin):
if hasattr(plugin, "get_cond_and_uncond"):
import sdkit.generate.image_generator
sdkit.generate.image_generator.get_cond_and_uncond = plugin.get_cond_and_uncond
log.info(f"Overridden get_cond_and_uncond with the one in the server plugin: {file}")
for file in os.listdir(USER_SERVER_PLUGINS_DIR):
file_path = os.path.join(USER_SERVER_PLUGINS_DIR, file)
if (not os.path.isdir(file_path) and not file_path.endswith("_plugin.py")) or (
os.path.isdir(file_path) and not file_path.endswith("_plugin")
):
continue
try:
log.info(f"Loading server plugin: {file}")
mod = load_plugin(file)
log.info(f"Applying server plugin: {file}")
apply_plugin(file, mod)
except:
log.warn(f"Error while loading a server plugin")
log.warn(traceback.format_exc())
def getIPConfig():
try:
ips = socket.gethostbyname_ex(socket.gethostname())
@ -291,155 +156,10 @@ def getIPConfig():
log.exception(e)
return []
def open_browser():
config = getConfig()
ui = config.get("ui", {})
net = config.get("net", {})
port = net.get("listen_port", 9000)
if ui.get("open_browser_on_start", True):
import webbrowser
log.info("Opening browser..")
webbrowser.open(f"http://localhost:{port}")
Console().print(
Panel(
"\n"
+ "[white]Easy Diffusion is ready to serve requests.\n\n"
+ "A new browser tab should have been opened by now.\n"
+ f"If not, please open your web browser and navigate to [bold yellow underline]http://localhost:{port}/\n",
title="Easy Diffusion is ready",
style="bold yellow on blue",
)
)
def fail_and_die(fail_type: str, data: str):
suggestions = [
"Run this installer again.",
"If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB",
"If that doesn't solve the problem, please file an issue at https://github.com/easydiffusion/easydiffusion/issues",
]
if fail_type == "model_download":
fail_label = f"Error downloading the {data} model"
suggestions.insert(
1,
"If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.",
)
else:
fail_label = "Error while installing Easy Diffusion"
msg = [f"{fail_label}. Sorry about that, please try to:"]
for i, suggestion in enumerate(suggestions):
msg.append(f"{i+1}. {suggestion}")
msg.append("Thanks!")
print("\n".join(msg))
exit(1)
def get_image_modifiers():
modifiers_json_path = os.path.join(SD_UI_DIR, "modifiers.json")
modifier_categories = {}
original_category_order = []
with open(modifiers_json_path, "r", encoding="utf-8") as f:
modifiers_file = json.load(f)
# The trailing slash is needed to support symlinks
if not os.path.isdir(f"{CUSTOM_MODIFIERS_DIR}/"):
return modifiers_file
# convert modifiers from a list of objects to a dict of dicts
for category_item in modifiers_file:
category_name = category_item["category"]
original_category_order.append(category_name)
category = {}
for modifier_item in category_item["modifiers"]:
modifier = {}
for preview_item in modifier_item["previews"]:
modifier[preview_item["name"]] = preview_item["path"]
category[modifier_item["modifier"]] = modifier
modifier_categories[category_name] = category
def scan_directory(directory_path: str, category_name="Modifiers"):
for entry in os.scandir(directory_path):
if entry.is_file():
file_extension = list(filter(lambda e: entry.name.endswith(e), IMAGE_EXTENSIONS))
if len(file_extension) == 0:
continue
modifier_name = entry.name[: -len(file_extension[0])]
modifier_path = f"custom/{entry.path[len(CUSTOM_MODIFIERS_DIR) + 1:]}"
# URL encode path segments
modifier_path = "/".join(
map(
lambda segment: urllib.parse.quote(segment),
modifier_path.split("/"),
)
)
is_portrait = True
is_landscape = True
portrait_extension = list(
filter(
lambda e: modifier_name.lower().endswith(e),
CUSTOM_MODIFIERS_PORTRAIT_EXTENSIONS,
)
)
landscape_extension = list(
filter(
lambda e: modifier_name.lower().endswith(e),
CUSTOM_MODIFIERS_LANDSCAPE_EXTENSIONS,
)
)
if len(portrait_extension) > 0:
is_landscape = False
modifier_name = modifier_name[: -len(portrait_extension[0])]
elif len(landscape_extension) > 0:
is_portrait = False
modifier_name = modifier_name[: -len(landscape_extension[0])]
if category_name not in modifier_categories:
modifier_categories[category_name] = {}
category = modifier_categories[category_name]
if modifier_name not in category:
category[modifier_name] = {}
if is_portrait or "portrait" not in category[modifier_name]:
category[modifier_name]["portrait"] = modifier_path
if is_landscape or "landscape" not in category[modifier_name]:
category[modifier_name]["landscape"] = modifier_path
elif entry.is_dir():
scan_directory(
entry.path,
entry.name if directory_path == CUSTOM_MODIFIERS_DIR else f"{category_name}/{entry.name}",
)
scan_directory(CUSTOM_MODIFIERS_DIR)
custom_categories = sorted(
[cn for cn in modifier_categories.keys() if cn not in original_category_order],
key=str.casefold,
)
# convert the modifiers back into a list of objects
modifier_categories_list = []
for category_name in [*original_category_order, *custom_categories]:
category = {"category": category_name, "modifiers": []}
for modifier_name in sorted(modifier_categories[category_name].keys(), key=str.casefold):
modifier = {"modifier": modifier_name, "previews": []}
for preview_name, preview_path in modifier_categories[category_name][modifier_name].items():
modifier["previews"].append({"name": preview_name, "path": preview_path})
category["modifiers"].append(modifier)
modifier_categories_list.append(category)
return modifier_categories_list
ui = config.get('ui', {})
net = config.get('net', {'listen_port':9000})
port = net.get('listen_port', 9000)
if ui.get('open_browser_on_start', True):
import webbrowser; webbrowser.open(f"http://localhost:{port}")

View File

@ -1,102 +0,0 @@
from typing import List
from fastapi import Depends, FastAPI, HTTPException, Response, File
from sqlalchemy.orm import Session
from easydiffusion.easydb import crud, models, schemas
from easydiffusion.easydb.database import SessionLocal, engine
from requests.compat import urlparse
import base64, json
MIME_TYPES = {
"jpg": "image/jpeg",
"jpeg": "image/jpeg",
"gif": "image/gif",
"png": "image/png",
"webp": "image/webp",
"js": "text/javascript",
"htm": "text/html",
"html": "text/html",
"css": "text/css",
"json": "application/json",
"mjs": "application/json",
"yaml": "application/yaml",
"svg": "image/svg+xml",
"txt": "text/plain",
}
def init():
from easydiffusion.server import server_api
models.BucketBase.metadata.create_all(bind=engine)
# Dependency
def get_db():
db = SessionLocal()
try:
yield db
finally:
db.close()
@server_api.get("/bucket/{obj_path:path}")
def bucket_get_object(obj_path: str, db: Session = Depends(get_db)):
filename = get_filename_from_url(obj_path)
path = get_path_from_url(obj_path)
if filename==None:
bucket = crud.get_bucket_by_path(db, path=path)
if bucket == None:
raise HTTPException(status_code=404, detail="Bucket not found")
bucketfiles = db.query(models.BucketFile).with_entities(models.BucketFile.filename).filter(models.BucketFile.bucket_id == bucket.id).all()
bucketfiles = [ x.filename for x in bucketfiles ]
return bucketfiles
else:
bucket_id = crud.get_bucket_by_path(db, path).id
bucketfile = db.query(models.BucketFile).filter(models.BucketFile.bucket_id == bucket_id, models.BucketFile.filename == filename).first()
suffix = get_suffix_from_filename(filename)
return Response(content=bucketfile.data, media_type=MIME_TYPES.get(suffix, "application/octet-stream"))
@server_api.post("/bucket/{obj_path:path}")
def bucket_post_object(obj_path: str, file: bytes = File(), db: Session = Depends(get_db)):
filename = get_filename_from_url(obj_path)
path = get_path_from_url(obj_path)
bucket = crud.get_bucket_by_path(db, path)
if bucket == None:
bucket = crud.create_bucket(db=db, bucket=schemas.BucketCreate(path=path))
bucket_id = bucket.id
bucketfile = schemas.BucketFileCreate(filename=filename, data=file)
result = crud.create_bucketfile(db=db, bucketfile=bucketfile, bucket_id=bucket_id)
result.data = base64.encodestring(result.data)
return result
@server_api.post("/buckets/{bucket_id}/items/", response_model=schemas.BucketFile)
def create_bucketfile_in_bucket(
bucket_id: int, bucketfile: schemas.BucketFileCreate, db: Session = Depends(get_db)
):
bucketfile.data = base64.decodestring(bucketfile.data)
result = crud.create_bucketfile(db=db, bucketfile=bucketfile, bucket_id=bucket_id)
result.data = base64.encodestring(result.data)
return result
def get_filename_from_url(url):
path = urlparse(url).path
name = path[path.rfind('/')+1:]
return name or None
def get_path_from_url(url):
path = urlparse(url).path
path = path[0:path.rfind('/')]
return path or None
def get_suffix_from_filename(filename):
return filename[filename.rfind('.')+1:]

View File

@ -1,59 +1,49 @@
import os
import platform
import re
import traceback
import torch
import traceback
import re
from easydiffusion.utils import log
"""
'''
Set `FORCE_FULL_PRECISION` in the environment variables, or in `config.bat`/`config.sh` to set full precision (i.e. float32).
Otherwise the models will load at half-precision (i.e. float16).
Half-precision is fine most of the time. Full precision is only needed for working around GPU bugs (like NVIDIA 16xx GPUs).
"""
'''
COMPARABLE_GPU_PERCENTILE = (
0.65 # if a GPU's free_mem is within this % of the GPU with the most free_mem, it will be picked
)
COMPARABLE_GPU_PERCENTILE = 0.65 # if a GPU's free_mem is within this % of the GPU with the most free_mem, it will be picked
mem_free_threshold = 0
def get_device_delta(render_devices, active_devices):
"""
render_devices: 'cpu', or 'auto', or 'mps' or ['cuda:N'...]
active_devices: ['cpu', 'mps', 'cuda:N'...]
"""
'''
render_devices: 'cpu', or 'auto' or ['cuda:N'...]
active_devices: ['cpu', 'cuda:N'...]
'''
if render_devices in ("cpu", "auto", "mps"):
if render_devices in ('cpu', 'auto'):
render_devices = [render_devices]
elif render_devices is not None:
if isinstance(render_devices, str):
render_devices = [render_devices]
if isinstance(render_devices, list) and len(render_devices) > 0:
render_devices = list(filter(lambda x: x.startswith("cuda:") or x == "mps", render_devices))
render_devices = list(filter(lambda x: x.startswith('cuda:'), render_devices))
if len(render_devices) == 0:
raise Exception(
'Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "mps"} or {"render_devices": "auto"}'
)
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
render_devices = list(filter(lambda x: is_device_compatible(x), render_devices))
if len(render_devices) == 0:
raise Exception(
"Sorry, none of the render_devices configured in config.json are compatible with Stable Diffusion"
)
raise Exception('Sorry, none of the render_devices configured in config.json are compatible with Stable Diffusion')
else:
raise Exception(
'Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}'
)
raise Exception('Invalid render_devices value in config.json. Valid: {"render_devices": ["cuda:0", "cuda:1"...]}, or {"render_devices": "cpu"} or {"render_devices": "auto"}')
else:
render_devices = ["auto"]
render_devices = ['auto']
if "auto" in render_devices:
if 'auto' in render_devices:
render_devices = auto_pick_devices(active_devices)
if "cpu" in render_devices:
log.warn("WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!")
if 'cpu' in render_devices:
log.warn('WARNING: Could not find a compatible GPU. Using the CPU, but this will be very slow!')
active_devices = set(active_devices)
render_devices = set(render_devices)
@ -63,37 +53,19 @@ def get_device_delta(render_devices, active_devices):
return devices_to_start, devices_to_stop
def is_mps_available():
return (
platform.system() == "Darwin"
and hasattr(torch.backends, "mps")
and torch.backends.mps.is_available()
and torch.backends.mps.is_built()
)
def is_cuda_available():
return torch.cuda.is_available()
def auto_pick_devices(currently_active_devices):
global mem_free_threshold
if is_mps_available():
return ["mps"]
if not is_cuda_available():
return ["cpu"]
if not torch.cuda.is_available(): return ['cpu']
device_count = torch.cuda.device_count()
if device_count == 1:
return ["cuda:0"] if is_device_compatible("cuda:0") else ["cpu"]
return ['cuda:0'] if is_device_compatible('cuda:0') else ['cpu']
log.debug("Autoselecting GPU. Using most free memory.")
log.debug('Autoselecting GPU. Using most free memory.')
devices = []
for device in range(device_count):
device = f"cuda:{device}"
device = f'cuda:{device}'
if not is_device_compatible(device):
continue
@ -101,13 +73,11 @@ def auto_pick_devices(currently_active_devices):
mem_free /= float(10**9)
mem_total /= float(10**9)
device_name = torch.cuda.get_device_name(device)
log.debug(
f"{device} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb"
)
devices.append({"device": device, "device_name": device_name, "mem_free": mem_free})
log.debug(f'{device} detected: {device_name} - Memory (free/total): {round(mem_free, 2)}Gb / {round(mem_total, 2)}Gb')
devices.append({'device': device, 'device_name': device_name, 'mem_free': mem_free})
devices.sort(key=lambda x: x["mem_free"], reverse=True)
max_mem_free = devices[0]["mem_free"]
devices.sort(key=lambda x:x['mem_free'], reverse=True)
max_mem_free = devices[0]['mem_free']
curr_mem_free_threshold = COMPARABLE_GPU_PERCENTILE * max_mem_free
mem_free_threshold = max(curr_mem_free_threshold, mem_free_threshold)
@ -117,29 +87,23 @@ def auto_pick_devices(currently_active_devices):
# always be very low (since their VRAM contains the model).
# These already-running devices probably aren't terrible, since they were picked in the past.
# Worst case, the user can restart the program and that'll get rid of them.
devices = list(
filter(
(lambda x: x["mem_free"] > mem_free_threshold or x["device"] in currently_active_devices),
devices,
)
)
devices = list(map(lambda x: x["device"], devices))
devices = list(filter((lambda x: x['mem_free'] > mem_free_threshold or x['device'] in currently_active_devices), devices))
devices = list(map(lambda x: x['device'], devices))
return devices
def device_init(context, device):
"""
'''
This function assumes the 'device' has already been verified to be compatible.
`get_device_delta()` has already filtered out incompatible devices.
"""
'''
validate_device_id(device, log_prefix="device_init")
validate_device_id(device, log_prefix='device_init')
if "cuda" not in device:
context.device = device
if device == 'cpu':
context.device = 'cpu'
context.device_name = get_processor_name()
context.half_precision = False
log.debug(f"Render device available as {context.device_name}")
log.debug(f'Render device CPU available as {context.device_name}')
return
context.device_name = torch.cuda.get_device_name(device)
@ -147,105 +111,83 @@ def device_init(context, device):
# Force full precision on 1660 and 1650 NVIDIA cards to avoid creating green images
if needs_to_force_full_precision(context):
log.warn(f"forcing full precision on this GPU, to avoid green images. GPU detected: {context.device_name}")
log.warn(f'forcing full precision on this GPU, to avoid green images. GPU detected: {context.device_name}')
# Apply force_full_precision now before models are loaded.
context.half_precision = False
log.info(f'Setting {device} as active, with precision: {"half" if context.half_precision else "full"}')
torch.cuda.device(device)
return
def needs_to_force_full_precision(context):
if "FORCE_FULL_PRECISION" in os.environ:
if 'FORCE_FULL_PRECISION' in os.environ:
return True
device_name = context.device_name.lower()
return (
("nvidia" in device_name or "geforce" in device_name or "quadro" in device_name)
and (
" 1660" in device_name
or " 1650" in device_name
or " 1630" in device_name
or " t400" in device_name
or " t550" in device_name
or " t600" in device_name
or " t1000" in device_name
or " t1200" in device_name
or " t2000" in device_name
)
) or ("tesla k40m" in device_name)
return (('nvidia' in device_name or 'geforce' in device_name) and (' 1660' in device_name or ' 1650' in device_name or ' t400' in device_name or ' t550' in device_name or ' t1200' in device_name)) or ('Quadro T2000' in device_name)
def get_max_vram_usage_level(device):
if "cuda" in device:
if device != 'cpu':
_, mem_total = torch.cuda.mem_get_info(device)
else:
return "high"
mem_total /= float(10**9)
mem_total /= float(10**9)
if mem_total < 4.5:
return "low"
elif mem_total < 6.5:
return "balanced"
if mem_total < 4.5:
return 'low'
elif mem_total < 6.5:
return 'balanced'
return "high"
return 'high'
def validate_device_id(device, log_prefix=""):
def validate_device_id(device, log_prefix=''):
def is_valid():
if not isinstance(device, str):
return False
if device == "cpu" or device == "mps":
if device == 'cpu':
return True
if not device.startswith("cuda:") or not device[5:].isnumeric():
if not device.startswith('cuda:') or not device[5:].isnumeric():
return False
return True
if not is_valid():
raise EnvironmentError(
f"{log_prefix}: device id should be 'cpu', 'mps', or 'cuda:N' (where N is an integer index for the GPU). Got: {device}"
)
raise EnvironmentError(f"{log_prefix}: device id should be 'cpu', or 'cuda:N' (where N is an integer index for the GPU). Got: {device}")
def is_device_compatible(device):
"""
'''
Returns True/False, and prints any compatibility errors
"""
# static variable "history".
is_device_compatible.history = getattr(is_device_compatible, "history", {})
'''
# static variable "history".
is_device_compatible.history = getattr(is_device_compatible, 'history', {})
try:
validate_device_id(device, log_prefix="is_device_compatible")
validate_device_id(device, log_prefix='is_device_compatible')
except:
log.error(str(e))
return False
if device in ("cpu", "mps"):
return True
if device == 'cpu': return True
# Memory check
try:
_, mem_total = torch.cuda.mem_get_info(device)
mem_total /= float(10**9)
if mem_total < 1.9:
if mem_total < 3.0:
if is_device_compatible.history.get(device) == None:
log.warn(f"GPU {device} with less than 2 GB of VRAM is not compatible with Stable Diffusion")
is_device_compatible.history[device] = 1
log.warn(f'GPU {device} with less than 3 GB of VRAM is not compatible with Stable Diffusion')
is_device_compatible.history[device] = 1
return False
except RuntimeError as e:
log.error(str(e))
return False
return True
def get_processor_name():
try:
import subprocess
import platform, subprocess
if platform.system() == "Windows":
return platform.processor()
elif platform.system() == "Darwin":
os.environ["PATH"] = os.environ["PATH"] + os.pathsep + "/usr/sbin"
os.environ['PATH'] = os.environ['PATH'] + os.pathsep + '/usr/sbin'
command = "sysctl -n machdep.cpu.brand_string"
return subprocess.check_output(command, shell=True).decode().strip()
return subprocess.check_output(command).strip()
elif platform.system() == "Linux":
command = "cat /proc/cpuinfo"
all_info = subprocess.check_output(command, shell=True).decode().strip()

View File

@ -1,24 +0,0 @@
from sqlalchemy.orm import Session
from easydiffusion.easydb import models, schemas
def get_bucket_by_path(db: Session, path: str):
return db.query(models.Bucket).filter(models.Bucket.path == path).first()
def create_bucket(db: Session, bucket: schemas.BucketCreate):
db_bucket = models.Bucket(path=bucket.path)
db.add(db_bucket)
db.commit()
db.refresh(db_bucket)
return db_bucket
def create_bucketfile(db: Session, bucketfile: schemas.BucketFileCreate, bucket_id: int):
db_bucketfile = models.BucketFile(**bucketfile.dict(), bucket_id=bucket_id)
db.merge(db_bucketfile)
db.commit()
db_bucketfile = db.query(models.BucketFile).filter(models.BucketFile.bucket_id==bucket_id, models.BucketFile.filename==bucketfile.filename).first()
return db_bucketfile

View File

@ -1,14 +0,0 @@
import os
from easydiffusion import app
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
os.makedirs(app.BUCKET_DIR, exist_ok=True)
SQLALCHEMY_DATABASE_URL = "sqlite:///"+os.path.join(app.BUCKET_DIR, "bucket.db")
engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args={"check_same_thread": False})
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
BucketBase = declarative_base()

View File

@ -1,25 +0,0 @@
from sqlalchemy import Boolean, Column, ForeignKey, Integer, String, BLOB
from sqlalchemy.orm import relationship
from easydiffusion.easydb.database import BucketBase
class Bucket(BucketBase):
__tablename__ = "bucket"
id = Column(Integer, primary_key=True, index=True)
path = Column(String, unique=True, index=True)
bucketfiles = relationship("BucketFile", back_populates="bucket")
class BucketFile(BucketBase):
__tablename__ = "bucketfile"
filename = Column(String, index=True, primary_key=True)
bucket_id = Column(Integer, ForeignKey("bucket.id"), primary_key=True)
data = Column(BLOB, index=False)
bucket = relationship("Bucket", back_populates="bucketfiles")

View File

@ -1,36 +0,0 @@
from typing import List, Union
from pydantic import BaseModel
class BucketFileBase(BaseModel):
filename: str
data: bytes
class BucketFileCreate(BucketFileBase):
pass
class BucketFile(BucketFileBase):
bucket_id: int
class Config:
orm_mode = True
class BucketBase(BaseModel):
path: str
class BucketCreate(BucketBase):
pass
class Bucket(BucketBase):
id: int
bucketfiles: List[BucketFile] = []
class Config:
orm_mode = True

View File

@ -1,331 +1,175 @@
import os
import shutil
from glob import glob
import traceback
from typing import Union
from easydiffusion import app
from easydiffusion.types import ModelsData
from easydiffusion import app, device_manager
from easydiffusion.types import TaskData
from easydiffusion.utils import log
from sdkit import Context
from sdkit.models import load_model, scan_model, unload_model, download_model, get_model_info_from_db
from sdkit.models.model_loader.controlnet_filters import filters as cn_filters
from sdkit.utils import hash_file_quick
from sdkit.models.model_loader.embeddings import get_embedding_token
KNOWN_MODEL_TYPES = [
"stable-diffusion",
"vae",
"hypernetwork",
"gfpgan",
"realesrgan",
"lora",
"codeformer",
"embeddings",
"controlnet",
]
from sdkit import Context
from sdkit.models import load_model, unload_model, get_model_info_from_db, scan_model
from sdkit.utils import hash_file_quick
KNOWN_MODEL_TYPES = ['stable-diffusion', 'vae', 'hypernetwork', 'gfpgan', 'realesrgan']
MODEL_EXTENSIONS = {
"stable-diffusion": [".ckpt", ".safetensors"],
"vae": [".vae.pt", ".ckpt", ".safetensors"],
"hypernetwork": [".pt", ".safetensors"],
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors", ".pt"],
"codeformer": [".pth"],
"embeddings": [".pt", ".bin", ".safetensors"],
"controlnet": [".pth", ".safetensors"],
'stable-diffusion': ['.ckpt', '.safetensors'],
'vae': ['.vae.pt', '.ckpt', '.safetensors'],
'hypernetwork': ['.pt', '.safetensors'],
'gfpgan': ['.pth'],
'realesrgan': ['.pth'],
}
DEFAULT_MODELS = {
"stable-diffusion": [
{"file_name": "sd-v1-4.ckpt", "model_id": "1.4"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
'stable-diffusion': [ # needed to support the legacy installations
'custom-model', # only one custom model file was supported initially, creatively named 'custom-model'
'sd-v1-4', # Default fallback.
],
'gfpgan': ['GFPGANv1.3'],
'realesrgan': ['RealESRGAN_x4plus'],
}
MODELS_TO_LOAD_ON_START = ["stable-diffusion", "vae", "hypernetwork", "lora"]
MODELS_TO_LOAD_ON_START = ['stable-diffusion', 'vae', 'hypernetwork']
known_models = {}
def init():
make_model_folders()
migrate_legacy_model_location() # if necessary
download_default_models_if_necessary()
getModels() # run this once, to cache the picklescan results
def load_default_models(context: Context):
from easydiffusion import runtime
runtime.set_vram_optimizations(context)
set_vram_optimizations(context)
# init default model paths
for model_type in MODELS_TO_LOAD_ON_START:
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type, fail_if_not_found=False)
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type)
try:
load_model(
context,
model_type,
scan_model=context.model_paths[model_type] != None
and not context.model_paths[model_type].endswith(".safetensors"),
)
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
load_model(context, model_type)
except Exception as e:
log.error(f"[red]Error while loading {model_type} model: {context.model_paths[model_type]}[/red]")
if "DefaultCPUAllocator: not enough memory" in str(e):
log.error(
f"[red]Your PC is low on system RAM. Please add some virtual memory (or swap space) by following the instructions at this link: https://www.ibm.com/docs/en/opw/8.2.0?topic=tuning-optional-increasing-paging-file-size-windows-computers[/red]"
)
else:
log.exception(e)
del context.model_paths[model_type]
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
log.error(f'[red]Error while loading {model_type} model: {context.model_paths[model_type]}[/red]')
log.error(f'[red]Error: {e}[/red]')
log.error(f'[red]Consider to remove the model from the model folder.[red]')
def unload_all(context: Context):
for model_type in KNOWN_MODEL_TYPES:
unload_model(context, model_type)
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
def resolve_model_to_use(model_name: Union[str, list] = None, model_type: str = None, fail_if_not_found: bool = True):
model_names = model_name if isinstance(model_name, list) else [model_name]
model_paths = []
for m in model_names:
if model_type == "embeddings":
try:
resolve_model_to_use_single(m, model_type)
except FileNotFoundError: # try with spaces
m = m.replace("_", " ")
path = resolve_model_to_use_single(m, model_type, fail_if_not_found)
model_paths.append(path)
return model_paths[0] if len(model_paths) == 1 else model_paths
def resolve_model_to_use_single(model_name: str = None, model_type: str = None, fail_if_not_found: bool = True):
def resolve_model_to_use(model_name:str=None, model_type:str=None):
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
default_models = DEFAULT_MODELS.get(model_type, [])
config = app.getConfig()
model_dir = os.path.join(app.MODELS_DIR, model_type)
if not model_name: # When None try user configured model.
model_dirs = [os.path.join(app.MODELS_DIR, model_type), app.SD_DIR]
if not model_name: # When None try user configured model.
# config = getConfig()
if "model" in config and model_type in config["model"]:
model_name = config["model"][model_type]
if 'model' in config and model_type in config['model']:
model_name = config['model'][model_type]
if model_name:
# Check models directory
model_path = os.path.join(model_dir, model_name)
if os.path.exists(model_path):
return model_path
models_dir_path = os.path.join(app.MODELS_DIR, model_type, model_name)
for model_extension in model_extensions:
if os.path.exists(model_path + model_extension):
return model_path + model_extension
if os.path.exists(models_dir_path + model_extension):
return models_dir_path + model_extension
if os.path.exists(model_name + model_extension):
return os.path.abspath(model_name + model_extension)
# Default locations
if model_name in default_models:
default_model_path = os.path.join(app.SD_DIR, model_name)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
return default_model_path + model_extension
# Can't find requested model, check the default paths.
if model_type == "stable-diffusion" and not fail_if_not_found:
for default_model in default_models:
default_model_path = os.path.join(model_dir, default_model["file_name"])
if os.path.exists(default_model_path):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}. Using the default one: {default_model_path}"
)
return default_model_path
for default_model in default_models:
for model_dir in model_dirs:
default_model_path = os.path.join(model_dir, default_model)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
if model_name is not None:
log.warn(f'Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}')
return default_model_path + model_extension
if model_name and fail_if_not_found:
raise FileNotFoundError(
f"Could not find the desired model {model_name}! Is it present in the {model_dir} folder?"
)
return None
def reload_models_if_necessary(context: Context, models_data: ModelsData, models_to_force_reload: list = []):
models_to_reload = {
model_type: path
for model_type, path in models_data.model_paths.items()
if context.model_paths.get(model_type) != path or (path is not None and context.models.get(model_type) is None)
def reload_models_if_necessary(context: Context, task_data: TaskData):
model_paths_in_req = {
'stable-diffusion': task_data.use_stable_diffusion_model,
'vae': task_data.use_vae_model,
'hypernetwork': task_data.use_hypernetwork_model,
'gfpgan': task_data.use_face_correction,
'realesrgan': task_data.use_upscale,
}
models_to_reload = {model_type: path for model_type, path in model_paths_in_req.items() if context.model_paths.get(model_type) != path}
if models_data.model_paths.get("codeformer"):
if "realesrgan" not in models_to_reload and "realesrgan" not in context.models:
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
models_to_reload["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
elif "realesrgan" in models_to_reload and models_to_reload["realesrgan"] is None:
del models_to_reload["realesrgan"] # don't unload realesrgan
for model_type in models_to_force_reload:
if model_type not in models_data.model_paths:
continue
models_to_reload[model_type] = models_data.model_paths[model_type]
if set_vram_optimizations(context): # reload SD
models_to_reload['stable-diffusion'] = model_paths_in_req['stable-diffusion']
for model_type, model_path_in_req in models_to_reload.items():
context.model_paths[model_type] = model_path_in_req
action_fn = unload_model if context.model_paths[model_type] is None else load_model
extra_params = models_data.model_params.get(model_type, {})
try:
action_fn(context, model_type, scan_model=False, **extra_params) # we've scanned them already
if model_type in context.model_load_errors:
del context.model_load_errors[model_type]
except Exception as e:
log.exception(e)
if action_fn == load_model:
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
action_fn(context, model_type, scan_model=False) # we've scanned them already
def resolve_model_paths(task_data: TaskData):
task_data.use_stable_diffusion_model = resolve_model_to_use(task_data.use_stable_diffusion_model, model_type='stable-diffusion')
task_data.use_vae_model = resolve_model_to_use(task_data.use_vae_model, model_type='vae')
task_data.use_hypernetwork_model = resolve_model_to_use(task_data.use_hypernetwork_model, model_type='hypernetwork')
def resolve_model_paths(models_data: ModelsData):
model_paths = models_data.model_paths
for model_type in model_paths:
skip_models = cn_filters + ["latent_upscaler", "nsfw_checker"]
if model_type in skip_models: # doesn't use model paths
continue
if model_type == "codeformer":
download_if_necessary("codeformer", "codeformer.pth", "codeformer-0.1.0")
elif model_type == "controlnet":
model_id = model_paths[model_type]
model_info = get_model_info_from_db(model_type=model_type, model_id=model_id)
if model_info:
filename = model_info.get("url", "").split("/")[-1]
download_if_necessary("controlnet", filename, model_id, skip_if_others_exist=False)
if task_data.use_face_correction: task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, 'gfpgan')
if task_data.use_upscale: task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, 'realesrgan')
model_paths[model_type] = resolve_model_to_use(model_paths[model_type], model_type=model_type)
def set_vram_optimizations(context: Context):
config = app.getConfig()
max_usage_level = device_manager.get_max_vram_usage_level(context.device)
vram_usage_level = config.get('vram_usage_level', 'balanced')
def fail_if_models_did_not_load(context: Context):
for model_type in KNOWN_MODEL_TYPES:
if model_type in context.model_load_errors:
e = context.model_load_errors[model_type]
raise Exception(f"Could not load the {model_type} model! Reason: " + e)
v = {'low': 0, 'balanced': 1, 'high': 2}
if v[vram_usage_level] > v[max_usage_level]:
log.error(f'Requested GPU Memory Usage level ({vram_usage_level}) is higher than what is ' + \
f'possible ({max_usage_level}) on this device ({context.device}). Using "{max_usage_level}" instead')
vram_usage_level = max_usage_level
def download_default_models_if_necessary():
for model_type, models in DEFAULT_MODELS.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
app.fail_and_die(fail_type="model_download", data=model_type)
print(model_type, "model(s) found.")
def download_if_necessary(model_type: str, file_name: str, model_id: str, skip_if_others_exist=True):
model_path = os.path.join(app.MODELS_DIR, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type) and skip_if_others_exist
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=app.MODELS_DIR, download_config_if_available=False)
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in DEFAULT_MODELS.items():
for model in models:
file_name = model["file_name"]
legacy_path = os.path.join(app.SD_DIR, file_name)
if os.path.exists(legacy_path):
shutil.move(legacy_path, os.path.join(app.MODELS_DIR, model_type, file_name))
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{app.MODELS_DIR}/{model_type}/**/*{ext}", recursive=True)):
return True
if vram_usage_level != context.vram_usage_level:
context.vram_usage_level = vram_usage_level
return True
return False
def make_model_folders():
for model_type in KNOWN_MODEL_TYPES:
model_dir_path = os.path.join(app.MODELS_DIR, model_type)
os.makedirs(model_dir_path, exist_ok=True)
help_file_name = f"Place your {model_type} model files here.txt"
help_file_name = f'Place your {model_type} model files here.txt'
help_file_contents = f'Supported extensions: {" or ".join(MODEL_EXTENSIONS.get(model_type))}'
with open(os.path.join(model_dir_path, help_file_name), "w", encoding="utf-8") as f:
with open(os.path.join(model_dir_path, help_file_name), 'w', encoding='utf-8') as f:
f.write(help_file_contents)
def is_malicious_model(file_path):
try:
if file_path.endswith(".safetensors"):
return False
scan_result = scan_model(file_path)
if scan_result.issues_count > 0 or scan_result.infected_files > 0:
log.warn(
":warning: [bold red]Scan %s: %d scanned, %d issue, %d infected.[/bold red]"
% (
file_path,
scan_result.scanned_files,
scan_result.issues_count,
scan_result.infected_files,
)
)
log.warn(":warning: [bold red]Scan %s: %d scanned, %d issue, %d infected.[/bold red]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
return True
else:
log.debug(
"Scan %s: [green]%d scanned, %d issue, %d infected.[/green]"
% (
file_path,
scan_result.scanned_files,
scan_result.issues_count,
scan_result.infected_files,
)
)
log.debug("Scan %s: [green]%d scanned, %d issue, %d infected.[/green]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
return False
except Exception as e:
log.error(f"error while scanning: {file_path}, error: {e}")
log.error(f'error while scanning: {file_path}, error: {e}')
return False
def getModels(scan_for_malicious: bool = True):
def getModels():
models = {
"options": {
"stable-diffusion": [{"sd-v1-4": "SD 1.4"}],
"vae": [],
"hypernetwork": [],
"lora": [],
"codeformer": [{"codeformer": "CodeFormer"}],
"embeddings": [],
"controlnet": [
{"control_v11p_sd15_canny": "Canny (*)"},
{"control_v11p_sd15_openpose": "OpenPose (*)"},
{"control_v11p_sd15_normalbae": "Normal BAE (*)"},
{"control_v11f1p_sd15_depth": "Depth (*)"},
{"control_v11p_sd15_scribble": "Scribble"},
{"control_v11p_sd15_softedge": "Soft Edge"},
{"control_v11p_sd15_inpaint": "Inpaint"},
{"control_v11p_sd15_lineart": "Line Art"},
{"control_v11p_sd15s2_lineart_anime": "Line Art Anime"},
{"control_v11p_sd15_mlsd": "Straight Lines"},
{"control_v11p_sd15_seg": "Segment"},
{"control_v11e_sd15_shuffle": "Shuffle"},
{"control_v11f1e_sd15_tile": "Tile"},
],
'active': {
'stable-diffusion': 'sd-v1-4',
'vae': '',
'hypernetwork': '',
},
'options': {
'stable-diffusion': ['sd-v1-4'],
'vae': [],
'hypernetwork': [],
},
}
@ -333,51 +177,32 @@ def getModels(scan_for_malicious: bool = True):
class MaliciousModelException(Exception):
"Raised when picklescan reports a problem with a model"
pass
def scan_directory(directory, suffixes, directoriesFirst: bool = True, default_entries=[], nameFilter=None):
def scan_directory(directory, suffixes):
nonlocal models_scanned
tree = list(default_entries)
for entry in sorted(
os.scandir(directory),
key=lambda entry: (entry.is_file() == directoriesFirst, entry.name.lower()),
):
tree = []
for entry in os.scandir(directory):
if entry.is_file():
matching_suffix = list(filter(lambda s: entry.name.endswith(s), suffixes))
if len(matching_suffix) == 0:
continue
if len(matching_suffix) == 0: continue
matching_suffix = matching_suffix[0]
mtime = entry.stat().st_mtime
mod_time = known_models[entry.path] if entry.path in known_models else -1
if mod_time != mtime:
models_scanned += 1
if scan_for_malicious and is_malicious_model(entry.path):
if is_malicious_model(entry.path):
raise MaliciousModelException(entry.path)
if scan_for_malicious:
known_models[entry.path] = mtime
model_id = entry.name[: -len(matching_suffix)]
if callable(nameFilter):
model_id = nameFilter(model_id)
model_exists = False
for m in tree: # allows default "named" models, like CodeFormer and known ControlNet models
if (isinstance(m, str) and model_id == m) or (isinstance(m, dict) and model_id in m):
model_exists = True
break
if not model_exists:
tree.append(model_id)
known_models[entry.path] = mtime
tree.append(entry.name[:-len(matching_suffix)])
elif entry.is_dir():
scan = scan_directory(entry.path, suffixes, directoriesFirst=False, nameFilter=nameFilter)
scan=scan_directory(entry.path, suffixes)
if len(scan) != 0:
tree.append((entry.name, scan))
tree.append( (entry.name, scan ) )
return tree
def listModels(model_type, nameFilter=None):
def listModels(model_type):
nonlocal models_scanned
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
@ -386,25 +211,20 @@ def getModels(scan_for_malicious: bool = True):
os.makedirs(models_dir)
try:
default_tree = models["options"].get(model_type, [])
models["options"][model_type] = scan_directory(
models_dir, model_extensions, default_entries=default_tree, nameFilter=nameFilter
)
models['options'][model_type] = scan_directory(models_dir, model_extensions)
except MaliciousModelException as e:
models["scan-error"] = str(e)
models['scan-error'] = e
if scan_for_malicious:
log.info(f"[green]Scanning all model folders for models...[/]")
# custom models
listModels(model_type="stable-diffusion")
listModels(model_type="vae")
listModels(model_type="hypernetwork")
listModels(model_type="gfpgan")
listModels(model_type="lora")
listModels(model_type="embeddings", nameFilter=get_embedding_token)
listModels(model_type="controlnet")
listModels(model_type='stable-diffusion')
listModels(model_type='vae')
listModels(model_type='hypernetwork')
if scan_for_malicious and models_scanned > 0:
log.info(f"[green]Scanned {models_scanned} models. Nothing infected[/]")
if models_scanned > 0: log.info(f'[green]Scanned {models_scanned} models. Nothing infected[/]')
# legacy
custom_weight_path = os.path.join(app.SD_DIR, 'custom-model.ckpt')
if os.path.exists(custom_weight_path):
models['options']['stable-diffusion'].append('custom-model')
return models

View File

@ -1,102 +0,0 @@
import sys
import os
import platform
from importlib.metadata import version as pkg_version
from sdkit.utils import log
from easydiffusion import app
# future home of scripts/check_modules.py
manifest = {
"tensorrt": {
"install": [
"nvidia-cudnn --pre --extra-index-url=https://pypi.nvidia.com --trusted-host pypi.nvidia.com",
"tensorrt-libs --pre --extra-index-url=https://pypi.nvidia.com --trusted-host pypi.nvidia.com",
"tensorrt --pre --extra-index-url=https://pypi.nvidia.com --trusted-host pypi.nvidia.com",
],
"uninstall": ["tensorrt"],
# TODO also uninstall tensorrt-libs and nvidia-cudnn, but do it upon restarting (avoid 'file in use' error)
}
}
installing = []
# remove this once TRT releases on pypi
if platform.system() == "Windows":
trt_dir = os.path.join(app.ROOT_DIR, "tensorrt")
if os.path.exists(trt_dir) and os.path.isdir(trt_dir) and len(os.listdir(trt_dir)) > 0:
files = os.listdir(trt_dir)
packages = manifest["tensorrt"]["install"]
packages = tuple(p.replace("-", "_") for p in packages)
wheels = []
for p in packages:
p = p.split(" ")[0]
f = next((f for f in files if f.startswith(p) and f.endswith((".whl", ".tar.gz"))), None)
if f:
wheels.append(os.path.join(trt_dir, f))
manifest["tensorrt"]["install"] = wheels
def get_installed_packages() -> list:
return {module_name: version(module_name) for module_name in manifest if is_installed(module_name)}
def is_installed(module_name) -> bool:
return version(module_name) is not None
def install(module_name):
if is_installed(module_name):
log.info(f"{module_name} has already been installed!")
return
if module_name in installing:
log.info(f"{module_name} is already installing!")
return
if module_name not in manifest:
raise RuntimeError(f"Can't install unknown package: {module_name}!")
commands = manifest[module_name]["install"]
if module_name == "tensorrt":
commands += [
"protobuf==3.20.3 polygraphy==0.47.1 onnx==1.14.0 --extra-index-url=https://pypi.ngc.nvidia.com --trusted-host pypi.ngc.nvidia.com"
]
commands = [f"python -m pip install --upgrade {cmd}" for cmd in commands]
installing.append(module_name)
try:
for cmd in commands:
print(">", cmd)
if os.system(cmd) != 0:
raise RuntimeError(f"Error while running {cmd}. Please check the logs in the command-line.")
finally:
installing.remove(module_name)
def uninstall(module_name):
if not is_installed(module_name):
log.info(f"{module_name} hasn't been installed!")
return
if module_name not in manifest:
raise RuntimeError(f"Can't uninstall unknown package: {module_name}!")
commands = manifest[module_name]["uninstall"]
commands = [f"python -m pip uninstall -y {cmd}" for cmd in commands]
for cmd in commands:
print(">", cmd)
if os.system(cmd) != 0:
raise RuntimeError(f"Error while running {cmd}. Please check the logs in the command-line.")
def version(module_name: str) -> str:
try:
return pkg_version(module_name)
except:
return None

View File

@ -0,0 +1,134 @@
import queue
import time
import json
import pprint
from easydiffusion import device_manager
from easydiffusion.types import TaskData, Response, Image as ResponseImage, UserInitiatedStop, GenerateImageRequest
from easydiffusion.utils import get_printable_request, save_images_to_disk, log
from sdkit import Context
from sdkit.generate import generate_images
from sdkit.filter import apply_filters
from sdkit.utils import img_to_buffer, img_to_base64_str, latent_samples_to_images, gc
context = Context() # thread-local
'''
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
'''
def init(device):
'''
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
'''
context.stop_processing = False
context.temp_images = {}
context.partial_x_samples = None
device_manager.device_init(context, device)
def make_images(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback):
context.stop_processing = False
print_task_info(req, task_data)
images, seeds = make_images_internal(req, task_data, data_queue, task_temp_images, step_callback)
res = Response(req, task_data, images=construct_response(images, seeds, task_data, base_seed=req.seed))
res = res.json()
data_queue.put(json.dumps(res))
log.info('Task completed')
return res
def print_task_info(req: GenerateImageRequest, task_data: TaskData):
req_str = pprint.pformat(get_printable_request(req)).replace("[","\[")
task_str = pprint.pformat(task_data.dict()).replace("[","\[")
log.info(f'request: {req_str}')
log.info(f'task data: {task_str}')
def make_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback):
images, user_stopped = generate_images_internal(req, task_data, data_queue, task_temp_images, step_callback, task_data.stream_image_progress)
filtered_images = filter_images(task_data, images, user_stopped)
if task_data.save_to_disk_path is not None:
save_images_to_disk(images, filtered_images, req, task_data)
seeds = [*range(req.seed, req.seed + len(images))]
if task_data.show_only_filtered_image or filtered_images is images:
return filtered_images, seeds
else:
return images + filtered_images, seeds + seeds
def generate_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
context.temp_images.clear()
callback = make_step_callback(req, task_data, data_queue, task_temp_images, step_callback, stream_image_progress)
try:
images = generate_images(context, callback=callback, **req.dict())
user_stopped = False
except UserInitiatedStop:
images = []
user_stopped = True
if context.partial_x_samples is not None:
images = latent_samples_to_images(context, context.partial_x_samples)
context.partial_x_samples = None
finally:
gc(context)
return images, user_stopped
def filter_images(task_data: TaskData, images: list, user_stopped):
if user_stopped or (task_data.use_face_correction is None and task_data.use_upscale is None):
return images
filters_to_apply = []
if task_data.use_face_correction and 'gfpgan' in task_data.use_face_correction.lower(): filters_to_apply.append('gfpgan')
if task_data.use_upscale and 'realesrgan' in task_data.use_upscale.lower(): filters_to_apply.append('realesrgan')
return apply_filters(context, filters_to_apply, images, scale=task_data.upscale_amount)
def construct_response(images: list, seeds: list, task_data: TaskData, base_seed: int):
return [
ResponseImage(
data=img_to_base64_str(img, task_data.output_format, task_data.output_quality),
seed=seed,
) for img, seed in zip(images, seeds)
]
def make_step_callback(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength)
last_callback_time = -1
def update_temp_img(x_samples, task_temp_images: list):
partial_images = []
images = latent_samples_to_images(context, x_samples)
for i, img in enumerate(images):
buf = img_to_buffer(img, output_format='JPEG')
context.temp_images[f"{task_data.request_id}/{i}"] = buf
task_temp_images[i] = buf
partial_images.append({'path': f"/image/tmp/{task_data.request_id}/{i}"})
del images
return partial_images
def on_image_step(x_samples, i):
nonlocal last_callback_time
context.partial_x_samples = x_samples
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
last_callback_time = time.time()
progress = {"step": i, "step_time": step_time, "total_steps": n_steps}
if stream_image_progress and i % 5 == 0:
progress['output'] = update_temp_img(x_samples, task_temp_images)
data_queue.put(json.dumps(progress))
step_callback()
if context.stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
return on_image_step

View File

@ -1,51 +0,0 @@
"""
A runtime that runs on a specific device (in a thread).
It can run various tasks like image generation, image filtering, model merge etc by using that thread-local context.
This creates an `sdkit.Context` that's bound to the device specified while calling the `init()` function.
"""
from easydiffusion import device_manager
from easydiffusion.utils import log
from sdkit import Context
from sdkit.utils import get_device_usage
context = Context() # thread-local
"""
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
"""
def init(device):
"""
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
"""
context.stop_processing = False
context.temp_images = {}
context.partial_x_samples = None
context.model_load_errors = {}
context.enable_codeformer = True
from easydiffusion import app
app_config = app.getConfig()
context.test_diffusers = app_config.get("test_diffusers", True)
log.info("Device usage during initialization:")
get_device_usage(device, log_info=True, process_usage_only=False)
device_manager.device_init(context, device)
def set_vram_optimizations(context: Context):
from easydiffusion import app
config = app.getConfig()
vram_usage_level = config.get("vram_usage_level", "balanced")
if vram_usage_level != context.vram_usage_level:
context.vram_usage_level = vram_usage_level
return True
return False

View File

@ -2,479 +2,240 @@
Notes:
async endpoints always run on the main thread. Without they run on the thread pool.
"""
import datetime
import mimetypes
import os
import traceback
import datetime
from typing import List, Union
from easydiffusion import app, model_manager, task_manager, package_manager
from easydiffusion.tasks import RenderTask, FilterTask
from easydiffusion.types import (
GenerateImageRequest,
FilterImageRequest,
MergeRequest,
TaskData,
ModelsData,
OutputFormatData,
convert_legacy_render_req_to_new,
)
from easydiffusion.utils import log
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Extra
from starlette.responses import FileResponse, JSONResponse, StreamingResponse
from pycloudflared import try_cloudflare
from pydantic import BaseModel
log.info(f"started in {app.SD_DIR}")
log.info(f"started at {datetime.datetime.now():%x %X}")
from easydiffusion import app, model_manager, task_manager
from easydiffusion.types import TaskData, GenerateImageRequest, MergeRequest
from easydiffusion.utils import log
log.info(f'started in {app.SD_DIR}')
log.info(f'started at {datetime.datetime.now():%x %X}')
server_api = FastAPI()
NOCACHE_HEADERS = {
"Cache-Control": "no-cache, no-store, must-revalidate",
"Pragma": "no-cache",
"Expires": "0",
}
NOCACHE_HEADERS={"Cache-Control": "no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0"}
class NoCacheStaticFiles(StaticFiles):
def __init__(self, directory: str):
# follow_symlink is only available on fastapi >= 0.92.0
if os.path.islink(directory):
super().__init__(directory=os.path.realpath(directory))
else:
super().__init__(directory=directory)
def is_not_modified(self, response_headers, request_headers) -> bool:
if "content-type" in response_headers and (
"javascript" in response_headers["content-type"] or "css" in response_headers["content-type"]
):
if 'content-type' in response_headers and ('javascript' in response_headers['content-type'] or 'css' in response_headers['content-type']):
response_headers.update(NOCACHE_HEADERS)
return False
return super().is_not_modified(response_headers, request_headers)
class SetAppConfigRequest(BaseModel, extra=Extra.allow):
class SetAppConfigRequest(BaseModel):
update_branch: str = None
render_devices: Union[List[str], List[int], str, int] = None
model_vae: str = None
ui_open_browser_on_start: bool = None
listen_to_network: bool = None
listen_port: int = None
test_diffusers: bool = True
def init():
mimetypes.init()
mimetypes.add_type("text/css", ".css")
if os.path.isdir(app.CUSTOM_MODIFIERS_DIR):
server_api.mount(
"/media/modifier-thumbnails/custom",
NoCacheStaticFiles(directory=app.CUSTOM_MODIFIERS_DIR),
name="custom-thumbnails",
)
server_api.mount(
"/media",
NoCacheStaticFiles(directory=os.path.join(app.SD_UI_DIR, "media")),
name="media",
)
server_api.mount('/media', NoCacheStaticFiles(directory=os.path.join(app.SD_UI_DIR, 'media')), name="media")
for plugins_dir, dir_prefix in app.UI_PLUGINS_SOURCES:
server_api.mount(
f"/plugins/{dir_prefix}",
NoCacheStaticFiles(directory=plugins_dir),
name=f"plugins-{dir_prefix}",
)
server_api.mount(f'/plugins/{dir_prefix}', NoCacheStaticFiles(directory=plugins_dir), name=f"plugins-{dir_prefix}")
@server_api.post("/app_config")
async def set_app_config(req: SetAppConfigRequest):
@server_api.post('/app_config')
async def set_app_config(req : SetAppConfigRequest):
return set_app_config_internal(req)
@server_api.get("/get/{key:path}")
def read_web_data(key: str = None, scan_for_malicious: bool = True):
return read_web_data_internal(key, scan_for_malicious=scan_for_malicious)
@server_api.get('/get/{key:path}')
def read_web_data(key:str=None):
return read_web_data_internal(key)
@server_api.get("/ping") # Get server and optionally session status.
def ping(session_id: str = None):
@server_api.get('/ping') # Get server and optionally session status.
def ping(session_id:str=None):
return ping_internal(session_id)
@server_api.post("/render")
@server_api.post('/render')
def render(req: dict):
return render_internal(req)
@server_api.post("/filter")
def render(req: dict):
return filter_internal(req)
@server_api.post("/model/merge")
@server_api.post('/model/merge')
def model_merge(req: dict):
print(req)
return model_merge_internal(req)
@server_api.get("/image/stream/{task_id:int}")
def stream(task_id: int):
@server_api.get('/image/stream/{task_id:int}')
def stream(task_id:int):
return stream_internal(task_id)
@server_api.get("/image/stop")
@server_api.get('/image/stop')
def stop(task: int):
return stop_internal(task)
@server_api.get("/image/tmp/{task_id:int}/{img_id:int}")
@server_api.get('/image/tmp/{task_id:int}/{img_id:int}')
def get_image(task_id: int, img_id: int):
return get_image_internal(task_id, img_id)
@server_api.post("/tunnel/cloudflare/start")
def start_cloudflare_tunnel(req: dict):
return start_cloudflare_tunnel_internal(req)
@server_api.post("/tunnel/cloudflare/stop")
def stop_cloudflare_tunnel(req: dict):
return stop_cloudflare_tunnel_internal(req)
@server_api.post("/package/{package_name:str}")
def modify_package(package_name: str, req: dict):
return modify_package_internal(package_name, req)
@server_api.get("/sha256/{obj_path:path}")
def get_sha256(obj_path: str):
return get_sha256_internal(obj_path)
@server_api.get("/")
@server_api.get('/')
def read_root():
return FileResponse(os.path.join(app.SD_UI_DIR, "index.html"), headers=NOCACHE_HEADERS)
return FileResponse(os.path.join(app.SD_UI_DIR, 'index.html'), headers=NOCACHE_HEADERS)
@server_api.on_event("shutdown")
def shutdown_event(): # Signal render thread to close on shutdown
task_manager.current_state_error = SystemExit("Application shutting down.")
def shutdown_event(): # Signal render thread to close on shutdown
task_manager.current_state_error = SystemExit('Application shutting down.')
# API implementations
def set_app_config_internal(req: SetAppConfigRequest):
def set_app_config_internal(req : SetAppConfigRequest):
config = app.getConfig()
if req.update_branch is not None:
config["update_branch"] = req.update_branch
config['update_branch'] = req.update_branch
if req.render_devices is not None:
update_render_devices_in_config(config, req.render_devices)
if req.ui_open_browser_on_start is not None:
if "ui" not in config:
config["ui"] = {}
config["ui"]["open_browser_on_start"] = req.ui_open_browser_on_start
if 'ui' not in config:
config['ui'] = {}
config['ui']['open_browser_on_start'] = req.ui_open_browser_on_start
if req.listen_to_network is not None:
if "net" not in config:
config["net"] = {}
config["net"]["listen_to_network"] = bool(req.listen_to_network)
if 'net' not in config:
config['net'] = {}
config['net']['listen_to_network'] = bool(req.listen_to_network)
if req.listen_port is not None:
if "net" not in config:
config["net"] = {}
config["net"]["listen_port"] = int(req.listen_port)
config["test_diffusers"] = req.test_diffusers
for property, property_value in req.dict().items():
if property_value is not None and property not in req.__fields__:
config[property] = property_value
if 'net' not in config:
config['net'] = {}
config['net']['listen_port'] = int(req.listen_port)
try:
app.setConfig(config)
if req.render_devices:
app.update_render_threads()
return JSONResponse({"status": "OK"}, headers=NOCACHE_HEADERS)
return JSONResponse({'status': 'OK'}, headers=NOCACHE_HEADERS)
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def update_render_devices_in_config(config, render_devices):
if render_devices not in ("cpu", "auto") and not render_devices.startswith("cuda:"):
raise HTTPException(status_code=400, detail=f"Invalid render device requested: {render_devices}")
if render_devices not in ('cpu', 'auto') and not render_devices.startswith('cuda:'):
raise HTTPException(status_code=400, detail=f'Invalid render device requested: {render_devices}')
if render_devices.startswith("cuda:"):
render_devices = render_devices.split(",")
if render_devices.startswith('cuda:'):
render_devices = render_devices.split(',')
config["render_devices"] = render_devices
config['render_devices'] = render_devices
def read_web_data_internal(key: str = None, **kwargs):
if not key: # /get without parameters, stable-diffusion easter egg.
raise HTTPException(status_code=418, detail="StableDiffusion is drawing a teapot!") # HTTP418 I'm a teapot
elif key == "app_config":
def read_web_data_internal(key:str=None):
if not key: # /get without parameters, stable-diffusion easter egg.
raise HTTPException(status_code=418, detail="StableDiffusion is drawing a teapot!") # HTTP418 I'm a teapot
elif key == 'app_config':
return JSONResponse(app.getConfig(), headers=NOCACHE_HEADERS)
elif key == "system_info":
elif key == 'system_info':
config = app.getConfig()
output_dir = config.get("force_save_path", os.path.join(os.path.expanduser("~"), app.OUTPUT_DIRNAME))
system_info = {
"devices": task_manager.get_devices(),
"hosts": app.getIPConfig(),
"default_output_dir": output_dir,
"enforce_output_dir": ("force_save_path" in config),
'devices': task_manager.get_devices(),
'hosts': app.getIPConfig(),
'default_output_dir': os.path.join(os.path.expanduser("~"), app.OUTPUT_DIRNAME),
}
system_info["devices"]["config"] = config.get("render_devices", "auto")
system_info['devices']['config'] = config.get('render_devices', "auto")
return JSONResponse(system_info, headers=NOCACHE_HEADERS)
elif key == "models":
scan_for_malicious = kwargs.get("scan_for_malicious", True)
return JSONResponse(model_manager.getModels(scan_for_malicious), headers=NOCACHE_HEADERS)
elif key == "modifiers":
return JSONResponse(app.get_image_modifiers(), headers=NOCACHE_HEADERS)
elif key == "ui_plugins":
return JSONResponse(app.getUIPlugins(), headers=NOCACHE_HEADERS)
elif key == 'models':
return JSONResponse(model_manager.getModels(), headers=NOCACHE_HEADERS)
elif key == 'modifiers': return FileResponse(os.path.join(app.SD_UI_DIR, 'modifiers.json'), headers=NOCACHE_HEADERS)
elif key == 'ui_plugins': return JSONResponse(app.getUIPlugins(), headers=NOCACHE_HEADERS)
else:
raise HTTPException(status_code=404, detail=f"Request for unknown {key}") # HTTP404 Not Found
def ping_internal(session_id: str = None):
if task_manager.is_alive() <= 0: # Check that render threads are alive.
if task_manager.current_state_error:
raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
raise HTTPException(status_code=500, detail="Render thread is dead.")
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration):
raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
raise HTTPException(status_code=404, detail=f'Request for unknown {key}') # HTTP404 Not Found
def ping_internal(session_id:str=None):
if task_manager.is_alive() <= 0: # Check that render threads are alive.
if task_manager.current_state_error: raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
raise HTTPException(status_code=500, detail='Render thread is dead.')
if task_manager.current_state_error and not isinstance(task_manager.current_state_error, StopAsyncIteration): raise HTTPException(status_code=500, detail=str(task_manager.current_state_error))
# Alive
response = {"status": str(task_manager.current_state)}
response = {'status': str(task_manager.current_state)}
if session_id:
session = task_manager.get_cached_session(session_id, update_ttl=True)
response["tasks"] = {id(t): t.status for t in session.tasks}
response["devices"] = task_manager.get_devices()
response["packages_installed"] = package_manager.get_installed_packages()
response["packages_installing"] = package_manager.installing
if cloudflare.address != None:
response["cloudflare"] = cloudflare.address
response['tasks'] = {id(t): t.status for t in session.tasks}
response['devices'] = task_manager.get_devices()
return JSONResponse(response, headers=NOCACHE_HEADERS)
def render_internal(req: dict):
try:
req = convert_legacy_render_req_to_new(req)
# separate out the request data into rendering and task-specific data
render_req: GenerateImageRequest = GenerateImageRequest.parse_obj(req)
task_data: TaskData = TaskData.parse_obj(req)
models_data: ModelsData = ModelsData.parse_obj(req)
output_format: OutputFormatData = OutputFormatData.parse_obj(req)
# Overwrite user specified save path
config = app.getConfig()
if "force_save_path" in config:
task_data.save_to_disk_path = config["force_save_path"]
render_req.init_image_mask = req.get('mask') # hack: will rename this in the HTTP API in a future revision
render_req.init_image_mask = req.get("mask") # hack: will rename this in the HTTP API in a future revision
app.save_to_config(
models_data.model_paths.get("stable-diffusion"),
models_data.model_paths.get("vae"),
models_data.model_paths.get("hypernetwork"),
task_data.vram_usage_level,
)
app.save_to_config(task_data.use_stable_diffusion_model, task_data.use_vae_model, task_data.use_hypernetwork_model, task_data.vram_usage_level)
# enqueue the task
task = RenderTask(render_req, task_data, models_data, output_format)
return enqueue_task(task)
except HTTPException as e:
raise e
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def filter_internal(req: dict):
try:
session_id = req.get("session_id", "session")
filter_req: FilterImageRequest = FilterImageRequest.parse_obj(req)
models_data: ModelsData = ModelsData.parse_obj(req)
output_format: OutputFormatData = OutputFormatData.parse_obj(req)
# enqueue the task
task = FilterTask(filter_req, session_id, models_data, output_format)
return enqueue_task(task)
except HTTPException as e:
raise e
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def enqueue_task(task):
try:
task_manager.enqueue_task(task)
new_task = task_manager.render(render_req, task_data)
response = {
"status": str(task_manager.current_state),
"queue": len(task_manager.tasks_queue),
"stream": f"/image/stream/{task.id}",
"task": task.id,
'status': str(task_manager.current_state),
'queue': len(task_manager.tasks_queue),
'stream': f'/image/stream/{id(new_task)}',
'task': id(new_task)
}
return JSONResponse(response, headers=NOCACHE_HEADERS)
except ChildProcessError as e: # Render thread is dead
raise HTTPException(status_code=500, detail=f"Rendering thread has died.") # HTTP500 Internal Server Error
except ConnectionRefusedError as e: # Unstarted task pending limit reached, deny queueing too many.
raise HTTPException(status_code=503, detail=str(e)) # HTTP503 Service Unavailable
except ChildProcessError as e: # Render thread is dead
raise HTTPException(status_code=500, detail=f'Rendering thread has died.') # HTTP500 Internal Server Error
except ConnectionRefusedError as e: # Unstarted task pending limit reached, deny queueing too many.
raise HTTPException(status_code=503, detail=str(e)) # HTTP503 Service Unavailable
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def model_merge_internal(req: dict):
try:
from easydiffusion.utils.save_utils import filename_regex
from sdkit.train import merge_models
from easydiffusion.utils.save_utils import filename_regex
mergeReq: MergeRequest = MergeRequest.parse_obj(req)
merge_models(
model_manager.resolve_model_to_use(mergeReq.model0, "stable-diffusion"),
model_manager.resolve_model_to_use(mergeReq.model1, "stable-diffusion"),
mergeReq.ratio,
os.path.join(
app.MODELS_DIR,
"stable-diffusion",
filename_regex.sub("_", mergeReq.out_path),
),
mergeReq.use_fp16,
merge_models(model_manager.resolve_model_to_use(mergeReq.model0,'stable-diffusion'),
model_manager.resolve_model_to_use(mergeReq.model1,'stable-diffusion'),
mergeReq.ratio,
os.path.join(app.MODELS_DIR, 'stable-diffusion', filename_regex.sub('_', mergeReq.out_path)),
mergeReq.use_fp16
)
return JSONResponse({"status": "OK"}, headers=NOCACHE_HEADERS)
return JSONResponse({'status':'OK'}, headers=NOCACHE_HEADERS)
except Exception as e:
log.error(traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e))
def stream_internal(task_id: int):
# TODO Move to WebSockets ??
def stream_internal(task_id:int):
#TODO Move to WebSockets ??
task = task_manager.get_cached_task(task_id, update_ttl=True)
if not task:
raise HTTPException(status_code=404, detail=f"Request {task_id} not found.") # HTTP404 NotFound
# if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
if not task: raise HTTPException(status_code=404, detail=f'Request {task_id} not found.') # HTTP404 NotFound
#if (id(task) != task_id): raise HTTPException(status_code=409, detail=f'Wrong task id received. Expected:{id(task)}, Received:{task_id}') # HTTP409 Conflict
if task.buffer_queue.empty() and not task.lock.locked():
if task.response:
# log.info(f'Session {session_id} sending cached response')
#log.info(f'Session {session_id} sending cached response')
return JSONResponse(task.response, headers=NOCACHE_HEADERS)
raise HTTPException(status_code=425, detail="Too Early, task not started yet.") # HTTP425 Too Early
# log.info(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
return StreamingResponse(task.read_buffer_generator(), media_type="application/json")
raise HTTPException(status_code=425, detail='Too Early, task not started yet.') # HTTP425 Too Early
#log.info(f'Session {session_id} opened live render stream {id(task.buffer_queue)}')
return StreamingResponse(task.read_buffer_generator(), media_type='application/json')
def stop_internal(task: int):
if not task:
if (
task_manager.current_state == task_manager.ServerStates.Online
or task_manager.current_state == task_manager.ServerStates.Unavailable
):
raise HTTPException(status_code=409, detail="Not currently running any tasks.") # HTTP409 Conflict
task_manager.current_state_error = StopAsyncIteration("")
return {"OK"}
if task_manager.current_state == task_manager.ServerStates.Online or task_manager.current_state == task_manager.ServerStates.Unavailable:
raise HTTPException(status_code=409, detail='Not currently running any tasks.') # HTTP409 Conflict
task_manager.current_state_error = StopAsyncIteration('')
return {'OK'}
task_id = task
task = task_manager.get_cached_task(task_id, update_ttl=False)
if not task:
raise HTTPException(status_code=404, detail=f"Task {task_id} was not found.") # HTTP404 Not Found
if isinstance(task.error, StopAsyncIteration):
raise HTTPException(status_code=409, detail=f"Task {task_id} is already stopped.") # HTTP409 Conflict
task.error = StopAsyncIteration(f"Task {task_id} stop requested.")
return {"OK"}
if not task: raise HTTPException(status_code=404, detail=f'Task {task_id} was not found.') # HTTP404 Not Found
if isinstance(task.error, StopAsyncIteration): raise HTTPException(status_code=409, detail=f'Task {task_id} is already stopped.') # HTTP409 Conflict
task.error = StopAsyncIteration(f'Task {task_id} stop requested.')
return {'OK'}
def get_image_internal(task_id: int, img_id: int):
task = task_manager.get_cached_task(task_id, update_ttl=True)
if not task:
raise HTTPException(status_code=410, detail=f"Task {task_id} could not be found.") # HTTP404 NotFound
if not task.temp_images[img_id]:
raise HTTPException(status_code=425, detail="Too Early, task data is not available yet.") # HTTP425 Too Early
if not task: raise HTTPException(status_code=410, detail=f'Task {task_id} could not be found.') # HTTP404 NotFound
if not task.temp_images[img_id]: raise HTTPException(status_code=425, detail='Too Early, task data is not available yet.') # HTTP425 Too Early
try:
img_data = task.temp_images[img_id]
img_data.seek(0)
return StreamingResponse(img_data, media_type="image/jpeg")
return StreamingResponse(img_data, media_type='image/jpeg')
except KeyError as e:
raise HTTPException(status_code=500, detail=str(e))
# ---- Cloudflare Tunnel ----
class CloudflareTunnel:
def __init__(self):
config = app.getConfig()
self.urls = None
self.port = config.get("net", {}).get("listen_port")
def start(self):
if self.port:
self.urls = try_cloudflare(self.port)
def stop(self):
if self.urls:
try_cloudflare.terminate(self.port)
self.urls = None
@property
def address(self):
if self.urls:
return self.urls.tunnel
else:
return None
cloudflare = CloudflareTunnel()
def start_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.start()
log.info(f"- Started cloudflare tunnel. Using address: {cloudflare.address}")
return JSONResponse({"address": cloudflare.address})
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def stop_cloudflare_tunnel_internal(req: dict):
try:
cloudflare.stop()
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def modify_package_internal(package_name: str, req: dict):
try:
cmd = req["command"]
if cmd not in ("install", "uninstall"):
raise RuntimeError(f"Unknown command: {cmd}")
cmd = getattr(package_manager, cmd)
cmd(package_name)
return JSONResponse({"status": "OK"}, headers=NOCACHE_HEADERS)
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))
def get_sha256_internal(obj_path):
import hashlib
from easydiffusion.utils import sha256sum
path = obj_path.split("/")
type = path.pop(0)
try:
model_path = model_manager.resolve_model_to_use("/".join(path), type)
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=404)
try:
digest = sha256sum(model_path)
return {"digest": digest}
except Exception as e:
log.error(str(e))
log.error(traceback.format_exc())
return HTTPException(status_code=500, detail=str(e))

View File

@ -7,73 +7,81 @@ Notes:
import json
import traceback
TASK_TTL = 30 * 60 # seconds, Discard last session's task timeout
import queue
import threading
import time
import weakref
from typing import Any, Hashable
TASK_TTL = 15 * 60 # seconds, Discard last session's task timeout
import torch
from easydiffusion import device_manager
from easydiffusion.tasks import Task
from easydiffusion.utils import log
from sdkit.utils import gc
import queue, threading, time, weakref
from typing import Any, Hashable
THREAD_NAME_PREFIX = ""
ERR_LOCK_FAILED = " failed to acquire lock within timeout."
LOCK_TIMEOUT = 15 # Maximum locking time in seconds before failing a task.
from easydiffusion import device_manager
from easydiffusion.types import TaskData, GenerateImageRequest
from easydiffusion.utils import log
THREAD_NAME_PREFIX = ''
ERR_LOCK_FAILED = ' failed to acquire lock within timeout.'
LOCK_TIMEOUT = 15 # Maximum locking time in seconds before failing a task.
# It's better to get an exception than a deadlock... ALWAYS use timeout in critical paths.
DEVICE_START_TIMEOUT = 60 # seconds - Maximum time to wait for a render device to init.
MAX_OVERLOAD_ALLOWED_RATIO = 2 # i.e. 2x pending tasks compared to the number of render threads
class SymbolClass(type): # Print nicely formatted Symbol names.
def __repr__(self):
return self.__qualname__
def __str__(self):
return self.__name__
class Symbol(metaclass=SymbolClass):
pass
DEVICE_START_TIMEOUT = 60 # seconds - Maximum time to wait for a render device to init.
class SymbolClass(type): # Print nicely formatted Symbol names.
def __repr__(self): return self.__qualname__
def __str__(self): return self.__name__
class Symbol(metaclass=SymbolClass): pass
class ServerStates:
class Init(Symbol):
pass
class LoadingModel(Symbol):
pass
class Online(Symbol):
pass
class Rendering(Symbol):
pass
class Unavailable(Symbol):
pass
class Init(Symbol): pass
class LoadingModel(Symbol): pass
class Online(Symbol): pass
class Rendering(Symbol): pass
class Unavailable(Symbol): pass
class RenderTask(): # Task with output queue and completion lock.
def __init__(self, req: GenerateImageRequest, task_data: TaskData):
task_data.request_id = id(self)
self.render_request: GenerateImageRequest = req # Initial Request
self.task_data: TaskData = task_data
self.response: Any = None # Copy of the last reponse
self.render_device = None # Select the task affinity. (Not used to change active devices).
self.temp_images:list = [None] * req.num_outputs * (1 if task_data.show_only_filtered_image else 2)
self.error: Exception = None
self.lock: threading.Lock = threading.Lock() # Locks at task start and unlocks when task is completed
self.buffer_queue: queue.Queue = queue.Queue() # Queue of JSON string segments
async def read_buffer_generator(self):
try:
while not self.buffer_queue.empty():
res = self.buffer_queue.get(block=False)
self.buffer_queue.task_done()
yield res
except queue.Empty as e: yield
@property
def status(self):
if self.lock.locked():
return 'running'
if isinstance(self.error, StopAsyncIteration):
return 'stopped'
if self.error:
return 'error'
if not self.buffer_queue.empty():
return 'buffer'
if self.response:
return 'completed'
return 'pending'
@property
def is_pending(self):
return bool(not self.response and not self.error)
# Temporary cache to allow to query tasks results for a short time after they are completed.
class DataCache:
class DataCache():
def __init__(self):
self._base = dict()
self._lock: threading.Lock = threading.Lock()
def _get_ttl_time(self, ttl: int) -> int:
return int(time.time()) + ttl
def _is_expired(self, timestamp: int) -> bool:
return int(time.time()) >= timestamp
def clean(self) -> None:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("DataCache.clean" + ERR_LOCK_FAILED)
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.clean' + ERR_LOCK_FAILED)
try:
# Create a list of expired keys to delete
to_delete = []
@ -84,27 +92,21 @@ class DataCache:
# Remove Items
for key in to_delete:
(_, val) = self._base[key]
if isinstance(val, Task):
log.debug(f"Task {key} expired. Data removed.")
if isinstance(val, RenderTask):
log.debug(f'RenderTask {key} expired. Data removed.')
elif isinstance(val, SessionState):
log.debug(f"Session {key} expired. Data removed.")
log.debug(f'Session {key} expired. Data removed.')
else:
log.debug(f"Key {key} expired. Data removed.")
log.debug(f'Key {key} expired. Data removed.')
del self._base[key]
finally:
self._lock.release()
def clear(self) -> None:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("DataCache.clear" + ERR_LOCK_FAILED)
try:
self._base.clear()
finally:
self._lock.release()
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.clear' + ERR_LOCK_FAILED)
try: self._base.clear()
finally: self._lock.release()
def delete(self, key: Hashable) -> bool:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("DataCache.delete" + ERR_LOCK_FAILED)
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.delete' + ERR_LOCK_FAILED)
try:
if key not in self._base:
return False
@ -112,10 +114,8 @@ class DataCache:
return True
finally:
self._lock.release()
def keep(self, key: Hashable, ttl: int) -> bool:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("DataCache.keep" + ERR_LOCK_FAILED)
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.keep' + ERR_LOCK_FAILED)
try:
if key in self._base:
_, value = self._base.get(key)
@ -124,54 +124,48 @@ class DataCache:
return False
finally:
self._lock.release()
def put(self, key: Hashable, value: Any, ttl: int) -> bool:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("DataCache.put" + ERR_LOCK_FAILED)
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.put' + ERR_LOCK_FAILED)
try:
self._base[key] = (self._get_ttl_time(ttl), value)
except Exception:
self._base[key] = (
self._get_ttl_time(ttl), value
)
except Exception as e:
log.error(traceback.format_exc())
return False
else:
return True
finally:
self._lock.release()
def tryGet(self, key: Hashable) -> Any:
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("DataCache.tryGet" + ERR_LOCK_FAILED)
if not self._lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('DataCache.tryGet' + ERR_LOCK_FAILED)
try:
ttl, value = self._base.get(key, (None, None))
if ttl is not None and self._is_expired(ttl):
log.debug(f"Session {key} expired. Discarding data.")
log.debug(f'Session {key} expired. Discarding data.')
del self._base[key]
return None
return value
finally:
self._lock.release()
manager_lock = threading.RLock()
render_threads = []
current_state = ServerStates.Init
current_state_error: Exception = None
current_state_error:Exception = None
tasks_queue = []
session_cache = DataCache()
task_cache = DataCache()
weak_thread_data = weakref.WeakKeyDictionary()
idle_event: threading.Event = threading.Event()
class SessionState:
class SessionState():
def __init__(self, id: str):
self._id = id
self._tasks_ids = []
@property
def id(self):
return self._id
@property
def tasks(self):
tasks = []
@ -180,9 +174,8 @@ class SessionState:
if task:
tasks.append(task)
return tasks
def put(self, task: Task, ttl=TASK_TTL):
task_id = task.id
def put(self, task, ttl=TASK_TTL):
task_id = id(task)
self._tasks_ids.append(task_id)
if not task_cache.put(task_id, task, ttl):
return False
@ -190,17 +183,10 @@ class SessionState:
self._tasks_ids.pop(0)
return True
def keep_task_alive(task: Task):
task_cache.keep(task.id, TASK_TTL)
session_cache.keep(task.session_id, TASK_TTL)
def thread_get_next_task():
from easydiffusion import runtime
from easydiffusion import renderer
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
log.warn(f"Render thread on device: {runtime.context.device} failed to acquire manager lock.")
log.warn(f'Render thread on device: {renderer.context.device} failed to acquire manager lock.')
return None
if len(tasks_queue) <= 0:
manager_lock.release()
@ -208,16 +194,16 @@ def thread_get_next_task():
task = None
try: # Select a render task.
for queued_task in tasks_queue:
if queued_task.render_device and runtime.context.device != queued_task.render_device:
if queued_task.render_device and renderer.context.device != queued_task.render_device:
# Is asking for a specific render device.
if is_alive(queued_task.render_device) > 0:
continue # requested device alive, skip current one.
else:
# Requested device is not active, return error to UI.
queued_task.error = Exception(queued_task.render_device + " is not currently active.")
queued_task.error = Exception(queued_task.render_device + ' is not currently active.')
task = queued_task
break
if not queued_task.render_device and runtime.context.device == "cpu" and is_alive() > 1:
if not queued_task.render_device and renderer.context.device == 'cpu' and is_alive() > 1:
# not asking for any specific devices, cpu want to grab task but other render devices are alive.
continue # Skip Tasks, don't run on CPU unless there is nothing else or user asked for it.
task = queued_task
@ -228,36 +214,37 @@ def thread_get_next_task():
finally:
manager_lock.release()
def thread_render(device):
global current_state, current_state_error
from easydiffusion import model_manager, runtime
from easydiffusion import renderer, model_manager
try:
runtime.init(device)
renderer.init(device)
weak_thread_data[threading.current_thread()] = {
"device": runtime.context.device,
"device_name": runtime.context.device_name,
"alive": True,
'device': renderer.context.device,
'device_name': renderer.context.device_name,
'alive': True
}
current_state = ServerStates.LoadingModel
model_manager.load_default_models(runtime.context)
model_manager.load_default_models(renderer.context)
current_state = ServerStates.Online
except Exception as e:
log.error(traceback.format_exc())
weak_thread_data[threading.current_thread()] = {"error": e, "alive": False}
weak_thread_data[threading.current_thread()] = {
'error': e,
'alive': False
}
return
while True:
session_cache.clean()
task_cache.clean()
if not weak_thread_data[threading.current_thread()]["alive"]:
log.info(f"Shutting down thread for device {runtime.context.device}")
model_manager.unload_all(runtime.context)
if not weak_thread_data[threading.current_thread()]['alive']:
log.info(f'Shutting down thread for device {renderer.context.device}')
model_manager.unload_all(renderer.context)
return
if isinstance(current_state_error, SystemExit):
current_state = ServerStates.Unavailable
@ -269,51 +256,63 @@ def thread_render(device):
continue
if task.error is not None:
log.error(task.error)
task.response = {"status": "failed", "detail": str(task.error)}
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
continue
if current_state_error:
task.error = current_state_error
task.response = {"status": "failed", "detail": str(task.error)}
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
continue
log.info(f"Session {task.session_id} starting task {task.id} on {runtime.context.device_name}")
if not task.lock.acquire(blocking=False):
raise Exception("Got locked task from queue.")
log.info(f'Session {task.task_data.session_id} starting task {id(task)} on {renderer.context.device_name}')
if not task.lock.acquire(blocking=False): raise Exception('Got locked task from queue.')
try:
task.run()
def step_callback():
global current_state_error
if isinstance(current_state_error, SystemExit) or isinstance(current_state_error, StopAsyncIteration) or isinstance(task.error, StopAsyncIteration):
renderer.context.stop_processing = True
if isinstance(current_state_error, StopAsyncIteration):
task.error = current_state_error
current_state_error = None
log.info(f'Session {task.task_data.session_id} sent cancel signal for task {id(task)}')
current_state = ServerStates.LoadingModel
model_manager.resolve_model_paths(task.task_data)
model_manager.reload_models_if_necessary(renderer.context, task.task_data)
current_state = ServerStates.Rendering
task.response = renderer.make_images(task.render_request, task.task_data, task.buffer_queue, task.temp_images, step_callback)
# Before looping back to the generator, mark cache as still alive.
keep_task_alive(task)
task_cache.keep(id(task), TASK_TTL)
session_cache.keep(task.task_data.session_id, TASK_TTL)
except Exception as e:
task.error = str(e)
task.response = {"status": "failed", "detail": str(task.error)}
task.error = e
task.response = {"status": 'failed', "detail": str(task.error)}
task.buffer_queue.put(json.dumps(task.response))
log.error(traceback.format_exc())
continue
finally:
gc(runtime.context)
# Task completed
task.lock.release()
keep_task_alive(task)
task_cache.keep(id(task), TASK_TTL)
session_cache.keep(task.task_data.session_id, TASK_TTL)
if isinstance(task.error, StopAsyncIteration):
log.info(f"Session {task.session_id} task {task.id} cancelled!")
log.info(f'Session {task.task_data.session_id} task {id(task)} cancelled!')
elif task.error is not None:
log.info(f"Session {task.session_id} task {task.id} failed!")
log.info(f'Session {task.task_data.session_id} task {id(task)} failed!')
else:
log.info(f"Session {task.session_id} task {task.id} completed by {runtime.context.device_name}.")
log.info(f'Session {task.task_data.session_id} task {id(task)} completed by {renderer.context.device_name}.')
current_state = ServerStates.Online
def get_cached_task(task_id: str, update_ttl: bool = False):
def get_cached_task(task_id:str, update_ttl:bool=False):
# By calling keep before tryGet, wont discard if was expired.
if update_ttl and not task_cache.keep(task_id, TASK_TTL):
# Failed to keep task, already gone.
return None
return task_cache.tryGet(task_id)
def get_cached_session(session_id: str, update_ttl: bool = False):
def get_cached_session(session_id:str, update_ttl:bool=False):
if update_ttl:
session_cache.keep(session_id, TASK_TTL)
session = session_cache.tryGet(session_id)
@ -322,77 +321,64 @@ def get_cached_session(session_id: str, update_ttl: bool = False):
session_cache.put(session_id, session, TASK_TTL)
return session
def get_devices():
devices = {
"all": {},
"active": {},
'all': {},
'active': {},
}
def get_device_info(device):
if device in ("cpu", "mps"):
return {"name": device_manager.get_processor_name()}
if device == 'cpu':
return {'name': device_manager.get_processor_name()}
mem_free, mem_total = torch.cuda.mem_get_info(device)
mem_free /= float(10**9)
mem_total /= float(10**9)
return {
"name": torch.cuda.get_device_name(device),
"mem_free": mem_free,
"mem_total": mem_total,
"max_vram_usage_level": device_manager.get_max_vram_usage_level(device),
'name': torch.cuda.get_device_name(device),
'mem_free': mem_free,
'mem_total': mem_total,
'max_vram_usage_level': device_manager.get_max_vram_usage_level(device),
}
# list the compatible devices
cuda_count = torch.cuda.device_count()
for device in range(cuda_count):
device = f"cuda:{device}"
gpu_count = torch.cuda.device_count()
for device in range(gpu_count):
device = f'cuda:{device}'
if not device_manager.is_device_compatible(device):
continue
devices["all"].update({device: get_device_info(device)})
devices['all'].update({device: get_device_info(device)})
if device_manager.is_mps_available():
devices["all"].update({"mps": get_device_info("mps")})
devices["all"].update({"cpu": get_device_info("cpu")})
devices['all'].update({'cpu': get_device_info('cpu')})
# list the activated devices
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("get_devices" + ERR_LOCK_FAILED)
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('get_devices' + ERR_LOCK_FAILED)
try:
for rthread in render_threads:
if not rthread.is_alive():
continue
weak_data = weak_thread_data.get(rthread)
if not weak_data or not "device" in weak_data or not "device_name" in weak_data:
if not weak_data or not 'device' in weak_data or not 'device_name' in weak_data:
continue
device = weak_data["device"]
devices["active"].update({device: get_device_info(device)})
device = weak_data['device']
devices['active'].update({device: get_device_info(device)})
finally:
manager_lock.release()
# temp until TRT releases
import os
from easydiffusion import app
devices["enable_trt"] = os.path.exists(os.path.join(app.ROOT_DIR, "tensorrt"))
return devices
def is_alive(device=None):
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("is_alive" + ERR_LOCK_FAILED)
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('is_alive' + ERR_LOCK_FAILED)
nbr_alive = 0
try:
for rthread in render_threads:
if device is not None:
weak_data = weak_thread_data.get(rthread)
if weak_data is None or not "device" in weak_data or weak_data["device"] is None:
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
continue
thread_device = weak_data["device"]
thread_device = weak_data['device']
if thread_device != device:
continue
if rthread.is_alive():
@ -401,13 +387,11 @@ def is_alive(device=None):
finally:
manager_lock.release()
def start_render_thread(device):
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("start_render_thread" + ERR_LOCK_FAILED)
log.info(f"Start new Rendering Thread on device: {device}")
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('start_render_thread' + ERR_LOCK_FAILED)
log.info(f'Start new Rendering Thread on device: {device}')
try:
rthread = threading.Thread(target=thread_render, kwargs={"device": device})
rthread = threading.Thread(target=thread_render, kwargs={'device': device})
rthread.daemon = True
rthread.name = THREAD_NAME_PREFIX + device
rthread.start()
@ -415,8 +399,8 @@ def start_render_thread(device):
finally:
manager_lock.release()
timeout = DEVICE_START_TIMEOUT
while not rthread.is_alive() or not rthread in weak_thread_data or not "device" in weak_thread_data[rthread]:
if rthread in weak_thread_data and "error" in weak_thread_data[rthread]:
while not rthread.is_alive() or not rthread in weak_thread_data or not 'device' in weak_thread_data[rthread]:
if rthread in weak_thread_data and 'error' in weak_thread_data[rthread]:
log.error(f"{rthread}, {device}, error: {weak_thread_data[rthread]['error']}")
return False
if timeout <= 0:
@ -425,27 +409,25 @@ def start_render_thread(device):
time.sleep(1)
return True
def stop_render_thread(device):
try:
device_manager.validate_device_id(device, log_prefix="stop_render_thread")
device_manager.validate_device_id(device, log_prefix='stop_render_thread')
except:
log.error(traceback.format_exc())
return False
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT):
raise Exception("stop_render_thread" + ERR_LOCK_FAILED)
log.info(f"Stopping Rendering Thread on device: {device}")
if not manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT): raise Exception('stop_render_thread' + ERR_LOCK_FAILED)
log.info(f'Stopping Rendering Thread on device: {device}')
try:
thread_to_remove = None
for rthread in render_threads:
weak_data = weak_thread_data.get(rthread)
if weak_data is None or not "device" in weak_data or weak_data["device"] is None:
if weak_data is None or not 'device' in weak_data or weak_data['device'] is None:
continue
thread_device = weak_data["device"]
thread_device = weak_data['device']
if thread_device == device:
weak_data["alive"] = False
weak_data['alive'] = False
thread_to_remove = rthread
break
if thread_to_remove is not None:
@ -456,60 +438,54 @@ def stop_render_thread(device):
return False
def update_render_threads(render_devices, active_devices):
devices_to_start, devices_to_stop = device_manager.get_device_delta(render_devices, active_devices)
log.debug(f"devices_to_start: {devices_to_start}")
log.debug(f"devices_to_stop: {devices_to_stop}")
log.debug(f'devices_to_start: {devices_to_start}')
log.debug(f'devices_to_stop: {devices_to_stop}')
for device in devices_to_stop:
if is_alive(device) <= 0:
log.debug(f"{device} is not alive")
log.debug(f'{device} is not alive')
continue
if not stop_render_thread(device):
log.warn(f"{device} could not stop render thread")
log.warn(f'{device} could not stop render thread')
for device in devices_to_start:
if is_alive(device) >= 1:
log.debug(f"{device} already registered.")
log.debug(f'{device} already registered.')
continue
if not start_render_thread(device):
log.warn(f"{device} failed to start.")
log.warn(f'{device} failed to start.')
if is_alive() <= 0: # No running devices, probably invalid user config.
raise EnvironmentError(
'ERROR: No active render devices! Please verify the "render_devices" value in config.json'
)
if is_alive() <= 0: # No running devices, probably invalid user config.
raise EnvironmentError('ERROR: No active render devices! Please verify the "render_devices" value in config.json')
log.debug(f"active devices: {get_devices()['active']}")
def shutdown_event(): # Signal render thread to close on shutdown
def shutdown_event(): # Signal render thread to close on shutdown
global current_state_error
current_state_error = SystemExit("Application shutting down.")
current_state_error = SystemExit('Application shutting down.')
def enqueue_task(task: Task):
def render(render_req: GenerateImageRequest, task_data: TaskData):
current_thread_count = is_alive()
if current_thread_count <= 0: # Render thread is dead
raise ChildProcessError("Rendering thread has died.")
raise ChildProcessError('Rendering thread has died.')
# Alive, check if task in cache
session = get_cached_session(task.session_id, update_ttl=True)
session = get_cached_session(task_data.session_id, update_ttl=True)
pending_tasks = list(filter(lambda t: t.is_pending, session.tasks))
if len(pending_tasks) > current_thread_count * MAX_OVERLOAD_ALLOWED_RATIO:
raise ConnectionRefusedError(
f"Session {task.session_id} already has {len(pending_tasks)} pending tasks, with {current_thread_count} workers."
)
if current_thread_count < len(pending_tasks):
raise ConnectionRefusedError(f'Session {task_data.session_id} already has {len(pending_tasks)} pending tasks out of {current_thread_count}.')
if session.put(task, TASK_TTL):
new_task = RenderTask(render_req, task_data)
if session.put(new_task, TASK_TTL):
# Use twice the normal timeout for adding user requests.
# Tries to force session.put to fail before tasks_queue.put would.
if manager_lock.acquire(blocking=True, timeout=LOCK_TIMEOUT * 2):
try:
tasks_queue.append(task)
tasks_queue.append(new_task)
idle_event.set()
return task
return new_task
finally:
manager_lock.release()
raise RuntimeError("Failed to add task to cache.")
raise RuntimeError('Failed to add task to cache.')

View File

@ -1,3 +0,0 @@
from .task import Task
from .render_images import RenderTask
from .filter_images import FilterTask

View File

@ -1,115 +0,0 @@
import json
import pprint
from sdkit.filter import apply_filters
from sdkit.models import load_model
from sdkit.utils import img_to_base64_str, get_image, log
from easydiffusion import model_manager, runtime
from easydiffusion.types import FilterImageRequest, FilterImageResponse, ModelsData, OutputFormatData
from .task import Task
class FilterTask(Task):
"For applying filters to input images"
def __init__(
self, req: FilterImageRequest, session_id: str, models_data: ModelsData, output_format: OutputFormatData
):
super().__init__(session_id)
self.request = req
self.models_data = models_data
self.output_format = output_format
# convert to multi-filter format, if necessary
if isinstance(req.filter, str):
req.filter_params = {req.filter: req.filter_params}
req.filter = [req.filter]
if not isinstance(req.image, list):
req.image = [req.image]
def run(self):
"Runs the image filtering task on the assigned thread"
context = runtime.context
model_manager.resolve_model_paths(self.models_data)
model_manager.reload_models_if_necessary(context, self.models_data)
model_manager.fail_if_models_did_not_load(context)
print_task_info(self.request, self.models_data, self.output_format)
if isinstance(self.request.image, list):
images = [get_image(img) for img in self.request.image]
else:
images = get_image(self.request.image)
images = filter_images(context, images, self.request.filter, self.request.filter_params)
output_format = self.output_format
images = [
img_to_base64_str(
img, output_format.output_format, output_format.output_quality, output_format.output_lossless
)
for img in images
]
res = FilterImageResponse(self.request, self.models_data, images=images)
res = res.json()
self.buffer_queue.put(json.dumps(res))
log.info("Filter task completed")
self.response = res
def filter_images(context, images, filters, filter_params={}):
filters = filters if isinstance(filters, list) else [filters]
for filter_name in filters:
params = filter_params.get(filter_name, {})
previous_state = before_filter(context, filter_name, params)
try:
images = apply_filters(context, filter_name, images, **params)
finally:
after_filter(context, filter_name, params, previous_state)
return images
def before_filter(context, filter_name, filter_params):
if filter_name == "codeformer":
from easydiffusion.model_manager import DEFAULT_MODELS, resolve_model_to_use
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
prev_realesrgan_path = None
upscale_faces = filter_params.get("upscale_faces", False)
if upscale_faces and default_realesrgan not in context.model_paths["realesrgan"]:
prev_realesrgan_path = context.model_paths.get("realesrgan")
context.model_paths["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
load_model(context, "realesrgan")
return prev_realesrgan_path
def after_filter(context, filter_name, filter_params, previous_state):
if filter_name == "codeformer":
prev_realesrgan_path = previous_state
if prev_realesrgan_path:
context.model_paths["realesrgan"] = prev_realesrgan_path
load_model(context, "realesrgan")
def print_task_info(req: FilterImageRequest, models_data: ModelsData, output_format: OutputFormatData):
req_str = pprint.pformat({"filter": req.filter, "filter_params": req.filter_params}).replace("[", "\[")
models_data = pprint.pformat(models_data.dict()).replace("[", "\[")
output_format = pprint.pformat(output_format.dict()).replace("[", "\[")
log.info(f"request: {req_str}")
log.info(f"models data: {models_data}")
log.info(f"output format: {output_format}")

View File

@ -1,347 +0,0 @@
import json
import pprint
import queue
import time
from easydiffusion import model_manager, runtime
from easydiffusion.types import GenerateImageRequest, ModelsData, OutputFormatData
from easydiffusion.types import Image as ResponseImage
from easydiffusion.types import GenerateImageResponse, TaskData, UserInitiatedStop
from easydiffusion.utils import get_printable_request, log, save_images_to_disk
from sdkit.generate import generate_images
from sdkit.utils import (
diffusers_latent_samples_to_images,
gc,
img_to_base64_str,
img_to_buffer,
latent_samples_to_images,
resize_img,
get_image,
log,
)
from .task import Task
from .filter_images import filter_images
class RenderTask(Task):
"For image generation"
def __init__(
self, req: GenerateImageRequest, task_data: TaskData, models_data: ModelsData, output_format: OutputFormatData
):
super().__init__(task_data.session_id)
task_data.request_id = self.id
self.render_request: GenerateImageRequest = req # Initial Request
self.task_data: TaskData = task_data
self.models_data = models_data
self.output_format = output_format
self.temp_images: list = [None] * req.num_outputs * (1 if task_data.show_only_filtered_image else 2)
def run(self):
"Runs the image generation task on the assigned thread"
from easydiffusion import task_manager
context = runtime.context
def step_callback():
task_manager.keep_task_alive(self)
task_manager.current_state = task_manager.ServerStates.Rendering
if isinstance(task_manager.current_state_error, (SystemExit, StopAsyncIteration)) or isinstance(
self.error, StopAsyncIteration
):
context.stop_processing = True
if isinstance(task_manager.current_state_error, StopAsyncIteration):
self.error = task_manager.current_state_error
task_manager.current_state_error = None
log.info(f"Session {self.session_id} sent cancel signal for task {self.id}")
task_manager.current_state = task_manager.ServerStates.LoadingModel
model_manager.resolve_model_paths(self.models_data)
models_to_force_reload = []
if (
runtime.set_vram_optimizations(context)
or self.has_param_changed(context, "clip_skip")
or self.trt_needs_reload(context)
):
models_to_force_reload.append("stable-diffusion")
model_manager.reload_models_if_necessary(context, self.models_data, models_to_force_reload)
model_manager.fail_if_models_did_not_load(context)
task_manager.current_state = task_manager.ServerStates.Rendering
self.response = make_images(
context,
self.render_request,
self.task_data,
self.models_data,
self.output_format,
self.buffer_queue,
self.temp_images,
step_callback,
)
def has_param_changed(self, context, param_name):
if not context.test_diffusers:
return False
if "stable-diffusion" not in context.models or "params" not in context.models["stable-diffusion"]:
return True
model = context.models["stable-diffusion"]
new_val = self.models_data.model_params.get("stable-diffusion", {}).get(param_name, False)
return model["params"].get(param_name) != new_val
def trt_needs_reload(self, context):
if not context.test_diffusers:
return False
if "stable-diffusion" not in context.models or "params" not in context.models["stable-diffusion"]:
return True
model = context.models["stable-diffusion"]
# curr_convert_to_trt = model["params"].get("convert_to_tensorrt")
new_convert_to_trt = self.models_data.model_params.get("stable-diffusion", {}).get("convert_to_tensorrt", False)
pipe = model["default"]
is_trt_loaded = hasattr(pipe.unet, "_allocate_trt_buffers") or hasattr(
pipe.unet, "_allocate_trt_buffers_backup"
)
if new_convert_to_trt and not is_trt_loaded:
return True
curr_build_config = model["params"].get("trt_build_config")
new_build_config = self.models_data.model_params.get("stable-diffusion", {}).get("trt_build_config", {})
return new_convert_to_trt and curr_build_config != new_build_config
def make_images(
context,
req: GenerateImageRequest,
task_data: TaskData,
models_data: ModelsData,
output_format: OutputFormatData,
data_queue: queue.Queue,
task_temp_images: list,
step_callback,
):
context.stop_processing = False
print_task_info(req, task_data, models_data, output_format)
images, seeds = make_images_internal(
context, req, task_data, models_data, output_format, data_queue, task_temp_images, step_callback
)
res = GenerateImageResponse(
req, task_data, models_data, output_format, images=construct_response(images, seeds, output_format)
)
res = res.json()
data_queue.put(json.dumps(res))
log.info("Task completed")
return res
def print_task_info(
req: GenerateImageRequest, task_data: TaskData, models_data: ModelsData, output_format: OutputFormatData
):
req_str = pprint.pformat(get_printable_request(req, task_data, output_format)).replace("[", "\[")
task_str = pprint.pformat(task_data.dict()).replace("[", "\[")
models_data = pprint.pformat(models_data.dict()).replace("[", "\[")
output_format = pprint.pformat(output_format.dict()).replace("[", "\[")
log.info(f"request: {req_str}")
log.info(f"task data: {task_str}")
# log.info(f"models data: {models_data}")
log.info(f"output format: {output_format}")
def make_images_internal(
context,
req: GenerateImageRequest,
task_data: TaskData,
models_data: ModelsData,
output_format: OutputFormatData,
data_queue: queue.Queue,
task_temp_images: list,
step_callback,
):
images, user_stopped = generate_images_internal(
context,
req,
task_data,
models_data,
data_queue,
task_temp_images,
step_callback,
task_data.stream_image_progress,
task_data.stream_image_progress_interval,
)
gc(context)
filters, filter_params = task_data.filters, task_data.filter_params
filtered_images = filter_images(context, images, filters, filter_params) if not user_stopped else images
if task_data.save_to_disk_path is not None:
save_images_to_disk(images, filtered_images, req, task_data, output_format)
seeds = [*range(req.seed, req.seed + len(images))]
if task_data.show_only_filtered_image or filtered_images is images:
return filtered_images, seeds
else:
return images + filtered_images, seeds + seeds
def generate_images_internal(
context,
req: GenerateImageRequest,
task_data: TaskData,
models_data: ModelsData,
data_queue: queue.Queue,
task_temp_images: list,
step_callback,
stream_image_progress: bool,
stream_image_progress_interval: int,
):
context.temp_images.clear()
callback = make_step_callback(
context,
req,
task_data,
data_queue,
task_temp_images,
step_callback,
stream_image_progress,
stream_image_progress_interval,
)
try:
if req.init_image is not None and not context.test_diffusers:
req.sampler_name = "ddim"
req.width, req.height = map(lambda x: x - x % 8, (req.width, req.height)) # clamp to 8
if req.control_image and task_data.control_filter_to_apply:
req.control_image = get_image(req.control_image)
req.control_image = resize_img(req.control_image.convert("RGB"), req.width, req.height, clamp_to_8=True)
req.control_image = filter_images(context, req.control_image, task_data.control_filter_to_apply)[0]
if req.init_image is not None and int(req.num_inference_steps * req.prompt_strength) == 0:
req.prompt_strength = 1 / req.num_inference_steps if req.num_inference_steps > 0 else 1
if context.test_diffusers:
pipe = context.models["stable-diffusion"]["default"]
if hasattr(pipe.unet, "_allocate_trt_buffers_backup"):
setattr(pipe.unet, "_allocate_trt_buffers", pipe.unet._allocate_trt_buffers_backup)
delattr(pipe.unet, "_allocate_trt_buffers_backup")
if hasattr(pipe.unet, "_allocate_trt_buffers"):
convert_to_trt = models_data.model_params["stable-diffusion"].get("convert_to_tensorrt", False)
if convert_to_trt:
pipe.unet.forward = pipe.unet._trt_forward
# pipe.vae.decoder.forward = pipe.vae.decoder._trt_forward
log.info(f"Setting unet.forward to TensorRT")
else:
log.info(f"Not using TensorRT for unet.forward")
pipe.unet.forward = pipe.unet._non_trt_forward
# pipe.vae.decoder.forward = pipe.vae.decoder._non_trt_forward
setattr(pipe.unet, "_allocate_trt_buffers_backup", pipe.unet._allocate_trt_buffers)
delattr(pipe.unet, "_allocate_trt_buffers")
images = generate_images(context, callback=callback, **req.dict())
user_stopped = False
except UserInitiatedStop:
images = []
user_stopped = True
if context.partial_x_samples is not None:
if context.test_diffusers:
images = diffusers_latent_samples_to_images(context, context.partial_x_samples)
else:
images = latent_samples_to_images(context, context.partial_x_samples)
finally:
if hasattr(context, "partial_x_samples") and context.partial_x_samples is not None:
if not context.test_diffusers:
del context.partial_x_samples
context.partial_x_samples = None
return images, user_stopped
def construct_response(images: list, seeds: list, output_format: OutputFormatData):
return [
ResponseImage(
data=img_to_base64_str(
img,
output_format.output_format,
output_format.output_quality,
output_format.output_lossless,
),
seed=seed,
)
for img, seed in zip(images, seeds)
]
def make_step_callback(
context,
req: GenerateImageRequest,
task_data: TaskData,
data_queue: queue.Queue,
task_temp_images: list,
step_callback,
stream_image_progress: bool,
stream_image_progress_interval: int,
):
n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength)
last_callback_time = -1
def update_temp_img(x_samples, task_temp_images: list):
partial_images = []
if context.test_diffusers:
images = diffusers_latent_samples_to_images(context, x_samples)
else:
images = latent_samples_to_images(context, x_samples)
if task_data.block_nsfw:
images = filter_images(context, images, "nsfw_checker")
for i, img in enumerate(images):
buf = img_to_buffer(img, output_format="JPEG")
context.temp_images[f"{task_data.request_id}/{i}"] = buf
task_temp_images[i] = buf
partial_images.append({"path": f"/image/tmp/{task_data.request_id}/{i}"})
del images
return partial_images
def on_image_step(x_samples, i, *args):
nonlocal last_callback_time
if context.test_diffusers:
context.partial_x_samples = (x_samples, args[0])
else:
context.partial_x_samples = x_samples
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
last_callback_time = time.time()
progress = {"step": i, "step_time": step_time, "total_steps": n_steps}
if stream_image_progress and stream_image_progress_interval > 0 and i % stream_image_progress_interval == 0:
progress["output"] = update_temp_img(context.partial_x_samples, task_temp_images)
data_queue.put(json.dumps(progress))
step_callback()
if context.stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
return on_image_step

View File

@ -1,47 +0,0 @@
from threading import Lock
from queue import Queue, Empty as EmptyQueueException
from typing import Any
class Task:
"Task with output queue and completion lock"
def __init__(self, session_id):
self.id = id(self)
self.session_id = session_id
self.render_device = None # Select the task affinity. (Not used to change active devices).
self.error: Exception = None
self.lock: Lock = Lock() # Locks at task start and unlocks when task is completed
self.buffer_queue: Queue = Queue() # Queue of JSON string segments
self.response: Any = None # Copy of the last reponse
async def read_buffer_generator(self):
try:
while not self.buffer_queue.empty():
res = self.buffer_queue.get(block=False)
self.buffer_queue.task_done()
yield res
except EmptyQueueException as e:
yield
@property
def status(self):
if self.lock.locked():
return "running"
if isinstance(self.error, StopAsyncIteration):
return "stopped"
if self.error:
return "error"
if not self.buffer_queue.empty():
return "buffer"
if self.response:
return "completed"
return "pending"
@property
def is_pending(self):
return bool(not self.response and not self.error)
def run(self):
"Override this to implement the task's behavior"
pass

View File

@ -1,7 +1,5 @@
from typing import Any, List, Dict, Union
from pydantic import BaseModel
from typing import Any
class GenerateImageRequest(BaseModel):
prompt: str = ""
@ -17,76 +15,31 @@ class GenerateImageRequest(BaseModel):
init_image: Any = None
init_image_mask: Any = None
control_image: Any = None
control_alpha: Union[float, List[float]] = None
prompt_strength: float = 0.8
preserve_init_image_color_profile = False
strict_mask_border = False
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
hypernetwork_strength: float = 0
lora_alpha: Union[float, List[float]] = 0
tiling: str = "none" # "none", "x", "y", "xy"
class FilterImageRequest(BaseModel):
image: Any = None
filter: Union[str, List[str]] = None
filter_params: dict = {}
class ModelsData(BaseModel):
"""
Contains the information related to the models involved in a request.
- To load a model: set the relative path(s) to the model in `model_paths`. No effect if already loaded.
- To unload a model: set the model to `None` in `model_paths`. No effect if already unloaded.
Models that aren't present in `model_paths` will not be changed.
"""
model_paths: Dict[str, Union[str, None, List[str]]] = None
"model_type to string path, or list of string paths"
model_params: Dict[str, Dict[str, Any]] = {}
"model_type to dict of parameters"
class OutputFormatData(BaseModel):
output_format: str = "jpeg" # or "png" or "webp"
output_quality: int = 75
output_lossless: bool = False
class TaskData(BaseModel):
request_id: str = None
session_id: str = "session"
save_to_disk_path: str = None
vram_usage_level: str = "balanced" # or "low" or "medium"
vram_usage_level: str = "balanced" # or "low" or "medium"
use_face_correction: Union[str, List[str]] = None # or "GFPGANv1.3"
use_upscale: Union[str, List[str]] = None
upscale_amount: int = 4 # or 2
latent_upscaler_steps: int = 10
use_stable_diffusion_model: Union[str, List[str]] = "sd-v1-4"
use_vae_model: Union[str, List[str]] = None
use_hypernetwork_model: Union[str, List[str]] = None
use_lora_model: Union[str, List[str]] = None
use_controlnet_model: Union[str, List[str]] = None
use_embeddings_model: Union[str, List[str]] = None
filters: List[str] = []
filter_params: Dict[str, Dict[str, Any]] = {}
control_filter_to_apply: Union[str, List[str]] = None
use_face_correction: str = None # or "GFPGANv1.3"
use_upscale: str = None # or "RealESRGAN_x4plus" or "RealESRGAN_x4plus_anime_6B"
upscale_amount: int = 4 # or 2
use_stable_diffusion_model: str = "sd-v1-4"
# use_stable_diffusion_config: str = "v1-inference"
use_vae_model: str = None
use_hypernetwork_model: str = None
show_only_filtered_image: bool = False
block_nsfw: bool = False
metadata_output_format: str = "txt" # or "json"
output_format: str = "jpeg" # or "png"
output_quality: int = 75
metadata_output_format: str = "txt" # or "json"
stream_image_progress: bool = False
stream_image_progress_interval: int = 5
clip_skip: bool = False
codeformer_upscale_faces: bool = False
codeformer_fidelity: float = 0.5
class MergeRequest(BaseModel):
model0: str = None
@ -95,9 +48,8 @@ class MergeRequest(BaseModel):
out_path: str = "mix"
use_fp16 = True
class Image:
data: str # base64
data: str # base64
seed: int
is_nsfw: bool
path_abs: str = None
@ -113,40 +65,24 @@ class Image:
"path_abs": self.path_abs,
}
class GenerateImageResponse:
class Response:
render_request: GenerateImageRequest
task_data: TaskData
models_data: ModelsData
images: list
def __init__(
self,
render_request: GenerateImageRequest,
task_data: TaskData,
models_data: ModelsData,
output_format: OutputFormatData,
images: list,
):
def __init__(self, render_request: GenerateImageRequest, task_data: TaskData, images: list):
self.render_request = render_request
self.task_data = task_data
self.models_data = models_data
self.output_format = output_format
self.images = images
def json(self):
del self.render_request.init_image
del self.render_request.init_image_mask
del self.render_request.control_image
task_data = self.task_data.dict()
task_data.update(self.output_format.dict())
res = {
"status": "succeeded",
"status": 'succeeded',
"render_request": self.render_request.dict(),
"task_data": task_data,
# "models_data": self.models_data.dict(), # haven't migrated the UI to the new format (yet)
"task_data": self.task_data.dict(),
"output": [],
}
@ -155,113 +91,5 @@ class GenerateImageResponse:
return res
class FilterImageResponse:
request: FilterImageRequest
models_data: ModelsData
images: list
def __init__(self, request: FilterImageRequest, models_data: ModelsData, images: list):
self.request = request
self.models_data = models_data
self.images = images
def json(self):
del self.request.image
res = {
"status": "succeeded",
"request": self.request.dict(),
"models_data": self.models_data.dict(),
"output": [],
}
for image in self.images:
res["output"].append(image)
return res
class UserInitiatedStop(Exception):
pass
def convert_legacy_render_req_to_new(old_req: dict):
new_req = dict(old_req)
# new keys
model_paths = new_req["model_paths"] = {}
model_params = new_req["model_params"] = {}
filters = new_req["filters"] = []
filter_params = new_req["filter_params"] = {}
# move the model info
model_paths["stable-diffusion"] = old_req.get("use_stable_diffusion_model")
model_paths["vae"] = old_req.get("use_vae_model")
model_paths["hypernetwork"] = old_req.get("use_hypernetwork_model")
model_paths["lora"] = old_req.get("use_lora_model")
model_paths["controlnet"] = old_req.get("use_controlnet_model")
model_paths["embeddings"] = old_req.get("use_embeddings_model")
model_paths["gfpgan"] = old_req.get("use_face_correction", "")
model_paths["gfpgan"] = model_paths["gfpgan"] if "gfpgan" in model_paths["gfpgan"].lower() else None
model_paths["codeformer"] = old_req.get("use_face_correction", "")
model_paths["codeformer"] = model_paths["codeformer"] if "codeformer" in model_paths["codeformer"].lower() else None
model_paths["realesrgan"] = old_req.get("use_upscale", "")
model_paths["realesrgan"] = model_paths["realesrgan"] if "realesrgan" in model_paths["realesrgan"].lower() else None
model_paths["latent_upscaler"] = old_req.get("use_upscale", "")
model_paths["latent_upscaler"] = (
model_paths["latent_upscaler"] if "latent_upscaler" in model_paths["latent_upscaler"].lower() else None
)
if "control_filter_to_apply" in old_req:
filter_model = old_req["control_filter_to_apply"]
model_paths[filter_model] = filter_model
if old_req.get("block_nsfw"):
model_paths["nsfw_checker"] = "nsfw_checker"
# move the model params
if model_paths["stable-diffusion"]:
model_params["stable-diffusion"] = {
"clip_skip": bool(old_req.get("clip_skip", False)),
"convert_to_tensorrt": bool(old_req.get("convert_to_tensorrt", False)),
"trt_build_config": old_req.get(
"trt_build_config", {"batch_size_range": (1, 1), "dimensions_range": [(768, 1024)]}
),
}
# move the filter params
if model_paths["realesrgan"]:
filter_params["realesrgan"] = {"scale": int(old_req.get("upscale_amount", 4))}
if model_paths["latent_upscaler"]:
filter_params["latent_upscaler"] = {
"prompt": old_req["prompt"],
"negative_prompt": old_req.get("negative_prompt"),
"seed": int(old_req.get("seed", 42)),
"num_inference_steps": int(old_req.get("latent_upscaler_steps", 10)),
"guidance_scale": 0,
}
if model_paths["codeformer"]:
filter_params["codeformer"] = {
"upscale_faces": bool(old_req.get("codeformer_upscale_faces", True)),
"codeformer_fidelity": float(old_req.get("codeformer_fidelity", 0.5)),
}
# set the filters
if old_req.get("block_nsfw"):
filters.append("nsfw_checker")
if model_paths["codeformer"]:
filters.append("codeformer")
elif model_paths["gfpgan"]:
filters.append("gfpgan")
if model_paths["realesrgan"]:
filters.append("realesrgan")
elif model_paths["latent_upscaler"]:
filters.append("latent_upscaler")
return new_req

View File

@ -1,20 +1,8 @@
import logging
log = logging.getLogger("easydiffusion")
log = logging.getLogger('easydiffusion')
from .save_utils import (
save_images_to_disk,
get_printable_request,
)
def sha256sum(filename):
sha256 = hashlib.sha256()
with open(filename, "rb") as f:
while True:
data = f.read(8192) # Read in chunks of 8192 bytes
if not data:
break
sha256.update(data)
return sha256.hexdigest()
)

View File

@ -1,344 +1,88 @@
import os
import re
import time
import regex
import base64
import re
from datetime import datetime
from functools import reduce
from easydiffusion.types import TaskData, GenerateImageRequest
from easydiffusion import app
from easydiffusion.types import GenerateImageRequest, TaskData, OutputFormatData
from numpy import base_repr
from sdkit.utils import save_dicts, save_images
from sdkit.models.model_loader.embeddings import get_embedding_token
from sdkit.utils import save_images, save_dicts
filename_regex = re.compile("[^a-zA-Z0-9._-]")
img_number_regex = re.compile("([0-9]{5,})")
filename_regex = re.compile('[^a-zA-Z0-9._-]')
# keep in sync with `ui/media/js/dnd.js`
TASK_TEXT_MAPPING = {
"prompt": "Prompt",
"negative_prompt": "Negative Prompt",
"seed": "Seed",
"use_stable_diffusion_model": "Stable Diffusion model",
"clip_skip": "Clip Skip",
"use_controlnet_model": "ControlNet model",
"control_filter_to_apply": "ControlNet Filter",
"use_vae_model": "VAE model",
"sampler_name": "Sampler",
"width": "Width",
"height": "Height",
"num_inference_steps": "Steps",
"guidance_scale": "Guidance Scale",
"prompt_strength": "Prompt Strength",
"use_lora_model": "LoRA model",
"lora_alpha": "LoRA Strength",
"use_hypernetwork_model": "Hypernetwork model",
"hypernetwork_strength": "Hypernetwork Strength",
"use_embeddings_model": "Embedding models",
"tiling": "Seamless Tiling",
"use_face_correction": "Use Face Correction",
"use_upscale": "Use Upscaling",
"upscale_amount": "Upscale By",
"latent_upscaler_steps": "Latent Upscaler Steps",
'prompt': 'Prompt',
'width': 'Width',
'height': 'Height',
'seed': 'Seed',
'num_inference_steps': 'Steps',
'guidance_scale': 'Guidance Scale',
'prompt_strength': 'Prompt Strength',
'use_face_correction': 'Use Face Correction',
'use_upscale': 'Use Upscaling',
'upscale_amount': 'Upscale By',
'sampler_name': 'Sampler',
'negative_prompt': 'Negative Prompt',
'use_stable_diffusion_model': 'Stable Diffusion model',
'use_hypernetwork_model': 'Hypernetwork model',
'hypernetwork_strength': 'Hypernetwork Strength'
}
time_placeholders = {
"$yyyy": "%Y",
"$MM": "%m",
"$dd": "%d",
"$HH": "%H",
"$mm": "%M",
"$ss": "%S",
}
other_placeholders = {
"$id": lambda req, task_data: filename_regex.sub("_", task_data.session_id),
"$p": lambda req, task_data: filename_regex.sub("_", req.prompt)[:50],
"$s": lambda req, task_data: str(req.seed),
}
class ImageNumber:
_factory = None
_evaluated = False
def __init__(self, factory):
self._factory = factory
self._evaluated = None
def __call__(self) -> int:
if self._evaluated is None:
self._evaluated = self._factory()
return self._evaluated
def format_placeholders(format: str, req: GenerateImageRequest, task_data: TaskData, now=None):
if now is None:
now = time.time()
for placeholder, time_format in time_placeholders.items():
if placeholder in format:
format = format.replace(placeholder, datetime.fromtimestamp(now).strftime(time_format))
for placeholder, replace_func in other_placeholders.items():
if placeholder in format:
format = format.replace(placeholder, replace_func(req, task_data))
return format
def format_folder_name(format: str, req: GenerateImageRequest, task_data: TaskData):
format = format_placeholders(format, req, task_data)
return filename_regex.sub("_", format)
def format_file_name(
format: str,
req: GenerateImageRequest,
task_data: TaskData,
now: float,
batch_file_number: int,
folder_img_number: ImageNumber,
):
format = format_placeholders(format, req, task_data, now)
if "$n" in format:
format = format.replace("$n", f"{folder_img_number():05}")
if "$tsb64" in format:
img_id = base_repr(int(now * 10000), 36)[-7:] + base_repr(
int(batch_file_number), 36
) # Base 36 conversion, 0-9, A-Z
format = format.replace("$tsb64", img_id)
if "$ts" in format:
format = format.replace("$ts", str(int(now * 1000) + batch_file_number))
return filename_regex.sub("_", format)
def save_images_to_disk(
images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData, output_format: OutputFormatData
):
def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData):
now = time.time()
app_config = app.getConfig()
folder_format = app_config.get("folder_format", "$id")
save_dir_path = os.path.join(task_data.save_to_disk_path, format_folder_name(folder_format, req, task_data))
metadata_entries = get_metadata_entries_for_request(req, task_data, output_format)
file_number = calculate_img_number(save_dir_path, task_data)
make_filename = make_filename_callback(
app_config.get("filename_format", "$p_$tsb64"),
req,
task_data,
file_number,
now=now,
)
save_dir_path = os.path.join(task_data.save_to_disk_path, filename_regex.sub('_', task_data.session_id))
metadata_entries = get_metadata_entries_for_request(req, task_data)
make_filename = make_filename_callback(req, now=now)
if task_data.show_only_filtered_image or filtered_images is images:
save_images(
filtered_images,
save_dir_path,
file_name=make_filename,
output_format=output_format.output_format,
output_quality=output_format.output_quality,
output_lossless=output_format.output_lossless,
)
if task_data.metadata_output_format:
for metadata_output_format in task_data.metadata_output_format.split(","):
if metadata_output_format.lower() in ["json", "txt", "embed"]:
save_dicts(
metadata_entries,
save_dir_path,
file_name=make_filename,
output_format=metadata_output_format,
file_format=output_format.output_format,
)
save_images(filtered_images, save_dir_path, file_name=make_filename, output_format=task_data.output_format, output_quality=task_data.output_quality)
save_dicts(metadata_entries, save_dir_path, file_name=make_filename, output_format=task_data.metadata_output_format)
else:
make_filter_filename = make_filename_callback(
app_config.get("filename_format", "$p_$tsb64"),
req,
task_data,
file_number,
now=now,
suffix="filtered",
)
make_filter_filename = make_filename_callback(req, now=now, suffix='filtered')
save_images(
images,
save_dir_path,
file_name=make_filename,
output_format=output_format.output_format,
output_quality=output_format.output_quality,
output_lossless=output_format.output_lossless,
)
save_images(
filtered_images,
save_dir_path,
file_name=make_filter_filename,
output_format=output_format.output_format,
output_quality=output_format.output_quality,
output_lossless=output_format.output_lossless,
)
if task_data.metadata_output_format:
for metadata_output_format in task_data.metadata_output_format.split(","):
if metadata_output_format.lower() in ["json", "txt", "embed"]:
save_dicts(
metadata_entries,
save_dir_path,
file_name=make_filter_filename,
output_format=metadata_output_format,
file_format=output_format.output_format,
)
save_images(images, save_dir_path, file_name=make_filename, output_format=task_data.output_format, output_quality=task_data.output_quality)
save_images(filtered_images, save_dir_path, file_name=make_filter_filename, output_format=task_data.output_format, output_quality=task_data.output_quality)
save_dicts(metadata_entries, save_dir_path, file_name=make_filter_filename, output_format=task_data.metadata_output_format)
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData, output_format: OutputFormatData):
metadata = get_printable_request(req, task_data, output_format)
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData):
metadata = get_printable_request(req)
metadata.update({
'use_stable_diffusion_model': task_data.use_stable_diffusion_model,
'use_vae_model': task_data.use_vae_model,
'use_hypernetwork_model': task_data.use_hypernetwork_model,
'use_face_correction': task_data.use_face_correction,
'use_upscale': task_data.use_upscale,
})
if metadata['use_upscale'] is not None:
metadata['upscale_amount'] = task_data.upscale_amount
# if text, format it in the text format expected by the UI
is_txt_format = task_data.metadata_output_format and "txt" in task_data.metadata_output_format.lower().split(",")
is_txt_format = (task_data.metadata_output_format.lower() == 'txt')
if is_txt_format:
def format_value(value):
if isinstance(value, list):
return ", ".join([str(it) for it in value])
return value
metadata = {
TASK_TEXT_MAPPING[key]: format_value(val) for key, val in metadata.items() if key in TASK_TEXT_MAPPING
}
metadata = {TASK_TEXT_MAPPING[key]: val for key, val in metadata.items() if key in TASK_TEXT_MAPPING}
entries = [metadata.copy() for _ in range(req.num_outputs)]
for i, entry in enumerate(entries):
entry["Seed" if is_txt_format else "seed"] = req.seed + i
entry['Seed' if is_txt_format else 'seed'] = req.seed + i
return entries
def get_printable_request(req: GenerateImageRequest, task_data: TaskData, output_format: OutputFormatData):
req_metadata = req.dict()
task_data_metadata = task_data.dict()
task_data_metadata.update(output_format.dict())
app_config = app.getConfig()
using_diffusers = app_config.get("test_diffusers", True)
# Save the metadata in the order defined in TASK_TEXT_MAPPING
metadata = {}
for key in TASK_TEXT_MAPPING.keys():
if key in req_metadata:
metadata[key] = req_metadata[key]
elif key in task_data_metadata:
metadata[key] = task_data_metadata[key]
if key == "use_embeddings_model" and using_diffusers:
embeddings_extensions = {".pt", ".bin", ".safetensors"}
def scan_directory(directory_path: str):
used_embeddings = []
for entry in os.scandir(directory_path):
if entry.is_file():
# Check if the filename has the right extension
if not any(map(lambda ext: entry.name.endswith(ext), embeddings_extensions)):
continue
embedding_name_regex = regex.compile(r"(^|[\s,])" + regex.escape(get_embedding_token(entry.name)) + r"([+-]*$|[\s,]|[+-]+[\s,])")
if embedding_name_regex.search(req.prompt) or embedding_name_regex.search(req.negative_prompt):
used_embeddings.append(entry.path)
elif entry.is_dir():
used_embeddings.extend(scan_directory(entry.path))
return used_embeddings
used_embeddings = scan_directory(os.path.join(app.MODELS_DIR, "embeddings"))
metadata["use_embeddings_model"] = used_embeddings if len(used_embeddings) > 0 else None
# Clean up the metadata
if req.init_image is None and "prompt_strength" in metadata:
del metadata["prompt_strength"]
if task_data.use_upscale is None and "upscale_amount" in metadata:
del metadata["upscale_amount"]
if task_data.use_hypernetwork_model is None and "hypernetwork_strength" in metadata:
del metadata["hypernetwork_strength"]
if task_data.use_lora_model is None and "lora_alpha" in metadata:
del metadata["lora_alpha"]
if task_data.use_upscale != "latent_upscaler" and "latent_upscaler_steps" in metadata:
del metadata["latent_upscaler_steps"]
if task_data.use_controlnet_model is None and "control_filter_to_apply" in metadata:
del metadata["control_filter_to_apply"]
if using_diffusers:
for key in (x for x in ["use_hypernetwork_model", "hypernetwork_strength"] if x in metadata):
del metadata[key]
else:
for key in (
x for x in ["use_lora_model", "lora_alpha", "clip_skip", "tiling", "latent_upscaler_steps", "use_controlnet_model", "control_filter_to_apply"] if x in metadata
):
del metadata[key]
def get_printable_request(req: GenerateImageRequest):
metadata = req.dict()
del metadata['init_image']
del metadata['init_image_mask']
return metadata
def make_filename_callback(
filename_format: str,
req: GenerateImageRequest,
task_data: TaskData,
folder_img_number: int,
suffix=None,
now=None,
):
def make_filename_callback(req: GenerateImageRequest, suffix=None, now=None):
if now is None:
now = time.time()
def make_filename(i):
name = format_file_name(filename_format, req, task_data, now, i, folder_img_number)
name = name if suffix is None else f"{name}_{suffix}"
img_id = base64.b64encode(int(now+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
prompt_flattened = filename_regex.sub('_', req.prompt)[:50]
name = f"{prompt_flattened}_{img_id}"
name = name if suffix is None else f'{name}_{suffix}'
return name
return make_filename
def _calculate_img_number(save_dir_path: str, task_data: TaskData):
def get_highest_img_number(accumulator: int, file: os.DirEntry) -> int:
if not file.is_file:
return accumulator
if len(list(filter(lambda e: file.name.endswith(e), app.IMAGE_EXTENSIONS))) == 0:
return accumulator
get_highest_img_number.number_of_images = get_highest_img_number.number_of_images + 1
number_match = img_number_regex.match(file.name)
if not number_match:
return accumulator
file_number = number_match.group().lstrip("0")
# Handle 00000
return int(file_number) if file_number else 0
get_highest_img_number.number_of_images = 0
highest_file_number = -1
if os.path.isdir(save_dir_path):
existing_files = list(os.scandir(save_dir_path))
highest_file_number = reduce(get_highest_img_number, existing_files, -1)
calculated_img_number = max(highest_file_number, get_highest_img_number.number_of_images - 1)
if task_data.session_id in _calculate_img_number.session_img_numbers:
calculated_img_number = max(
_calculate_img_number.session_img_numbers[task_data.session_id],
calculated_img_number,
)
calculated_img_number = calculated_img_number + 1
_calculate_img_number.session_img_numbers[task_data.session_id] = calculated_img_number
return calculated_img_number
_calculate_img_number.session_img_numbers = {}
def calculate_img_number(save_dir_path: str, task_data: TaskData):
return ImageNumber(lambda: _calculate_img_number(save_dir_path, task_data))

View File

@ -0,0 +1,171 @@
{
"_name_or_path": "clip-vit-large-patch14/",
"architectures": [
"CLIPModel"
],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
"text_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 1,
"prefix": null,
"problem_type": null,
"projection_dim" : 768,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": false,
"vocab_size": 49408
},
"text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"projection_dim": 768
},
"torch_dtype": "float32",
"transformers_version": null,
"vision_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"min_length": 0,
"model_type": "clip_vision_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 16,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 24,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": null,
"patch_size": 14,
"prefix": null,
"problem_type": null,
"projection_dim" : 768,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": false
},
"vision_config_dict": {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768
}
}

View File

@ -6,7 +6,6 @@
<meta name="theme-color" content="#673AB6">
<link rel="icon" type="image/png" href="/media/images/favicon-16x16.png" sizes="16x16">
<link rel="icon" type="image/png" href="/media/images/favicon-32x32.png" sizes="32x32">
<link rel="stylesheet" href="/media/css/jquery-confirm.min.css">
<link rel="stylesheet" href="/media/css/fonts.css">
<link rel="stylesheet" href="/media/css/themes.css">
<link rel="stylesheet" href="/media/css/main.css">
@ -14,35 +13,26 @@
<link rel="stylesheet" href="/media/css/modifier-thumbnails.css">
<link rel="stylesheet" href="/media/css/fontawesome-all.min.css">
<link rel="stylesheet" href="/media/css/image-editor.css">
<link rel="stylesheet" href="/media/css/searchable-models.css">
<link rel="stylesheet" href="/media/css/image-modal.css">
<link rel="stylesheet" href="/media/css/plugins.css">
<link rel="stylesheet" href="/media/css/animations.css">
<link rel="stylesheet" href="/media/css/croppr.css" rel="stylesheet"/>
<link rel="stylesheet" href="/media/css/jquery-confirm.min.css">
<link rel="manifest" href="/media/manifest.webmanifest">
<script src="/media/js/jquery-3.6.1.min.js"></script>
<script src="/media/js/jquery-confirm.min.js"></script>
<script src="/media/js/jszip.min.js"></script>
<script src="/media/js/FileSaver.min.js"></script>
<script src="/media/js/marked.min.js"></script>
<script src="/media/js/croppr.js"></script>
<script src="/media/js/exif-reader.js"></script>
</head>
<body>
<div id="container">
<div id="top-nav">
<div id="logo">
<h1>
<img id="logo_img" src="/media/images/icon-512x512.png" >
Easy Diffusion
<small><span id="version">v3.0.2</span> <span id="updateBranchLabel"></span></small>
<small>v2.5.10 <span id="updateBranchLabel"></span></small>
</h1>
</div>
<div id="server-status">
<div id="server-status-color"></div>
<span id="server-status-msg">Stable Diffusion is starting..</span>
</div>
<div id="tab-container" class="tab-container">
<div id="tab-container">
<span id="tab-main" class="tab active">
<span><i class="fa fa-image icon"></i> Generate</span>
</span>
@ -60,30 +50,14 @@
<div id="editor">
<div id="editor-inputs">
<div id="editor-inputs-prompt" class="row">
<div id="prompt-toolbar" class="split-toolbar">
<div id="prompt-toolbar-left" class="toolbar-left">
<label for="prompt"><b>Enter Prompt</b>
<i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">
You can type your prompts in the below textbox or load them from a file. You can also
reload tasks from metadata embedded in PNG, WEBP and JPEG images (enable embedding from the Settings).
</span></i>
</label>
<small>or</small>
<button id="promptsFromFileBtn" class="tertiaryButton smallButton">Load from a file</button>
</div>
<div id="prompt-toolbar-right" class="toolbar-right">
<button id="image-modifier-dropdown" class="tertiaryButton smallButton">+ Image Modifiers</button>
<button id="embeddings-button" class="tertiaryButton smallButton displayNone">+ Embedding</button>
</div>
</div>
<label for="prompt"><b>Enter Prompt</b></label> <small>or</small> <button id="promptsFromFileBtn">Load from a file</button>
<textarea id="prompt" class="col-free">a photograph of an astronaut riding a horse</textarea>
<input id="prompt_from_file" name="prompt_from_file" type="file" /> <!-- hidden -->
<label for="negative_prompt" class="collapsible" id="negative_prompt_handle">
Negative Prompt
<a href="https://github.com/easydiffusion/easydiffusion/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top">Click to learn more about Negative Prompts</span></i></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top">Click to learn more about Negative Prompts</span></i></a>
<small>(optional)</small>
</label>
<button id="negative-embeddings-button" class="tertiaryButton smallButton displayNone">+ Negative Embedding</button>
<div class="collapsible-content">
<textarea id="negative_prompt" name="negative_prompt" placeholder="list the things to remove from the image (e.g. fog, green)"></textarea>
</div>
@ -91,16 +65,11 @@
<div id="editor-inputs-init-image" class="row">
<label for="init_image">Initial Image (img2img) <small>(optional)</small> </label>
<i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top">
Add img2img source image using the Browse button, via drag & drop from external file or browser image (incl.
rendered image) or by pasting an image from the clipboard using Ctrl+V.<br /><br />
You may also reload the metadata embedded in a PNG, WEBP or JPEG image (enable embedding from the Settings).
</span></i>
<div id="init_image_preview_container" class="image_preview_container">
<div id="init_image_wrapper" class="preview_image_wrapper">
<img id="init_image_preview" class="image_preview" src="" crossorigin="anonymous" />
<span id="init_image_size_box" class="img_bottom_label"></span>
<div id="init_image_wrapper">
<img id="init_image_preview" src="" />
<span id="init_image_size_box"></span>
<button class="init_image_clear image_clear_btn"><i class="fa-solid fa-xmark"></i></button>
</div>
<div id="init_image_buttons">
@ -124,12 +93,11 @@
</div>
<div id="apply_color_correction_setting" class="pl-5"><input id="apply_color_correction" name="apply_color_correction" type="checkbox"> <label for="apply_color_correction">Preserve color profile <small>(helps during inpainting)</small></label></div>
<div id="strict_mask_border_setting" class="pl-5"><input id="strict_mask_border" name="strict_mask_border" type="checkbox"> <label for="strict_mask_border">Strict Mask Border <small>(won't modify outside the mask, but the mask border might be visible)</small></label></div>
</div>
<div id="editor-inputs-tags-container" class="row">
<label>Image Modifiers <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">Click an Image Modifier to remove it, right-click to temporarily disable it, use Ctrl+Mouse Wheel to adjust its weight</span></i></label>
<label>Image Modifiers <i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip right">click an Image Modifier to remove it, right-click to temporarily disable it, use Ctrl+Mouse Wheel to adjust its weight</span></i>:</label>
<div id="editor-inputs-tags-list"></div>
</div>
@ -156,91 +124,22 @@
<div><table>
<tr><b class="settings-subheader">Image Settings</b></tr>
<tr class="pl-5"><td><label for="seed">Seed:</label></td><td><input id="seed" name="seed" size="10" value="0" onkeypress="preventNonNumericalInput(event)"> <input id="random_seed" name="random_seed" type="checkbox" checked><label for="random_seed">Random</label></td></tr>
<tr class="pl-5"><td><label for="num_outputs_total">Number of Images:</label></td>
<td><input id="num_outputs_total" name="num_outputs_total" value="1" type="number" value="1" min="1" step="1" onkeypres"="preventNonNumericalInput(event)">
<label><small>(total)</small></label>
<input id="num_outputs_parallel" name="num_outputs_parallel" value="1" type="number" value="1" min="1" step="1" onkeypress="preventNonNumericalInput(event)">
<label id="num_outputs_parallel_label" for="num_outputs_parallel"><small>(in parallel)</small></label></td>
</tr>
<tr class="pl-5"><td><label for="stable_diffusion_model">Model:</label></td><td class="model-input">
<input id="stable_diffusion_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
<button id="reload-models" class="secondaryButton reloadModels"><i class='fa-solid fa-rotate'></i></button>
<a href="https://github.com/easydiffusion/easydiffusion/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about custom models</span></i></a>
<tr class="pl-5"><td><label for="num_outputs_total">Number of Images:</label></td><td><input id="num_outputs_total" name="num_outputs_total" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label><small>(total)</small></label> <input id="num_outputs_parallel" name="num_outputs_parallel" value="1" size="1" onkeypress="preventNonNumericalInput(event)"> <label for="num_outputs_parallel"><small>(in parallel)</small></label></td></tr>
<tr class="pl-5"><td><label for="stable_diffusion_model">Model:</label></td><td>
<select id="stable_diffusion_model" name="stable_diffusion_model">
<!-- <option value="sd-v1-4" selected>sd-v1-4</option> -->
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about custom models</span></i></a>
</td></tr>
<tr class="pl-5 displayNone" id="enable_trt_config">
<td><label for="convert_to_tensorrt">Enable TensorRT:</label></td>
<td class="diffusers-restart-needed">
<input id="convert_to_tensorrt" name="convert_to_tensorrt" type="checkbox">
<!-- <label><small>Takes upto 20 mins the first time</small></label> -->
</td>
</tr>
<tr class="pl-5 displayNone" id="clip_skip_config">
<td><label for="clip_skip">Clip Skip:</label></td>
<td class="diffusers-restart-needed">
<input id="clip_skip" name="clip_skip" type="checkbox">
<a href="https://github.com/easydiffusion/easydiffusion/wiki/Clip-Skip" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about Clip Skip</span></i></a>
</td>
</tr>
<tr id="controlnet_model_container" class="pl-5">
<td><label for="controlnet_model">ControlNet Image:</label></td>
<td class="diffusers-restart-needed">
<div id="control_image_wrapper" class="preview_image_wrapper">
<img id="control_image_preview" class="image_preview" src="" crossorigin="anonymous" />
<span id="control_image_size_box" class="img_bottom_label"></span>
<button class="control_image_clear image_clear_btn"><i class="fa-solid fa-xmark"></i></button>
</div>
<input id="control_image" name="control_image" type="file" />
<a href="https://github.com/easydiffusion/easydiffusion/wiki/ControlNet" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about ControlNets</span></i></a>
<div id="controlnet_config" class="displayNone">
<label><small>Filter to apply:</small></label>
<select id="control_image_filter">
<option value="">None</option>
<optgroup label="Pose">
<option value="openpose">OpenPose (*)</option>
<option value="openpose_face">OpenPose face</option>
<option value="openpose_faceonly">OpenPose face-only</option>
<option value="openpose_hand">OpenPose hand</option>
<option value="openpose_full">OpenPose full</option>
</optgroup>
<optgroup label="Outline">
<option value="canny">Canny (*)</option>
<option value="mlsd">Straight lines</option>
<option value="scribble_hed">Scribble hed (*)</option>
<option value="scribble_hedsafe">Scribble hedsafe</option>
<option value="scribble_pidinet">Scribble pidinet</option>
<option value="scribble_pidsafe">Scribble pidsafe</option>
<option value="softedge_hed">Softedge hed</option>
<option value="softedge_hedsafe">Softedge hedsafe</option>
<option value="softedge_pidinet">Softedge pidinet</option>
<option value="softedge_pidsafe">Softedge pidsafe</option>
</optgroup>
<optgroup label="Depth">
<option value="normal_bae">Normal bae (*)</option>
<option value="depth_midas">Depth midas</option>
<option value="depth_zoe">Depth zoe</option>
<option value="depth_leres">Depth leres</option>
<option value="depth_leres++">Depth leres++</option>
</optgroup>
<optgroup label="Line art">
<option value="lineart_coarse">Lineart coarse</option>
<option value="lineart_realistic">Lineart realistic</option>
<option value="lineart_anime">Lineart anime</option>
</optgroup>
<optgroup label="Misc">
<option value="shuffle">Shuffle</option>
<option value="segment">Segment</option>
</optgroup>
</select>
<br/>
<label for="controlnet_model"><small>Model:</small></label> <input id="controlnet_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
<br/>
<label><small>Will download the necessary models, the first time.</small></label>
</div>
</td>
</tr>
<tr class="pl-5"><td><label for="vae_model">Custom VAE:</label></td><td>
<input id="vae_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
<a href="https://github.com/easydiffusion/easydiffusion/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about VAEs</span></i></a>
<!-- <tr id="modelConfigSelection" class="pl-5"><td><label for="model_config">Model Config:</i></label></td><td>
<select id="model_config" name="model_config">
</select>
</td></tr> -->
<tr class="pl-5"><td><label for="vae_model">Custom VAE:</i></label></td><td>
<select id="vae_model" name="vae_model">
<!-- <option value="" selected>None</option> -->
</select>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about VAEs</span></i></a>
</td></tr>
<tr id="samplerSelection" class="pl-5"><td><label for="sampler_name">Sampler:</label></td><td>
<select id="sampler_name" name="sampler_name">
@ -253,30 +152,23 @@
<option value="dpm2_a">DPM2 Ancestral</option>
<option value="lms">LMS</option>
<option value="dpm_solver_stability">DPM Solver (Stability AI)</option>
<option value="dpmpp_2s_a">DPM++ 2s Ancestral (Karras)</option>
<option value="dpmpp_2m">DPM++ 2m (Karras)</option>
<option value="dpmpp_2m_sde" class="diffusers-only">DPM++ 2m SDE (Karras)</option>
<option value="dpmpp_sde">DPM++ SDE (Karras)</option>
<option value="dpm_adaptive" class="k_diffusion-only">DPM Adaptive (Karras)</option>
<option value="ddpm" class="diffusers-only">DDPM</option>
<option value="deis" class="diffusers-only">DEIS</option>
<option value="unipc_snr" class="k_diffusion-only">UniPC SNR</option>
<option value="unipc_tu">UniPC TU</option>
<option value="unipc_snr_2" class="k_diffusion-only">UniPC SNR 2</option>
<option value="unipc_tu_2" class="k_diffusion-only">UniPC TU 2</option>
<option value="unipc_tq" class="k_diffusion-only">UniPC TQ</option>
<option value="dpmpp_2s_a">DPM++ 2s Ancestral</option>
<option value="dpmpp_2m">DPM++ 2m</option>
<option value="dpmpp_sde">DPM++ SDE</option>
<option value="dpm_fast">DPM Fast</option>
<option value="dpm_adaptive">DPM Adaptive</option>
</select>
<a href="https://github.com/easydiffusion/easydiffusion/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about samplers</span></i></a>
<a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about samplers</span></i></a>
</td></tr>
<tr class="pl-5"><td><label>Image Size: </label></td><td id="image-size-options">
<tr class="pl-5"><td><label>Image Size: </label></td><td>
<select id="width" name="width" value="512">
<option value="128">128</option>
<option value="128">128 (*)</option>
<option value="192">192</option>
<option value="256">256</option>
<option value="256">256 (*)</option>
<option value="320">320</option>
<option value="384">384</option>
<option value="448">448</option>
<option value="512" selected="">512 (*)</option>
<option value="512" selected>512 (*)</option>
<option value="576">576</option>
<option value="640">640</option>
<option value="704">704</option>
@ -290,16 +182,15 @@
<option value="1792">1792</option>
<option value="2048">2048</option>
</select>
<label id="widthLabel" for="width"><small><span>(width)</span></small></label>
<span id="swap-width-height" class="clickable smallButton" style="margin-left: 2px; margin-right:2px;"><i class="fa-solid fa-right-left"><span class="simple-tooltip top-left"> Swap width and height </span></i></span>
<label for="width"><small>(width)</small></label>
<select id="height" name="height" value="512">
<option value="128">128</option>
<option value="128">128 (*)</option>
<option value="192">192</option>
<option value="256">256</option>
<option value="256">256 (*)</option>
<option value="320">320</option>
<option value="384">384</option>
<option value="448">448</option>
<option value="512" selected="">512 (*)</option>
<option value="512" selected>512 (*)</option>
<option value="576">576</option>
<option value="640">640</option>
<option value="704">704</option>
@ -313,76 +204,27 @@
<option value="1792">1792</option>
<option value="2048">2048</option>
</select>
<label id="heightLabel" for="height"><small><span>(height)</span></small></label>
<div id="recent-resolutions-container">
<span id="recent-resolutions-button" class="clickable"><i class="fa-solid fa-sliders"><span class="simple-tooltip top-left"> Advanced sizes </span></i></span>
<div id="recent-resolutions-popup" class="displayNone">
<small>Custom size:</small><br>
<input id="custom-width" name="custom-width" type="number" min="128" value="512" onkeypress="preventNonNumericalInput(event)">
&times;
<input id="custom-height" name="custom-height" type="number" min="128" value="512" onkeypress="preventNonNumericalInput(event)"><br>
<small>Resize:</small><br>
<input id="resize-slider" name="resize-slider" class="editor-slider" value="1" type="range" min="0.4" max="2" step="0.005" style="width:100%;"><br>
<div id="enlarge-buttons"><button data-factor="0.5" class="tertiaryButton smallButton">×0.5</button>&nbsp;<button data-factor="1.2" class="tertiaryButton smallButton">×1.2</button>&nbsp;<button data-factor="1.5" class="tertiaryButton smallButton">×1.5</button>&nbsp;<button data-factor="2" class="tertiaryButton smallButton">×2</button>&nbsp;<button data-factor="3" class="tertiaryButton smallButton">×3</button></div>
<div class="two-column">
<div class="left-column">
<small>Recently&nbsp;used:</small><br>
<div id="recent-resolution-list">
</div>
</div>
<div class="right-column">
<small>Common&nbsp;sizes:</small><br>
<div id="common-resolution-list">
</div>
</div>
</div>
</div>
</div>
<div id="small_image_warning" class="displayNone">Small image sizes can cause bad image quality</div>
<label for="height"><small>(height)</small></label>
</td></tr>
<tr class="pl-5"><td><label for="num_inference_steps">Inference Steps:</label></td><td> <input id="num_inference_steps" name="num_inference_steps" type="number" min="1" step="1" style="width: 42pt" value="25" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr class="pl-5"><td><label for="num_inference_steps">Inference Steps:</label></td><td> <input id="num_inference_steps" name="num_inference_steps" size="4" value="25" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr class="pl-5"><td><label for="guidance_scale_slider">Guidance Scale:</label></td><td> <input id="guidance_scale_slider" name="guidance_scale_slider" class="editor-slider" value="75" type="range" min="11" max="500"> <input id="guidance_scale" name="guidance_scale" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr id="prompt_strength_container" class="pl-5"><td><label for="prompt_strength_slider">Prompt Strength:</label></td><td> <input id="prompt_strength_slider" name="prompt_strength_slider" class="editor-slider" value="80" type="range" min="0" max="99"> <input id="prompt_strength" name="prompt_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td></tr>
<tr id="lora_model_container" class="pl-5">
<td>
<label for="lora_model">LoRA:</label>
</td>
<td class="diffusers-restart-needed">
<div id="lora_model" data-path=""></div>
</td>
</tr>
<tr id="hypernetwork_model_container" class="pl-5"><td><label for="hypernetwork_model">Hypernetwork:</label></td><td>
<input id="hypernetwork_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
<tr class="pl-5"><td><label for="hypernetwork_model">Hypernetwork:</i></label></td><td>
<select id="hypernetwork_model" name="hypernetwork_model">
<!-- <option value="" selected>None</option> -->
</select>
</td></tr>
<tr id="hypernetwork_strength_container" class="pl-5">
<td><label for="hypernetwork_strength_slider">Hypernetwork Strength:</label></td>
<td> <input id="hypernetwork_strength_slider" name="hypernetwork_strength_slider" class="editor-slider" value="100" type="range" min="0" max="100"> <input id="hypernetwork_strength" name="hypernetwork_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"><br/></td>
</tr>
<tr id="tiling_container" class="pl-5">
<td><label for="tiling">Seamless Tiling:</label></td>
<td class="diffusers-restart-needed">
<select id="tiling" name="tiling">
<option value="none" selected>None</option>
<option value="x">Horizontal</option>
<option value="y">Vertical</option>
<option value="xy">Both</option>
</select>
<a href="https://github.com/easydiffusion/easydiffusion/wiki/Seamless-Tiling" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about Seamless Tiling</span></i></a>
</td>
</tr>
<tr class="pl-5"><td><label for="output_format">Output Format:</label></td><td>
<select id="output_format" name="output_format">
<option value="jpeg" selected>jpeg</option>
<option value="png">png</option>
<option value="webp">webp</option>
</select>
<span id="output_lossless_container" class="displayNone">
<input id="output_lossless" name="output_lossless" type="checkbox"><label for="output_lossless">Lossless</label>
</span>
</td></tr>
<tr class="pl-5" id="output_quality_row"><td><label for="output_quality">Image Quality:</label></td><td>
<tr class="pl-5" id="output_quality_row"><td><label for="output_quality">JPEG Quality:</label></td><td>
<input id="output_quality_slider" name="output_quality" class="editor-slider" value="75" type="range" min="10" max="95"> <input id="output_quality" name="output_quality" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)">
</td></tr>
</table></div>
@ -390,80 +232,57 @@
<div><ul>
<li><b class="settings-subheader">Render Settings</b></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slower images)</small></label></li>
<li class="pl-5" id="use_face_correction_container">
<input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div>
<table id="codeformer_settings" class="displayNone sub-settings">
<tr class="pl-5"><td><label for="codeformer_fidelity_slider">Strength:</label></td><td><input id="codeformer_fidelity_slider" name="codeformer_fidelity_slider" class="editor-slider" value="5" type="range" min="0" max="10"> <input id="codeformer_fidelity" name="codeformer_fidelity" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
<tr class="pl-5"><td><label for="codeformer_upscale_faces">Upscale Faces:</label></td><td><input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox" checked> <label><small>(improves the resolution of faces)</small></label></td></tr>
</table>
</li>
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes <small>(uses GFPGAN)</small></label></li>
<li class="pl-5">
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Scale up by</label>
<select id="upscale_amount" name="upscale_amount">
<option id="upscale_amount_2x" value="2">2x</option>
<option id="upscale_amount_4x" value="4" selected>4x</option>
<option value="2">2x</option>
<option value="4" selected>4x</option>
</select>
with
<select id="upscale_model" name="upscale_model">
<option value="RealESRGAN_x4plus" selected>RealESRGAN_x4plus</option>
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
<option value="latent_upscaler">Latent Upscaler 2x</option>
</select>
<table id="latent_upscaler_settings" class="displayNone sub-settings">
<tr class="pl-5"><td><label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td><input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)"></td></tr>
</table>
</li>
<li class="pl-5"><input id="show_only_filtered_image" name="show_only_filtered_image" type="checkbox" checked> <label for="show_only_filtered_image">Show only the corrected/upscaled image</label></li>
</ul></div>
</div>
</div>
<label><small><b>Note:</b> The Image Modifiers section has moved to the <code>+ Image Modifiers</code> button at the top, just above the Prompt textbox.</small></label>
<div id="editor-modifiers" class="panel-box">
<h4 class="collapsible">
Image Modifiers (art styles, tags etc)
<i id="modifier-settings-btn" class="fa-solid fa-gear section-button">
<span class="simple-tooltip left">
Add Custom Modifiers
</span>
</i>
</h4>
<div id="editor-modifiers-entries" class="collapsible-content">
<div id="editor-modifiers-entries-toolbar">
<label for="preview-image">Image Style:</label>
<select id="preview-image" name="preview-image" value="portrait">
<option value="portrait" selected="">Face</option>
<option value="landscape">Landscape</option>
</select>
&nbsp;
<label for="modifier-card-size-slider">Thumbnail Size:</label>
<input id="modifier-card-size-slider" name="modifier-card-size-slider" value="0" type="range" min="-3" max="5">
</div>
</div>
</div>
</div>
<div id="preview" class="col-free">
<div id="initial-text">
Type a prompt and press the "Make Image" button.<br/><br/>You can set an "Initial Image" if you want to guide the AI.<br/><br/>
You can also add modifiers like "Realistic", "Pencil Sketch", "ArtStation" etc by browsing through the "Image Modifiers" section
and selecting the desired modifiers.<br/><br/>
Click "Image Settings" for additional settings like seed, image size, number of images to generate etc.<br/><br/>Enjoy! :)
</div>
<div id="preview-content">
<div id="preview-tools" class="displayNone">
<button id="clear-all-previews" class="secondaryButton"><i class="fa-solid fa-trash-can icon"></i> Clear All</button>
<button class="tertiaryButton" id="show-download-popup"><i class="fa-solid fa-download"></i><span> Download images</span></button>
<div class="display-settings">
<button id="undo" class="displayNone primaryButton">
Undo <i class="fa-solid fa-rotate-left icon"></i>
<span class="simple-tooltip left">Undo last remove</span>
</button>
<span class="auto-scroll"></span> <!-- hack for Rabbit Hole update -->
<button id="auto_scroll_btn" class="tertiaryButton">
<i class="fa-solid fa-arrows-up-to-line icon"></i>
<input id="auto_scroll" name="auto_scroll" type="checkbox" style="display: none">
<span class="simple-tooltip left">
Scroll to generated image (<span class="state">OFF</span>)
</span>
</button>
<button class="dropdown tertiaryButton">
<i class="fa-solid fa-magnifying-glass-plus icon dropbtn"></i>
<span class="simple-tooltip left">
Image Size
</span>
</button>
<div class="dropdown-content">
<div class="dropdown-item">
<input id="thumbnail_size" name="thumbnail_size" class="editor-slider" type="range" value="70" min="5" max="200" oninput="sliderUpdate(event)">
<input id="thumbnail_size-input" name="thumbnail_size-input" size="3" value="70" pattern="^[0-9.]+$" onkeypress="preventNonNumericalInput(event)" oninput="sliderUpdate(event)">&nbsp;%
</div>
</div>
</div>
<div class="clearfix" style="clear: both;"></div>
</div>
<div id="supportBanner" class="displayNone">
If you found this project useful and want to help keep it alive, please consider <a href="https://ko-fi.com/easydiffusion" target="_blank">buying me a coffee</a> or <a href="https://www.patreon.com/EasyDiffusion" target="_blank">supporting me on Patreon</a> to help cover the cost of development and maintenance! Or even better, <a href="https://cmdr2.itch.io/easydiffusion" target="_blank">purchasing it at the full price</a>. Thank you for your support!
</div>
<div id="preview-tools">
<button id="clear-all-previews" class="secondaryButton"><i class="fa-solid fa-trash-can"></i> Clear All</button>
</div>
</div>
</div>
@ -471,22 +290,9 @@
<div id="tab-content-settings" class="tab-content">
<div id="system-settings" class="tab-content-inner">
<h1>System Settings</h1>
<div class="parameters-table" id="system-settings-table"></div>
<div class="parameters-table"></div>
<br/>
<button id="save-system-settings-btn" class="primaryButton">Save</button>
<div id="install-extras-container" class="displayNone">
<br/>
<div id="install-extras">
<h3><i class="fa fa-cubes-stacked"></i> Optional Packages</h3>
<div class="parameters-table" id="system-settings-install-extras-table"></div>
</div>
</div>
<br/><br/>
<div id="share-easy-diffusion">
<h3><i class="fa fa-user-group"></i> Share Easy Diffusion</h3>
<div class="parameters-table" id="system-settings-network-table">
</div>
</div>
<br/><br/>
<div>
<h3><i class="fa fa-microchip icon"></i> System Info</h3>
@ -511,23 +317,23 @@
<ul id="help-links">
<li><span class="help-section">Using the software</span>
<ul>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/How-To-Use" target="_blank"><i class="fa-solid fa-book fa-fw"></i> How to use</a>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/UI-Overview" target="_blank"><i class="fa-solid fa-list fa-fw"></i> UI Overview</a>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/Writing-Prompts" target="_blank"><i class="fa-solid fa-pen-to-square fa-fw"></i> Writing prompts</a>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/Inpainting" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Inpainting</a>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/Run-on-Multiple-GPUs" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Run on Multiple GPUs</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/How-To-Use" target="_blank"><i class="fa-solid fa-book fa-fw"></i> How to use</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Overview" target="_blank"><i class="fa-solid fa-list fa-fw"></i> UI Overview</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Writing-Prompts" target="_blank"><i class="fa-solid fa-pen-to-square fa-fw"></i> Writing prompts</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Inpainting" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Inpainting</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Run-on-Multiple-GPUs" target="_blank"><i class="fa-solid fa-paintbrush fa-fw"></i> Run on Multiple GPUs</a>
</ul>
<li><span class="help-section">Installation</span>
<ul>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/Troubleshooting" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Troubleshooting</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Troubleshooting" target="_blank"><i class="fa-solid fa-circle-question fa-fw"></i> Troubleshooting</a>
</ul>
<li><span class="help-section">Downloadable Content</span>
<ul>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-images fa-fw"></i> Custom Models</a>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/UI-Plugins" target="_blank"><i class="fa-solid fa-puzzle-piece fa-fw"></i> UI Plugins</a>
<li> <a href="https://github.com/easydiffusion/easydiffusion/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-hand-sparkles fa-fw"></i> VAE Variational Auto Encoder</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Custom-Models" target="_blank"><i class="fa-solid fa-images fa-fw"></i> Custom Models</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/UI-Plugins" target="_blank"><i class="fa-solid fa-puzzle-piece fa-fw"></i> UI Plugins</a>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/VAE-Variational-Auto-Encoder" target="_blank"><i class="fa-solid fa-hand-sparkles fa-fw"></i> VAE Variational Auto Encoder</a>
</ul>
</ul>
</div>
@ -537,7 +343,7 @@
<ul id="community-links">
<li><a href="https://discord.com/invite/u9yhsFmEkB" target="_blank"><i class="fa-brands fa-discord fa-fw"></i> Discord user community</a></li>
<li><a href="https://www.reddit.com/r/StableDiffusionUI/" target="_blank"><i class="fa-brands fa-reddit fa-fw"></i> Reddit community</a></li>
<li><a href="https://github.com/easydiffusion/easydiffusion" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
<li><a href="https://github.com/cmdr2/stable-diffusion-ui" target="_blank"><i class="fa-brands fa-github fa-fw"></i> Source code on GitHub</a></li>
</ul>
</div>
</div>
@ -545,85 +351,7 @@
</div>
</div>
<div class="popup" id="splash-screen" data-version="1">
<div>
<i class="close-button fa-solid fa-xmark"></i>
<img class="splash-img" src="/media/images/icon-512x512.png" width="128" height="128">
<h1>Diffusers Tech Preview</h1>
<p>The Diffusers Tech Preview allows early access to the new features based on <a href="https://huggingface.co/docs/diffusers/index" target="_blank">Diffusers</a>.</p>
<p>This is under active development, and is missing a few features. It is experimental! Please report any bugs to the #beta channel in our <a href="https://discord.gg/QUcNZufQNZ" target="_blank">Discord</a> server!</p>
<h2>New upcoming features in our new engine</h2>
<ul>
<li><a href="https://huggingface.co/blog/lora" target="_blank">LORA</a> support - Place LORA files in the <tt>models/lora</tt> folder.</li>
<li><a href="https://github.com/damian0815/compel/blob/main/Reference.md" target="_blank">Compel Prompt Parser</a> - New, more powerful parser. In short:
<ul>
<li> no limit to the length of prompts (i.e. long prompts are supported)</li>
<li> Use <tt>+</tt> and <tt>-</tt> to increase/decrease the weight. E.g. <tt>apple</tt>, <tt>apple+</tt>, <tt>apple++</tt>, <tt>apple+++</tt>,
or <tt>apple-</tt>, <tt>apple--</tt> for different weights.</li>
<li> Use exact weights - 0.0 to 1.0 reduces the weight, 1.0 to 2.0 increases the weight.
Think of it like a multiplier, like 1.5x or 0.5x: E.g. <tt>(apple)0.8 falling from a tree</tt>,
<tt>(apple)1.5 falling from a tree</tt>, <tt>(apple falling)1.4 from a tree</tt></li>
<li> You can group tokens together using parentheses/round-brackets. E.g. <tt>(apple falling)++
from a tree</tt>. Nested parentheses are supported.</li>
</ul>
This clarifies a few things:
<ul>
<li> colon (<tt>:</tt>) is NOT used for blending. Neither is it used for weights. It has no impact and
will be considered a part of the prompt.</li>
<li> <tt>(())</tt> and <tt>[]</tt> do not affect the prompt's weights.</li>
</ul>
</li>
<li> More choices for img2img samplers</li>
<li> Support for official inpainting models</li>
<li> Generate images that tile seamlessly</li>
<li> <a href="https://github.com/cmdr2/stable-diffusion-ui/wiki/Clip-Skip" target="_blank">Clip Skip</a> support allows to skip the last CLIP layer (recommended by some LORA models)</li>
<li> New samplers: DDPM and DEIS</li>
<li> Memory optimizations that allow the use of 2GB GPUs</li>
</ul>
<h2>Known issues</h2>
<ul>
<li> Some LoRA consistently fail to load in EasyDiffusion</li>
<li> Some LoRA are far more sensitive to alpha (compared to a11)</li>
<li> Hangs sometimes on "compel is ready", while making the token.</li>
<li> Some custom inpainting models don't work</li>
<li> These samplers don't work yet: Unipc SNR, Unipc TQ, Unipc SNR2, DPM++ 2s Ancestral, DPM++ SDE, DPM Fast, DPM Adaptive, DPM2</li>
<li> Hypernetwork doesn't work</li>
<li> The time remaining in browser differs from the one in the console</li>
</ul>
</div>
</div>
<dialog id="download-images-dialog">
<div class="dialog-header">
<div class="dialog-header-left">
<h4>Download all images</h4>
<span></span>
</div>
<div>
<i id="download-images-close-button" class="fa-solid fa-xmark fa-lg"></i>
</div>
</div>
<div class="parameters-table">
<div>
<div><i class="fa fa-file-zipper"></i></div>
<div><label for="theme">Download as a ZIP file</label><small>Instead of downloading individual files, generate one zip file with all images</small></div>
<div><div class="input-toggle"><input id="zip_toggle" name="zip_toggle" checked="" type="checkbox"><label for="zip_toggle"></label></div></div>
</div>
<div id="download-add-folders">
<div><i class="fa fa-folder-tree"></i></div>
<div><label for="theme">Add per-job folders</label><small>Place images into job folders</small></div>
<div><div class="input-toggle"><input id="tree_toggle" name="tree_toggle" checked="" type="checkbox"><label for="tree_toggle"></label></div></div>
</div>
<div>
<div><i class="fa fa-sliders"></i></div>
<div><label for="theme">Add metadata files</label><small>For each image, also download a JSON file with all the settings used to generate the image</small></div>
<div><div class="input-toggle"><input id="json_toggle" name="json_toggle" checked="" type="checkbox"><label for="json_toggle"></label></div></div>
</div>
</div>
<div class="center">
<button id="save-all-images" class="primaryButton"><i class="fa-solid fa-images"></i> Start download</button>
</div>
</dialog>
<div id="save-settings-config" class="popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
@ -634,129 +362,16 @@
</div>
</div>
<div id="editor-modifiers">
<div id="editor-modifiers-header" class="dialog-header">
<div id="modifiers-header-left" class="dialog-header-left">
<h4>Image Modifiers</h4>
<span>(drawing style, camera, etc.)</span>
</div>
<div id="modifiers-header-right">
<i id="modifier-settings-btn" class="fa-solid fa-gear section-button">
<span class="simple-tooltip left">
Add Custom Modifiers
</span>
</i>
<i id="modifiers-container-size-btn" class="fa-solid fa-expand"></i>
<i id="modifiers-close-button" class="fa-solid fa-xmark fa-lg"></i>
</div>
<div id="modifier-settings-config" class="popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
<h1>Modifier Settings</h1>
<p>Set your custom modifiers (one per line)</p>
<textarea id="custom-modifiers-input" placeholder="Enter your custom modifiers, one-per-line"></textarea>
<p><small><b>Tip:</b> You can include special characters like {} () [] and |. You can also put multiple comma-separated phrases in a single line, to make a single modifier that combines all of those.</small></p>
</div>
<div id="editor-modifiers-subheader">
<div id="modifiers-action-collapsibles-btn">
<i class="modifiers-action-icon fa-solid fa-square-plus"></i>
<span class="modifiers-action-text">
Expand Categories
</span>
</div>
<div>
<label for="preview-image">Image Style:</label>
<select id="preview-image" name="preview-image" value="portrait">
<option value="portrait" selected="">Face</option>
<option value="landscape">Landscape</option>
</select>
</div>
<div>
<label for="modifier-card-size-slider">Thumbnail Size:</label>
<input id="modifier-card-size-slider" name="modifier-card-size-slider" value="0" type="range" min="-2" max="3">
</div>
</div>
<div id="editor-modifiers-entries" class="collapsible-content"></div>
</div>
<dialog id="modifier-settings-config">
<div id="modifier-settings-header" class="dialog-header">
<div id="modifier-settings-header-left" class="dialog-header-left">
<h4>Custom Modifiers</h4>
<span>Set your custom modifiers (one per line)</span>
</div>
<div id="modifier-settings-header-right">
<i id="modifier-settings-close-button" class="fa-solid fa-xmark fa-lg"></i>
</div>
</div>
<textarea id="custom-modifiers-input" placeholder="Enter your custom modifiers, one-per-line" spellcheck="false"></textarea>
<div>
<small>
<b>Tip:</b> You can include special characters like {} () [] and |. You can also put multiple comma-separated
phrases in a single line, to make a single modifier that combines all of those.
</small>
</div>
</dialog>
<dialog id="embeddings-dialog">
<div id="embeddings-dialog-header" class="dialog-header">
<div id="embeddings-dialog-header-left" class="dialog-header-left">
<h4>Embeddings</h4>
<span>
<span class="displayNone" id="positive-embedding-text"> Add embeddings to the prompt (click) or negative prompt (shift-click)</span>
<span class="displayNone" id="negative-embedding-text"> Add embeddings to the negative prompt</span>
<span>
</div>
<div id="embeddings-dialog-header-right">
<button id="add-embeddings-thumb" class="tertiaryButton smallButton" style="background-color: var(--background-color4);"><i class="fa-solid fa-folder-plus"></i> Add thumbnail</button>
<input id="add-embeddings-thumb-input" name="add-embeddings-thumb-input" type="file" class="displayNone">
<i id="embeddings-dialog-close-button" class="fa-solid fa-xmark fa-lg"></i>
</div>
</div>
<div>
<button id="embeddings-action-collapsibles-btn" class="tertiaryButton smallButton">
<i class="embeddings-action-icon fa-solid fa-square-plus"></i>
<span class="embeddings-action-text">Expand Categories</span>
</button>
<i class="fa-solid fa-magnifying-glass"></i>
<input id="embeddings-search-box" type="text" spellcheck="false" autocomplete="off" placeholder="Search...">
<label for="embedding-card-size-selector"><small>Thumbnail Size:</small></label>
<select id="embedding-card-size-selector" name="embedding-card-size-selector">
<option value="-2">0</option>
<option value="-1" selected>1</option>
<option value="0">2</option>
<option value="1">3</option>
<option value="2">4</option>
<option value="3">5</option>
</select>
<span style="float:right;"><label>Mode:</label>&nbsp;<select id="embeddings-mode"><option value="insert">Insert at cursor position</option><option value="append">Append at the end</option></select>
</div>
<div id="embeddings-list">
</div>
</div>
</dialog>
<dialog id="use-as-thumb-dialog">
<div id="use-as-thumb-dialog-header" class="dialog-header">
<div id="use-as-thumb-dialog-header-left" class="dialog-header-left">
<h4>Use as thumbnail</h4>
<span>Use a pictures as thumbnail for embeddings, LORAs, etc.</span>
</div>
<div id="use-as-thumb-dialog-header-right">
<i id="use-as-thumb-dialog-close-button" class="fa-solid fa-xmark fa-lg"></i>
</div>
</div>
<div>
<div class="use-as-thumb-grid">
<div class="use-as-thumb-preview">
<div id="use-as-thumb-img-container"><img id="use-as-thumb-image" src="/media/images/noimg.png" width="512" height="512"></div>
</div>
<div class="use-as-thumb-select">
<label for="use-as-thumb-select">Use the thumbnail for:</label><br>
<select id="use-as-thumb-select" size="16" multiple>
</select>
</div>
<div class="use-as-thumb-buttons">
<button class="tertiaryButton" id="use-as-thumb-save">Save thumbnail</button>
<button class="tertiaryButton" id="use-as-thumb-cancel">Cancel</button>
</div>
</div>
</div>
</dialog>
<div id="image-editor" class="popup image-editor-popup">
<div>
<i class="close-button fa-solid fa-xmark"></i>
@ -792,10 +407,11 @@
<div id="footer-spacer"></div>
<div id="footer">
<div class="line-separator">&nbsp;</div>
<p>Please feel free to join the <a href="https://discord.com/invite/u9yhsFmEkB" target="_blank">discord community</a> or <a href="https://github.com/easydiffusion/easydiffusion/issues" target="_blank">file an issue</a> if you have any problems or suggestions in using this interface.</p>
<p>If you found this project useful and want to help keep it alive, please <a href="https://ko-fi.com/cmdr2_stablediffusion_ui" target="_blank"><img src="/media/images/kofi.png" id="coffeeButton"></a> to help cover the cost of development and maintenance! Thank you for your support!</p>
<p>Please feel free to join the <a href="https://discord.com/invite/u9yhsFmEkB" target="_blank">discord community</a> or <a href="https://github.com/cmdr2/stable-diffusion-ui/issues" target="_blank">file an issue</a> if you have any problems or suggestions in using this interface.</p>
<div id="footer-legal">
<p><b>Disclaimer:</b> The authors of this project are not responsible for any content generated using this interface.</p>
<p>This license of this software forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, <br/>spread misinformation and target vulnerable groups. For the full list of restrictions please read <a href="https://github.com/easydiffusion/easydiffusion/blob/main/LICENSE" target="_blank">the license</a>.</p>
<p>This license of this software forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, <br/>spread misinformation and target vulnerable groups. For the full list of restrictions please read <a href="https://github.com/cmdr2/stable-diffusion-ui/blob/main/LICENSE" target="_blank">the license</a>.</p>
<p>By using this software, you consent to the terms and conditions of the license.</p>
</div>
</div>
@ -804,42 +420,32 @@
<script src="media/js/utils.js"></script>
<script src="media/js/engine.js"></script>
<script src="media/js/parameters.js"></script>
<script src="media/js/plugins.js"></script>
<script src="media/js/image-modifiers.js"></script>
<script src="media/js/auto-save.js"></script>
<script src="media/js/searchable-models.js"></script>
<script src="media/js/multi-model-selector.js"></script>
<script src="media/js/task-manager.js"></script>
<script src="media/js/main.js"></script>
<script src="media/js/plugins.js"></script>
<script src="media/js/themes.js"></script>
<script src="media/js/dnd.js"></script>
<script src="media/js/image-editor.js"></script>
<script src="media/js/image-modal.js"></script>
<script>
async function init() {
await initSettings()
await getModels(false)
await getModels()
await getAppConfig()
await loadUIPlugins()
await loadModifiers()
await getSystemInfo()
// await initPlugins()
SD.init({
events: {
statusChange: setServerStatus,
idle: onIdle,
ping: onPing
statusChange: setServerStatus
, idle: onIdle
}
})
// splashScreen()
// load models again, but scan for malicious this time
await getModels(true)
// playSound()
playSound()
}
init()

View File

@ -1,14 +1,10 @@
from easydiffusion import model_manager, app, server, bucket_manager
from easydiffusion.server import server_api # required for uvicorn
app.init()
server.init()
from easydiffusion import model_manager, app, server
from easydiffusion.server import server_api # required for uvicorn
# Init the app
model_manager.init()
app.init_render_threads()
bucket_manager.init()
app.init()
server.init()
# start the browser ui
app.open_browser()

View File

@ -1,68 +0,0 @@
@keyframes ldio-8f673ktaleu-1 {
0% { transform: rotate(0deg) }
50% { transform: rotate(-45deg) }
100% { transform: rotate(0deg) }
}
@keyframes ldio-8f673ktaleu-2 {
0% { transform: rotate(180deg) }
50% { transform: rotate(225deg) }
100% { transform: rotate(180deg) }
}
.ldio-8f673ktaleu > div:nth-child(2) {
transform: translate(-15px,0);
}
.ldio-8f673ktaleu > div:nth-child(2) div {
position: absolute;
top: 20px;
left: 20px;
width: 60px;
height: 30px;
border-radius: 60px 60px 0 0;
background: #f3b72e;
animation: ldio-8f673ktaleu-1 1s linear infinite;
transform-origin: 30px 30px
}
.ldio-8f673ktaleu > div:nth-child(2) div:nth-child(2) {
animation: ldio-8f673ktaleu-2 1s linear infinite
}
.ldio-8f673ktaleu > div:nth-child(2) div:nth-child(3) {
transform: rotate(-90deg);
animation: none;
}@keyframes ldio-8f673ktaleu-3 {
0% { transform: translate(95px,0); opacity: 0 }
20% { opacity: 1 }
100% { transform: translate(35px,0); opacity: 1 }
}
.ldio-8f673ktaleu > div:nth-child(1) {
display: block;
}
.ldio-8f673ktaleu > div:nth-child(1) div {
position: absolute;
top: 46px;
left: -4px;
width: 8px;
height: 8px;
border-radius: 50%;
background: #3869c5;
animation: ldio-8f673ktaleu-3 1s linear infinite
}
.ldio-8f673ktaleu > div:nth-child(1) div:nth-child(1) { animation-delay: -0.67s }
.ldio-8f673ktaleu > div:nth-child(1) div:nth-child(2) { animation-delay: -0.33s }
.ldio-8f673ktaleu > div:nth-child(1) div:nth-child(3) { animation-delay: 0s }
.loadingio-spinner-bean-eater-x0y3u8qky4n {
width: 58px;
height: 58px;
display: inline-block;
overflow: hidden;
background: none;
}
.ldio-8f673ktaleu {
width: 100%;
height: 100%;
position: relative;
transform: translateZ(0) scale(0.58);
backface-visibility: hidden;
transform-origin: 0 0; /* see note above */
}
.ldio-8f673ktaleu div { box-sizing: content-box; }
/* generated by https://loading.io/ */

View File

@ -69,16 +69,13 @@
}
.parameters-table > div:first-child {
border-top-left-radius: 12px;
border-top-right-radius: 12px;
border-radius: 12px 12px 0px 0px;
}
.parameters-table > div:last-child {
border-bottom-left-radius: 12px;
border-bottom-right-radius: 12px;
border-radius: 0px 0px 12px 12px;
}
.parameters-table .fa-fire,
.parameters-table .fa-bolt {
.parameters-table .fa-fire {
color: #F7630C;
}
}

View File

@ -1,58 +0,0 @@
.croppr-container * {
user-select: none;
-moz-user-select: none;
-webkit-user-select: none;
-ms-user-select: none;
box-sizing: border-box;
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
}
.croppr-container img {
vertical-align: middle;
max-width: 100%;
}
.croppr {
position: relative;
display: inline-block;
}
.croppr-overlay {
background: rgba(0,0,0,0.5);
position: absolute;
top: 0;
right: 0;
bottom: 0;
left: 0;
z-index: 1;
cursor: crosshair;
}
.croppr-region {
border: 1px dashed rgba(0, 0, 0, 0.5);
position: absolute;
z-index: 3;
cursor: move;
top: 0;
}
.croppr-imageClipped {
position: absolute;
top: 0;
right: 0;
bottom: 0;
left: 0;
z-index: 2;
pointer-events: none;
}
.croppr-handle {
border: 1px solid black;
background-color: white;
width: 10px;
height: 10px;
position: absolute;
z-index: 4;
top: 0;
}

View File

@ -3,7 +3,7 @@
font-family: 'Work Sans';
font-style: normal;
font-weight: 400;
src: local('Work Sans'),
src: local(''),
url('/media/fonts/work-sans-v18-latin-regular.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-regular.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}
@ -13,7 +13,7 @@
font-family: 'Work Sans';
font-style: normal;
font-weight: 600;
src: local('Work Sans'),
src: local(''),
url('/media/fonts/work-sans-v18-latin-600.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-600.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}
@ -23,7 +23,7 @@
font-family: 'Work Sans';
font-style: normal;
font-weight: 700;
src: local('Work Sans'),
src: local(''),
url('/media/fonts/work-sans-v18-latin-700.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-700.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}
@ -33,8 +33,8 @@
font-family: 'Work Sans';
font-style: normal;
font-weight: 800;
src: local('Work Sans'),
src: local(''),
url('/media/fonts/work-sans-v18-latin-800.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */
url('/media/fonts/work-sans-v18-latin-800.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */
}

View File

@ -31,7 +31,7 @@
}
.editor-options-container > * > *.active {
border: 1px solid #3584e4;
border: 2px solid #3584e4;
}
.image_editor_opacity .editor-options-container > * > *:not(.active) {
@ -96,7 +96,7 @@
.editor-controls-center {
/* background: var(--background-color2); */
flex: 0;
flex: 1;
display: flex;
justify-content: center;
align-items: center;
@ -105,8 +105,6 @@
.editor-controls-center > div {
position: relative;
background: black;
margin: 20pt;
margin-top: 40pt;
}
.editor-controls-center canvas {
@ -151,25 +149,17 @@
pointer-events: none;
}
.image-editor-popup {
--popup-margin: 16px;
--popup-padding: 24px;
}
@media screen and (min-width: 700px) {
.image-editor-popup {
overflow-y: auto;
}
}
.image-editor-popup > div {
margin: var(--popup-margin);
padding: var(--popup-padding);
min-height: calc(99h - (2 * var(--popup-margin)));
max-width: fit-content;
min-width: fit-content;
margin-left: auto;
margin-right: auto;
min-height: calc(100vh - (2 * var(--popup-margin)));
max-width: none;
}
.image-editor-popup h1 {
@ -195,7 +185,7 @@
.image-editor-popup > div > div {
min-height: calc(99vh - (2 * var(--popup-margin)) - (2 * var(--popup-padding)));
min-height: calc(100vh - (2 * var(--popup-margin)) - (2 * var(--popup-padding)));
}
.inpainter .image_editor_color {
@ -223,33 +213,3 @@
.image-editor-popup h4 {
text-align: left;
}
.image-editor-popup .load_mask {
display: none;
}
.inpainter .load_mask {
display: flex;
}
.editor-canvas-overlay {
cursor: none;
}
.image-brush-preview {
position: fixed;
background: black;
opacity: 0.3;
borderRadius: 50%;
cursor: none;
pointer-events: none;
transform: translate(-50%, -50%);
}
.editor-options-container > * > *:not(.active):not(.button) {
border: 1px dotted slategray;
}
.image_editor_opacity .editor-options-container > * > *:not(.active):not(.button) {
border: 1px dotted slategray;
}

View File

@ -1,96 +0,0 @@
#viewFullSizeImgModal {
--popup-padding: 24px;
position: sticky;
padding: var(--popup-padding);
pointer-events: none;
width: 100vw;
height: 100vh;
box-sizing: border-box;
display: flex;
justify-content: center;
align-items: center;
overflow: hidden;
z-index: 1001;
}
#viewFullSizeImgModal:not(.active) {
display: none;
}
#viewFullSizeImgModal > * {
pointer-events: auto;
margin: 0;
padding: 0;
box-sizing: border-box;
}
#viewFullSizeImgModal .backdrop {
max-width: unset;
width: 100%;
max-height: unset;
height: 100%;
inset: 0;
position: absolute;
top: 0;
left: 0;
z-index: 1001;
opacity: .5;
border: none;
box-shadow: none;
overflow: hidden;
}
#viewFullSizeImgModal .content {
min-height: initial;
max-height: calc(100vh - (var(--popup-padding) * 2));
height: fit-content;
min-width: initial;
max-width: calc(100vw - (var(--popup-padding) * 2));
width: fit-content;
z-index: 1003;
overflow: visible;
}
#viewFullSizeImgModal .image-wrapper {
min-height: initial;
max-height: calc(100vh - (var(--popup-padding) * 2));
height: fit-content;
min-width: initial;
max-width: calc(100vw - (var(--popup-padding) * 2));
width: fit-content;
box-sizing: border-box;
pointer-events: auto;
margin: 0;
padding: 0;
overflow: auto;
}
#viewFullSizeImgModal img.natural-zoom {
max-width: calc(100vh - (var(--popup-padding) * 2) - 4px);
max-height: calc(100vh - (var(--popup-padding) * 2) - 4px);
}
#viewFullSizeImgModal img:not(.natural-zoom) {
cursor: grab;
}
#viewFullSizeImgModal .grabbing img:not(.natural-zoom) {
cursor: grabbing;
}
#viewFullSizeImgModal .content > div::-webkit-scrollbar-track, #viewFullSizeImgModal .content > div::-webkit-scrollbar-corner {
background: rgba(0, 0, 0, .5)
}
#viewFullSizeImgModal .menu-bar {
position: absolute;
top: 0;
right: 0;
padding-right: var(--scrollbar-width);
}
#viewFullSizeImgModal .menu-bar .tertiaryButton {
font-size: 1.2em;
margin: 12px 12px 0 0;
cursor: pointer;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,16 +1,14 @@
.modifier-card {
position: relative;
box-sizing: content-box; /* fixes border misalignment */
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.2);
transition: 0.1s;
border-radius: 7px;
margin: 3pt 3pt;
float: left;
width: 6em;
height: 9.5em;
width: 8em;
height: 11.5em;
display: grid;
grid-template-columns: 1fr;
grid-template-rows: 6em 3.5em;
grid-template-rows: 8em 3.5em;
gap: 0px 0px;
grid-auto-flow: row;
grid-template-areas:
@ -18,71 +16,82 @@
"modifier-card-container";
border: 2px solid rgba(255, 255, 255, .05);
cursor: pointer;
z-index: 2;
}
.modifier-card-size_5 {
width: 18em;
grid-template-rows: 18em 3.5em;
height: 21.5em;
}
.modifier-card-size_5 .modifier-card-image-overlay {
font-size: 8em;
}
.modifier-card-size_4 {
width: 14em;
grid-template-rows: 14em 3.5em;
height: 17.5em;
}
.modifier-card-size_4 .modifier-card-image-overlay {
font-size: 7em;
}
.modifier-card-size_3 {
width: 10em;
grid-template-rows: 10em 3.5em;
height: 13.5em;
width: 11em;
grid-template-rows: 11em 3.5em;
height: 14.5em;
}
.modifier-card-size_3 .modifier-card-image-overlay {
font-size: 6em;
}
.modifier-card-size_3 .modifier-card-label {
font-size: 1.2em;
}
.modifier-card-size_2 {
width: 10em;
grid-template-rows: 10em 3.5em;
height: 13.5em;
}
.modifier-card-size_2 .modifier-card-image-overlay {
font-size: 6em;
}
.modifier-card-size_1 {
width: 9em;
grid-template-rows: 9em 3.5em;
height: 12.5em;
}
.modifier-card-size_2 .modifier-card-image-overlay {
.modifier-card-size_1 .modifier-card-image-overlay {
font-size: 5em;
}
.modifier-card-size_2 .modifier-card-label {
font-size: 1.1em;
}
.modifier-card-size_1 {
.modifier-card-size_-1 {
width: 7em;
grid-template-rows: 7em 3.5em;
height: 10.5em;
}
.modifier-card-size_1 .modifier-card-image-overlay {
.modifier-card-size_-1 .modifier-card-image-overlay {
font-size: 4em;
}
.modifier-card-size_-1 {
width: 5em;
grid-template-rows: 5em 3.5em;
height: 8.5em;
}
.modifier-card-size_-1 .modifier-card-image-overlay {
font-size: 3em;
}
.modifier-card-size_-1 .modifier-card-label {
font-size: 0.9em;
}
.modifier-card-size_-2 {
width: 4em;
grid-template-rows: 3.5em 3em;
height: 6.5em;
width: 6em;
grid-template-rows: 6em 3.5em;
height: 9.5em;
}
.modifier-card-size_-2 .modifier-card-image-overlay {
font-size: 2em;
font-size: 3em;
}
.modifier-card-size_-2 .modifier-card-label {
font-size: 0.7em;
}
.modifier-card-tiny {
.modifier-card-size_-3 {
width: 5em;
grid-template-rows: 5em 3.5em;
height: 8.5em;
}
.modifier-card-size_-3 .modifier-card-image-overlay {
font-size: 3em;
}
.modifier-card-size_-3 .modifier-card-label {
font-size: 0.8em;
}
.modifier-card-tiny {
width: 6em;
height: 9.5em;
grid-template-rows: 6em 3.5em;
}
.modifier-card-tiny .modifier-card-image-overlay {
font-size: 4em;
}
.modifier-card-tiny .modifier-card-label {
font-size: 0.9em;
}
.modifier-card:hover {
transform: scale(1.05);
box-shadow: 0 5px 16px 5px rgba(0, 0, 0, 0.25);
@ -106,7 +115,6 @@
}
.modifier-card-image-container * {
position: absolute;
text-align: center;
}
.modifier-card-container {
text-align: center;
@ -123,7 +131,6 @@
.modifier-card-label {
padding: 4px;
word-break: break-word;
text-transform: capitalize;
}
.modifier-card-image-overlay {
width: inherit;
@ -133,7 +140,7 @@
position: absolute;
border-radius: 5px 5px 0 0;
opacity: 0;
font-size: 4em;
font-size: 5em;
font-weight: 900;
color: rgb(255 255 255 / 50%);
display: flex;
@ -146,9 +153,6 @@
position: absolute;
z-index: 3;
}
.modifier-card-active .modifier-card-overlay {
background-color: rgb(169 78 241 / 40%);
}
.modifier-card:hover > .modifier-card-image-container .modifier-card-image-overlay {
opacity: 1;
}
@ -159,30 +163,61 @@
transform: scale(0.95);
box-shadow: 0 5px 16px 5px rgba(0, 0, 0, 0.5);
}
#preview-image {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.modifier-card-active {
border: 2px solid rgb(179 82 255 / 94%);
box-shadow: 0 0px 10px 0 rgb(170 0 229 / 58%);
}
.tooltip {
position: relative;
display: inline-block;
}
.tooltip .tooltip-text {
visibility: hidden;
width: 120px;
background: rgb(101,97,181);
background: linear-gradient(180deg, rgba(101,97,181,1) 0%, rgba(47,45,85,1) 100%);
color: #fff;
text-align: center;
border-radius: 6px;
padding: 5px;
position: absolute;
z-index: 1;
top: 105%;
left: 39%;
margin-left: -60px;
opacity: 0;
transition: opacity 0.3s;
border: 2px solid rgb(90 100 177 / 94%);
box-shadow: 0px 10px 20px 5px rgb(11 0 58 / 55%);
width: 10em;
}
.tooltip .tooltip-text::after {
content: "";
position: absolute;
top: -0.9em;
left: 50%;
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: transparent transparent rgb(90 100 177 / 94%) transparent;
}
.tooltip:hover .tooltip-text {
visibility: visible;
opacity: 1;
}
#modifier-card-size-slider {
width: 6em;
height: 4pt;
margin-bottom: 0.5em;
vertical-align: middle;
}
#modifier-settings-btn {
float: right;
}
#modifier-settings-config textarea {
margin-left: 5%;
margin-top: 2ex;
width: 90%;
height: 150px;
}
.modifier-card .hidden {
display: none;
}
.support-long-label .modifier-card-overlay:hover ~ .modifier-card-container .modifier-card-label {
font-size: 0.7em;
}
.support-long-label .modifier-card-overlay:hover ~ .modifier-card-container .long-label {
display: block;
}
.support-long-label .modifier-card-overlay:hover ~ .modifier-card-container .regular-label {
display: none;
}
}

View File

@ -1,288 +0,0 @@
.plugins-table {
display: flex;
flex-direction: column;
gap: 1px;
}
.plugins-table > div {
background: var(--background-color2);
display: flex;
padding: 0px 4px;
}
.plugins-table > div > div {
padding: 10px;
display: flex;
align-items: center;
justify-content: center;
}
.plugins-table small {
color: rgb(153, 153, 153);
}
.plugins-table > div > div:nth-child(1) {
font-size: 20px;
width: 45px;
}
.plugins-table > div > div:nth-child(2) {
flex: 1;
flex-direction: column;
text-align: left;
justify-content: center;
align-items: start;
gap: 4px;
}
.plugins-table > div > div:nth-child(3) {
text-align: right;
}
.plugins-table > div:first-child {
border-radius: 12px 12px 0px 0px;
}
.plugins-table > div:last-child {
border-radius: 0px 0px 12px 12px;
}
.notifications-table {
display: flex;
flex-direction: column;
gap: 1px;
}
.notifications-table > div {
background: var(--background-color2);
display: flex;
padding: 0px 4px;
}
.notifications-table > div > div {
padding: 10px;
display: flex;
align-items: center;
justify-content: center;
}
.notifications-table small {
color: rgb(153, 153, 153);
}
.notifications-table > div > div:nth-child(1) {
flex: 1;
flex-direction: column;
text-align: left;
justify-content: center;
align-items: start;
gap: 4px;
}
.notifications-table > div > div:nth-child(2) {
width: auto;
}
.notifications-table > div:first-child {
border-radius: 12px 12px 0px 0px;
}
.notifications-table > div:last-child {
border-radius: 0px 0px 12px 12px;
}
.notification-error {
color: red;
}
DIV.no-notification {
padding-top: 16px;
font-style: italic;
}
.plugin-manager-intro {
margin: 0 0 16px 0;
}
#plugin-filter {
box-sizing: border-box;
width: 100%;
margin: 4px 0 6px 0;
padding: 10px;
}
#refresh-plugins {
box-sizing: border-box;
width: 100%;
padding: 0px;
}
#refresh-plugins a {
cursor: pointer;
}
#refresh-plugins a:active {
transition-duration: 0.1s;
position: relative;
top: 1px;
left: 1px;
}
.plugin-installed-locally {
font-style: italic;
font-size: small;
}
.plugin-source {
font-size: x-small;
}
.plugin-warning {
color: orange;
font-size: smaller;
}
.plugin-warning.hide {
display: none;
}
.plugin-warning ul {
list-style: square;
margin: 0 0 8px 16px;
padding: 0;
}
.plugin-warning li {
margin-left: 8px;
padding: 0;
}
/* MODAL DIALOG */
#pluginDialog-input-dialog {
position: fixed;
z-index: 1000;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: none;
}
.pluginDialog-dialog-overlay {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(32, 33, 36, 50%);
}
.pluginDialog-dialog-box {
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
width: 80%;
max-width: 600px;
background: var(--background-color2);
border: solid 1px var(--background-color3);
border-radius: 6px;
box-shadow: 0px 0px 30px black;
}
.pluginDialog-dialog-header {
display: flex;
align-items: center;
justify-content: space-between;
padding: 16px;
}
.pluginDialog-dialog-header h2 {
margin: 0;
}
.pluginDialog-dialog-close-button {
font-size: 24px;
font-weight: bold;
line-height: 1;
border: none;
background-color: transparent;
cursor: pointer;
}
.pluginDialog-dialog-close-button:hover {
color: #555;
}
.pluginDialog-dialog-content {
padding: 0 16px 0 16px;
}
.pluginDialog-dialog-content textarea {
width: 100%;
height: 300px;
border-radius: var(--input-border-radius);
padding: 4px;
accent-color: var(--accent-color);
background: var(--input-background-color);
border: var(--input-border-size) solid var(--input-border-color);
color: var(--input-text-color);
font-size: 9pt;
resize: none;
}
.pluginDialog-dialog-buttons {
display: flex;
justify-content: flex-end;
padding: 16px;
}
.pluginDialog-dialog-buttons button {
margin-left: 8px;
padding: 8px 16px;
font-size: 16px;
border-radius: 4px;
/*background: var(--accent-color);*/
/*border: var(--primary-button-border);*/
/*color: rgb(255, 221, 255);*/
background-color: #3071a9;
border: none;
cursor: pointer;
}
.pluginDialog-dialog-buttons button:hover {
/*background: hsl(var(--accent-hue), 100%, 50%);*/
background-color: #428bca;
}
/* NOTIFICATION CENTER */
#plugin-notification-button {
float: right;
margin-top: 30px;
}
#plugin-notification-button:hover {
background: unset;
}
#plugin-notification-button:active {
transition-duration: 0.1s;
position: relative;
top: 1px;
left: 1px;
}
.plugin-notification-pill {
background-color: red;
border-radius: 50%;
color: white;
font-size: 10px;
font-weight: bold;
height: 12px;
line-height: 12px;
position: relative;
right: -8px;
text-align: center;
top: -20px;
width: 12px;
}

View File

@ -1,99 +0,0 @@
.model-list {
position: absolute;
margin-block-start: 2px;
display: none;
padding-inline-start: 0;
max-height: 200px;
overflow: auto;
background: var(--input-background-color);
border: var(--input-border-size) solid var(--input-border-color);
border-radius: var(--input-border-radius);
color: var(--input-text-color);
z-index: 1;
line-height: normal;
}
.model-list ul {
padding-right: 20px;
padding-inline-start: 0;
margin-top: 3pt;
}
.model-list li {
padding-top: 3px;
padding-bottom: 3px;
}
.model-list .icon {
padding-right: 3pt;
}
.model-result {
list-style: none;
}
.model-no-result {
color: var(--text-color);
list-style: none;
padding: 3px 6px 3px 6px;
font-size: 9pt;
font-style: italic;
display: none;
}
.model-list li.model-folder {
color: var(--text-color);
list-style: none;
padding: 6px 6px 6px 6px;
font-size: 9pt;
font-weight: bold;
border-top: 1px solid var(--background-color1);
}
.model-list li.model-file {
color: var(--input-text-color);
list-style: none;
padding-left: 12px;
padding-right:20px;
font-size: 10pt;
font-weight: normal;
transition: none;
transition-property: none;
cursor: default;
}
.model-list li.model-file.in-root-folder {
padding-left: 6px;
}
.model-list li.model-file.selected {
background: grey;
}
.model-selector {
cursor: pointer;
}
.model-selector-arrow {
position: absolute;
width: 17px;
margin: 5px -17px;
padding-top: 3px;
cursor: pointer;
font-size: 8pt;
transition: none;
}
.model-input {
white-space: nowrap;
}
.reloadModels {
background: var(--background-color2);
border: none;
padding: 0px 0px;
}
#reload-models.secondaryButton:hover {
background: var(--background-color2);
}

View File

@ -13,8 +13,6 @@
--accent-lightness-hover: 40%;
--text-color: #eee;
--link-color: rgb(0, 102, 204);
--small-label-color: rgb(153, 153, 153);
--input-text-color: #eee;
--input-background-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) - (0.7 * var(--value-step))));
@ -23,28 +21,18 @@
--button-text-color: var(--input-text-color);
--button-color: var(--input-background-color);
--button-border: none;
--button-hover-background: hsl(var(--accent-hue), 100%, calc(var(--accent-lightness) + 6%));
--secondary-button-background: rgb(132, 8, 0);
--secondary-button-hover-background: rgb(177, 27, 0);
/* other */
--input-border-radius: 4px;
--input-border-size: 1px;
--accent-color: hsl(var(--accent-hue), 100%, var(--accent-lightness));
--accent-color-hover: hsl(var(--accent-hue), 100%, var(--accent-lightness-hover));
--accent-text-color: rgb(255, 221, 255);
--primary-button-border: none;
--input-switch-padding: 1px;
--input-height: 18px;
--tertiary-background-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (2 * var(--value-step))));
--tertiary-border-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (3 * var(--value-step))));
--tertiary-color: var(--input-text-color);
/* Main theme color, hex color fallback. */
--theme-color-fallback: #673AB6;
--status-orange: rgb(200, 139, 0);
--status-green: green;
--status-red: red;
}
.theme-light {
@ -60,11 +48,6 @@
--input-border-color: grey;
--theme-color-fallback: #aaaaaa;
--tertiary-background-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (16.8 * var(--value-step))));
--tertiary-border-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (12 * var(--value-step))));
--accent-text-color: white;
}
.theme-discord {
@ -81,10 +64,6 @@
--input-border-color: var(--input-background-color);
--theme-color-fallback: #202225;
--tertiary-background-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (3.5 * var(--value-step))));
--tertiary-border-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (4.5 * var(--value-step))));
--accent-text-color: white;
}
.theme-cool-blue {
@ -102,10 +81,6 @@
--accent-hue: 212;
--theme-color-fallback: #0056b8;
--tertiary-background-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (3.5 * var(--value-step))));
--tertiary-border-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (4.5 * var(--value-step))));
--accent-text-color: #f7fbff;
}
@ -122,9 +97,6 @@
--input-background-color: var(--background-color3);
--theme-color-fallback: #5300b8;
--tertiary-background-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (3.5 * var(--value-step))));
--tertiary-border-color: hsl(var(--main-hue), var(--main-saturation), calc(var(--value-base) + (4.5 * var(--value-step))));
}
.theme-super-dark {
@ -159,9 +131,6 @@
--input-background-color: hsl(222, var(--main-saturation), calc(var(--value-base) - (2 * var(--value-step))));
--input-text-color: #FF0000;
--input-border-color: #005E05;
--tertiary-color: white;
--accent-text-color: #f7fbff;
}
@ -188,4 +157,4 @@
border: none;
box-shadow: 0px 1px 2px rgba(0, 0, 0, 0.25);
border-radius: 10px;
}
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.8 KiB

After

Width:  |  Height:  |  Size: 466 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

After

Width:  |  Height:  |  Size: 973 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 352 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 KiB

View File

@ -1,2 +0,0 @@
(function(a,b){if("function"==typeof define&&define.amd)define([],b);else if("undefined"!=typeof exports)b();else{b(),a.FileSaver={exports:{}}.exports}})(this,function(){"use strict";function b(a,b){return"undefined"==typeof b?b={autoBom:!1}:"object"!=typeof b&&(console.warn("Deprecated: Expected third argument to be a object"),b={autoBom:!b}),b.autoBom&&/^\s*(?:text\/\S*|application\/xml|\S*\/\S*\+xml)\s*;.*charset\s*=\s*utf-8/i.test(a.type)?new Blob(["\uFEFF",a],{type:a.type}):a}function c(a,b,c){var d=new XMLHttpRequest;d.open("GET",a),d.responseType="blob",d.onload=function(){g(d.response,b,c)},d.onerror=function(){console.error("could not download file")},d.send()}function d(a){var b=new XMLHttpRequest;b.open("HEAD",a,!1);try{b.send()}catch(a){}return 200<=b.status&&299>=b.status}function e(a){try{a.dispatchEvent(new MouseEvent("click"))}catch(c){var b=document.createEvent("MouseEvents");b.initMouseEvent("click",!0,!0,window,0,0,0,80,20,!1,!1,!1,!1,0,null),a.dispatchEvent(b)}}var f="object"==typeof window&&window.window===window?window:"object"==typeof self&&self.self===self?self:"object"==typeof global&&global.global===global?global:void 0,a=/Macintosh/.test(navigator.userAgent)&&/AppleWebKit/.test(navigator.userAgent)&&!/Safari/.test(navigator.userAgent),g=f.saveAs||("object"!=typeof window||window!==f?function(){}:"download"in HTMLAnchorElement.prototype&&!a?function(b,g,h){var i=f.URL||f.webkitURL,j=document.createElement("a");g=g||b.name||"download",j.download=g,j.rel="noopener","string"==typeof b?(j.href=b,j.origin===location.origin?e(j):d(j.href)?c(b,g,h):e(j,j.target="_blank")):(j.href=i.createObjectURL(b),setTimeout(function(){i.revokeObjectURL(j.href)},4E4),setTimeout(function(){e(j)},0))}:"msSaveOrOpenBlob"in navigator?function(f,g,h){if(g=g||f.name||"download","string"!=typeof f)navigator.msSaveOrOpenBlob(b(f,h),g);else if(d(f))c(f,g,h);else{var i=document.createElement("a");i.href=f,i.target="_blank",setTimeout(function(){e(i)})}}:function(b,d,e,g){if(g=g||open("","_blank"),g&&(g.document.title=g.document.body.innerText="downloading..."),"string"==typeof b)return c(b,d,e);var h="application/octet-stream"===b.type,i=/constructor/i.test(f.HTMLElement)||f.safari,j=/CriOS\/[\d]+/.test(navigator.userAgent);if((j||h&&i||a)&&"undefined"!=typeof FileReader){var k=new FileReader;k.onloadend=function(){var a=k.result;a=j?a:a.replace(/^data:[^;]*;/,"data:attachment/file;"),g?g.location.href=a:location=a,g=null},k.readAsDataURL(b)}else{var l=f.URL||f.webkitURL,m=l.createObjectURL(b);g?g.location=m:location.href=m,g=null,setTimeout(function(){l.revokeObjectURL(m)},4E4)}});f.saveAs=g.saveAs=g,"undefined"!=typeof module&&(module.exports=g)});

View File

@ -13,26 +13,22 @@ const SETTINGS_IDS_LIST = [
"num_outputs_total",
"num_outputs_parallel",
"stable_diffusion_model",
"clip_skip",
"vae_model",
"hypernetwork_model",
"sampler_name",
"width",
"height",
"num_inference_steps",
"guidance_scale",
"prompt_strength",
"tiling",
"hypernetwork_strength",
"output_format",
"output_quality",
"output_lossless",
"negative_prompt",
"stream_image_progress",
"use_face_correction",
"gfpgan_model",
"use_upscale",
"upscale_amount",
"latent_upscaler_steps",
"block_nsfw",
"show_only_filtered_image",
"upscale_model",
"preview-image",
@ -43,44 +39,30 @@ const SETTINGS_IDS_LIST = [
"sound_toggle",
"vram_usage_level",
"confirm_dangerous_actions",
"profileName",
"metadata_output_format",
"auto_save_settings",
"apply_color_correction",
"process_order_toggle",
"thumbnail_size",
"auto_scroll",
"zip_toggle",
"tree_toggle",
"json_toggle",
"extract_lora_from_prompt",
"embedding-card-size-selector",
"lora_model",
"process_order_toggle"
]
const IGNORE_BY_DEFAULT = ["prompt"]
const IGNORE_BY_DEFAULT = [
"prompt"
]
if (!testDiffusers.checked) {
SETTINGS_IDS_LIST.push("hypernetwork_model")
SETTINGS_IDS_LIST.push("hypernetwork_strength")
}
const SETTINGS_SECTIONS = [
// gets the "keys" property filled in with an ordered list of settings in this section via initSettings
{ id: "editor-inputs", name: "Prompt" },
const SETTINGS_SECTIONS = [ // gets the "keys" property filled in with an ordered list of settings in this section via initSettings
{ id: "editor-inputs", name: "Prompt" },
{ id: "editor-settings", name: "Image Settings" },
{ id: "system-settings", name: "System Settings" },
{ id: "container", name: "Other" },
{ id: "container", name: "Other" }
]
async function initSettings() {
SETTINGS_IDS_LIST.forEach((id) => {
SETTINGS_IDS_LIST.forEach(id => {
var element = document.getElementById(id)
if (!element) {
console.error(`Missing settings element ${id}`)
}
if (id in SETTINGS) {
// don't create it again
if (id in SETTINGS) { // don't create it again
return
}
SETTINGS[id] = {
@ -89,30 +71,27 @@ async function initSettings() {
label: getSettingLabel(element),
default: getSetting(element),
value: getSetting(element),
ignore: IGNORE_BY_DEFAULT.includes(id),
ignore: IGNORE_BY_DEFAULT.includes(id)
}
element.addEventListener("input", settingChangeHandler)
element.addEventListener("change", settingChangeHandler)
})
var unsorted_settings_ids = [...SETTINGS_IDS_LIST]
SETTINGS_SECTIONS.forEach((section) => {
SETTINGS_SECTIONS.forEach(section => {
var name = section.name
var element = document.getElementById(section.id)
var unsorted_ids = unsorted_settings_ids.map((id) => `#${id}`).join(",")
var children = unsorted_ids == "" ? [] : Array.from(element.querySelectorAll(unsorted_ids))
var unsorted_ids = unsorted_settings_ids.map(id => `#${id}`).join(",")
var children = unsorted_ids == "" ? [] : Array.from(element.querySelectorAll(unsorted_ids));
section.keys = []
children.forEach((e) => {
children.forEach(e => {
section.keys.push(e.id)
})
unsorted_settings_ids = unsorted_settings_ids.filter((id) => children.find((e) => e.id == id) == undefined)
unsorted_settings_ids = unsorted_settings_ids.filter(id => children.find(e => e.id == id) == undefined)
})
loadSettings()
}
function getSetting(element) {
if (element.dataset && "path" in element.dataset) {
return element.dataset.path
}
if (typeof element === "string" || element instanceof String) {
element = SETTINGS[element].element
}
@ -122,10 +101,6 @@ function getSetting(element) {
return element.value
}
function setSetting(element, value) {
if (element.dataset && "path" in element.dataset) {
element.dataset.path = value
return // no need to dispatch any event here because the models are not loaded yet
}
if (typeof element === "string" || element instanceof String) {
element = SETTINGS[element].element
}
@ -135,7 +110,8 @@ function setSetting(element, value) {
}
if (element.type == "checkbox") {
element.checked = value
} else {
}
else {
element.value = value
}
element.dispatchEvent(new Event("input"))
@ -143,11 +119,11 @@ function setSetting(element, value) {
}
function saveSettings() {
var saved_settings = Object.values(SETTINGS).map((setting) => {
var saved_settings = Object.values(SETTINGS).map(setting => {
return {
key: setting.key,
value: setting.value,
ignore: setting.ignore,
ignore: setting.ignore
}
})
localStorage.setItem(SETTINGS_KEY, JSON.stringify(saved_settings))
@ -158,16 +134,16 @@ function loadSettings() {
var saved_settings_text = localStorage.getItem(SETTINGS_KEY)
if (saved_settings_text) {
var saved_settings = JSON.parse(saved_settings_text)
if (saved_settings.find((s) => s.key == "auto_save_settings")?.value == false) {
if (saved_settings.find(s => s.key == "auto_save_settings")?.value == false) {
setSetting("auto_save_settings", false)
return
}
CURRENTLY_LOADING_SETTINGS = true
saved_settings.forEach((saved_setting) => {
saved_settings.forEach(saved_setting => {
var setting = SETTINGS[saved_setting.key]
if (!setting) {
console.warn(`Attempted to load setting ${saved_setting.key}, but no setting found`)
return null
console.warn(`Attempted to load setting ${saved_setting.key}, but no setting found`);
return null;
}
setting.ignore = saved_setting.ignore
if (!setting.ignore) {
@ -176,26 +152,10 @@ function loadSettings() {
}
})
CURRENTLY_LOADING_SETTINGS = false
} else if (localStorage.length < 2) {
// localStorage is too short for OldSettings
// So this is likely the first time Easy Diffusion is running.
// Initialize vram_usage_level based on the available VRAM
function initGPUProfile(event) {
if (
"detail" in event &&
"active" in event.detail &&
"cuda:0" in event.detail.active &&
event.detail.active["cuda:0"].mem_total < 4.5
) {
vramUsageLevelField.value = "low"
vramUsageLevelField.dispatchEvent(new Event("change"))
}
document.removeEventListener("system_info_update", initGPUProfile)
}
document.addEventListener("system_info_update", initGPUProfile)
} else {
}
else {
CURRENTLY_LOADING_SETTINGS = true
tryLoadOldSettings()
tryLoadOldSettings();
CURRENTLY_LOADING_SETTINGS = false
saveSettings()
}
@ -203,9 +163,9 @@ function loadSettings() {
function loadDefaultSettingsSection(section_id) {
CURRENTLY_LOADING_SETTINGS = true
var section = SETTINGS_SECTIONS.find((s) => s.id == section_id)
section.keys.forEach((key) => {
var setting = SETTINGS[key]
var section = SETTINGS_SECTIONS.find(s => s.id == section_id);
section.keys.forEach(key => {
var setting = SETTINGS[key];
setting.value = setting.default
setSetting(setting.element, setting.value)
})
@ -241,10 +201,10 @@ function getSettingLabel(element) {
function fillSaveSettingsConfigTable() {
saveSettingsConfigTable.textContent = ""
SETTINGS_SECTIONS.forEach((section) => {
SETTINGS_SECTIONS.forEach(section => {
var section_row = `<tr><th>${section.name}</th><td></td></tr>`
saveSettingsConfigTable.insertAdjacentHTML("beforeend", section_row)
section.keys.forEach((key) => {
section.keys.forEach(key => {
var setting = SETTINGS[key]
var element = setting.element
var checkbox_id = `shouldsave_${element.id}`
@ -257,7 +217,7 @@ function fillSaveSettingsConfigTable() {
var newrow = `<tr><td><label for="${checkbox_id}">${setting.label}</label></td><td><input id="${checkbox_id}" name="${checkbox_id}" ${is_checked} type="checkbox" ></td><td><small>(${value})</small></td></tr>`
saveSettingsConfigTable.insertAdjacentHTML("beforeend", newrow)
var checkbox = document.getElementById(checkbox_id)
checkbox.addEventListener("input", (event) => {
checkbox.addEventListener("input", event => {
setting.ignore = !checkbox.checked
saveSettings()
})
@ -268,6 +228,9 @@ function fillSaveSettingsConfigTable() {
// configureSettingsSaveBtn
var autoSaveSettings = document.getElementById("auto_save_settings")
var configSettingsButton = document.createElement("button")
configSettingsButton.textContent = "Configure"
@ -276,75 +239,70 @@ autoSaveSettings.insertAdjacentElement("beforebegin", configSettingsButton)
autoSaveSettings.addEventListener("change", () => {
configSettingsButton.style.display = autoSaveSettings.checked ? "block" : "none"
})
configSettingsButton.addEventListener("click", () => {
configSettingsButton.addEventListener('click', () => {
fillSaveSettingsConfigTable()
saveSettingsConfigOverlay.classList.add("active")
})
resetImageSettingsButton.addEventListener("click", (event) => {
loadDefaultSettingsSection("editor-settings")
resetImageSettingsButton.addEventListener('click', event => {
loadDefaultSettingsSection("editor-settings");
event.stopPropagation()
})
function tryLoadOldSettings() {
console.log("Loading old user settings")
// load v1 auto-save.js settings
var old_map = {
guidance_scale_slider: "guidance_scale",
prompt_strength_slider: "prompt_strength",
"guidance_scale_slider": "guidance_scale",
"prompt_strength_slider": "prompt_strength"
}
var settings_key_v1 = "user_settings"
var saved_settings_text = localStorage.getItem(settings_key_v1)
if (saved_settings_text) {
var saved_settings = JSON.parse(saved_settings_text)
Object.keys(saved_settings.should_save).forEach((key) => {
Object.keys(saved_settings.should_save).forEach(key => {
key = key in old_map ? old_map[key] : key
if (!(key in SETTINGS)) return
SETTINGS[key].ignore = !saved_settings.should_save[key]
})
Object.keys(saved_settings.values).forEach((key) => {
});
Object.keys(saved_settings.values).forEach(key => {
key = key in old_map ? old_map[key] : key
if (!(key in SETTINGS)) return
var setting = SETTINGS[key]
if (!setting.ignore) {
setting.value = saved_settings.values[key]
setSetting(setting.element, setting.value)
}
})
});
localStorage.removeItem(settings_key_v1)
}
// load old individually stored items
var individual_settings_map = {
// maps old localStorage-key to new SETTINGS-key
soundEnabled: "sound_toggle",
saveToDisk: "save_to_disk",
useCPU: "use_cpu",
diskPath: "diskPath",
useFaceCorrection: "use_face_correction",
useUpscaling: "use_upscale",
showOnlyFilteredImage: "show_only_filtered_image",
streamImageProgress: "stream_image_progress",
outputFormat: "output_format",
autoSaveSettings: "auto_save_settings",
}
Object.keys(individual_settings_map).forEach((localStorageKey) => {
var localStorageValue = localStorage.getItem(localStorageKey)
var individual_settings_map = { // maps old localStorage-key to new SETTINGS-key
"soundEnabled": "sound_toggle",
"saveToDisk": "save_to_disk",
"useCPU": "use_cpu",
"diskPath": "diskPath",
"useFaceCorrection": "use_face_correction",
"useUpscaling": "use_upscale",
"showOnlyFilteredImage": "show_only_filtered_image",
"streamImageProgress": "stream_image_progress",
"outputFormat": "output_format",
"autoSaveSettings": "auto_save_settings",
};
Object.keys(individual_settings_map).forEach(localStorageKey => {
var localStorageValue = localStorage.getItem(localStorageKey);
if (localStorageValue !== null) {
let key = individual_settings_map[localStorageKey]
var setting = SETTINGS[key]
if (!setting) {
console.warn(`Attempted to map old setting ${key}, but no setting found`)
return null
console.warn(`Attempted to map old setting ${key}, but no setting found`);
return null;
}
if (
setting.element.type == "checkbox" &&
(typeof localStorageValue === "string" || localStorageValue instanceof String)
) {
if (setting.element.type == "checkbox" && (typeof localStorageValue === "string" || localStorageValue instanceof String)) {
localStorageValue = localStorageValue == "true"
}
setting.value = localStorageValue
setSetting(setting.element, setting.value)
localStorage.removeItem(localStorageKey)
localStorage.removeItem(localStorageKey);
}
})
}

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +1,25 @@
"use strict" // Opt in to a restricted variant of JavaScript
const EXT_REGEX = /(?:\.([^.]+))?$/
const TEXT_EXTENSIONS = ["txt", "json"]
const IMAGE_EXTENSIONS = ["jpg", "jpeg", "png", "bmp", "tiff", "tif", "tga", "webp"]
const TEXT_EXTENSIONS = ['txt', 'json']
const IMAGE_EXTENSIONS = ['jpg', 'jpeg', 'png', 'bmp', 'tiff', 'tif', 'tga']
function parseBoolean(stringValue) {
if (typeof stringValue === "boolean") {
if (typeof stringValue === 'boolean') {
return stringValue
}
if (typeof stringValue === "number") {
if (typeof stringValue === 'number') {
return stringValue !== 0
}
if (typeof stringValue !== "string") {
if (typeof stringValue !== 'string') {
return false
}
switch (stringValue?.toLowerCase()?.trim()) {
switch(stringValue?.toLowerCase()?.trim()) {
case "true":
case "yes":
case "on":
case "1":
return true
return true;
case "false":
case "no":
@ -28,77 +28,67 @@ function parseBoolean(stringValue) {
case "none":
case null:
case undefined:
return false
return false;
}
try {
return Boolean(JSON.parse(stringValue))
return Boolean(JSON.parse(stringValue));
} catch {
return Boolean(stringValue)
}
}
// keep in sync with `ui/easydiffusion/utils/save_utils.py`
const TASK_MAPPING = {
prompt: {
name: "Prompt",
prompt: { name: 'Prompt',
setUI: (prompt) => {
promptField.value = prompt
},
readUI: () => promptField.value,
parse: (val) => val,
parse: (val) => val
},
negative_prompt: {
name: "Negative Prompt",
negative_prompt: { name: 'Negative Prompt',
setUI: (negative_prompt) => {
negativePromptField.value = negative_prompt
},
readUI: () => negativePromptField.value,
parse: (val) => val,
parse: (val) => val
},
active_tags: {
name: "Image Modifiers",
active_tags: { name: "Image Modifiers",
setUI: (active_tags) => {
refreshModifiersState(active_tags)
},
readUI: () => activeTags.map((x) => x.name),
parse: (val) => val,
readUI: () => activeTags.map(x => x.name),
parse: (val) => val
},
inactive_tags: {
name: "Inactive Image Modifiers",
inactive_tags: { name: "Inactive Image Modifiers",
setUI: (inactive_tags) => {
refreshInactiveTags(inactive_tags)
},
readUI: () => activeTags.filter((tag) => tag.inactive === true).map((x) => x.name),
parse: (val) => val,
readUI: () => activeTags.filter(tag => tag.inactive === true).map(x => x.name),
parse: (val) => val
},
width: {
name: "Width",
width: { name: 'Width',
setUI: (width) => {
const oldVal = widthField.value
widthField.value = width
if (!widthField.value) {
widthField.value = oldVal
}
widthField.dispatchEvent(new Event("change"))
},
readUI: () => parseInt(widthField.value),
parse: (val) => parseInt(val),
parse: (val) => parseInt(val)
},
height: {
name: "Height",
height: { name: 'Height',
setUI: (height) => {
const oldVal = heightField.value
heightField.value = height
if (!heightField.value) {
heightField.value = oldVal
}
heightField.dispatchEvent(new Event("change"))
},
readUI: () => parseInt(heightField.value),
parse: (val) => parseInt(val),
parse: (val) => parseInt(val)
},
seed: {
name: "Seed",
seed: { name: 'Seed',
setUI: (seed) => {
if (!seed) {
randomSeedField.checked = true
@ -107,108 +97,77 @@ const TASK_MAPPING = {
return
}
randomSeedField.checked = false
randomSeedField.dispatchEvent(new Event("change")) // let plugins know that the state of the random seed toggle changed
seedField.disabled = false
seedField.value = seed
},
readUI: () => parseInt(seedField.value), // just return the value the user is seeing in the UI
parse: (val) => parseInt(val),
parse: (val) => parseInt(val)
},
num_inference_steps: {
name: "Steps",
num_inference_steps: { name: 'Steps',
setUI: (num_inference_steps) => {
numInferenceStepsField.value = num_inference_steps
},
readUI: () => parseInt(numInferenceStepsField.value),
parse: (val) => parseInt(val),
parse: (val) => parseInt(val)
},
guidance_scale: {
name: "Guidance Scale",
guidance_scale: { name: 'Guidance Scale',
setUI: (guidance_scale) => {
guidanceScaleField.value = guidance_scale
updateGuidanceScaleSlider()
},
readUI: () => parseFloat(guidanceScaleField.value),
parse: (val) => parseFloat(val),
parse: (val) => parseFloat(val)
},
prompt_strength: {
name: "Prompt Strength",
prompt_strength: { name: 'Prompt Strength',
setUI: (prompt_strength) => {
promptStrengthField.value = prompt_strength
updatePromptStrengthSlider()
},
readUI: () => parseFloat(promptStrengthField.value),
parse: (val) => parseFloat(val),
parse: (val) => parseFloat(val)
},
init_image: {
name: "Initial Image",
init_image: { name: 'Initial Image',
setUI: (init_image) => {
initImagePreview.src = init_image
},
readUI: () => initImagePreview.src,
parse: (val) => val,
parse: (val) => val
},
mask: {
name: "Mask",
mask: { name: 'Mask',
setUI: (mask) => {
setTimeout(() => {
// add a delay to insure this happens AFTER the main image loads (which reloads the inpainter)
setTimeout(() => { // add a delay to insure this happens AFTER the main image loads (which reloads the inpainter)
imageInpainter.setImg(mask)
}, 250)
maskSetting.checked = Boolean(mask)
},
readUI: () => (maskSetting.checked ? imageInpainter.getImg() : undefined),
parse: (val) => val,
parse: (val) => val
},
preserve_init_image_color_profile: {
name: "Preserve Color Profile",
preserve_init_image_color_profile: { name: 'Preserve Color Profile',
setUI: (preserve_init_image_color_profile) => {
applyColorCorrectionField.checked = parseBoolean(preserve_init_image_color_profile)
},
readUI: () => applyColorCorrectionField.checked,
parse: (val) => parseBoolean(val),
parse: (val) => parseBoolean(val)
},
use_face_correction: {
name: "Use Face Correction",
use_face_correction: { name: 'Use Face Correction',
setUI: (use_face_correction) => {
const oldVal = gfpganModelField.value
console.log("use face correction", use_face_correction)
if (use_face_correction == null || use_face_correction == "None") {
gfpganModelField.disabled = true
useFaceCorrectionField.checked = false
} else {
gfpganModelField.value = getModelPath(use_face_correction, [".pth"])
if (gfpganModelField.value) {
// Is a valid value for the field.
useFaceCorrectionField.checked = true
gfpganModelField.disabled = false
} else {
// Not a valid value, restore the old value and disable the filter.
gfpganModelField.disabled = true
gfpganModelField.value = oldVal
useFaceCorrectionField.checked = false
}
}
//useFaceCorrectionField.checked = parseBoolean(use_face_correction)
useFaceCorrectionField.checked = parseBoolean(use_face_correction)
},
readUI: () => (useFaceCorrectionField.checked ? gfpganModelField.value : undefined),
parse: (val) => val,
readUI: () => useFaceCorrectionField.checked,
parse: (val) => parseBoolean(val)
},
use_upscale: {
name: "Use Upscaling",
use_upscale: { name: 'Use Upscaling',
setUI: (use_upscale) => {
const oldVal = upscaleModelField.value
upscaleModelField.value = getModelPath(use_upscale, [".pth"])
if (upscaleModelField.value) {
// Is a valid value for the field.
upscaleModelField.value = getModelPath(use_upscale, ['.pth'])
if (upscaleModelField.value) { // Is a valid value for the field.
useUpscalingField.checked = true
upscaleModelField.disabled = false
upscaleAmountField.disabled = false
} else {
// Not a valid value, restore the old value and disable the filter.
} else { // Not a valid value, restore the old value and disable the filter.
upscaleModelField.disabled = true
upscaleAmountField.disabled = true
upscaleModelField.value = oldVal
@ -216,38 +175,27 @@ const TASK_MAPPING = {
}
},
readUI: () => (useUpscalingField.checked ? upscaleModelField.value : undefined),
parse: (val) => val,
parse: (val) => val
},
upscale_amount: {
name: "Upscale By",
upscale_amount: { name: 'Upscale By',
setUI: (upscale_amount) => {
upscaleAmountField.value = upscale_amount
},
readUI: () => upscaleAmountField.value,
parse: (val) => val,
parse: (val) => val
},
latent_upscaler_steps: {
name: "Latent Upscaler Steps",
setUI: (latent_upscaler_steps) => {
latentUpscalerStepsField.value = latent_upscaler_steps
},
readUI: () => latentUpscalerStepsField.value,
parse: (val) => val,
},
sampler_name: {
name: "Sampler",
sampler_name: { name: 'Sampler',
setUI: (sampler_name) => {
samplerField.value = sampler_name
},
readUI: () => samplerField.value,
parse: (val) => val,
parse: (val) => val
},
use_stable_diffusion_model: {
name: "Stable Diffusion model",
use_stable_diffusion_model: { name: 'Stable Diffusion model',
setUI: (use_stable_diffusion_model) => {
const oldVal = stableDiffusionModelField.value
use_stable_diffusion_model = getModelPath(use_stable_diffusion_model, [".ckpt", ".safetensors"])
use_stable_diffusion_model = getModelPath(use_stable_diffusion_model, ['.ckpt', '.safetensors'])
stableDiffusionModelField.value = use_stable_diffusion_model
if (!stableDiffusionModelField.value) {
@ -255,208 +203,104 @@ const TASK_MAPPING = {
}
},
readUI: () => stableDiffusionModelField.value,
parse: (val) => val,
parse: (val) => val
},
clip_skip: {
name: "Clip Skip",
setUI: (value) => {
clip_skip.checked = value
},
readUI: () => clip_skip.checked,
parse: (val) => Boolean(val),
},
tiling: {
name: "Tiling",
setUI: (val) => {
tilingField.value = val
},
readUI: () => tilingField.value,
parse: (val) => val,
},
use_vae_model: {
name: "VAE model",
use_vae_model: { name: 'VAE model',
setUI: (use_vae_model) => {
const oldVal = vaeModelField.value
use_vae_model =
use_vae_model === undefined || use_vae_model === null || use_vae_model === "None" ? "" : use_vae_model
use_vae_model = (use_vae_model === undefined || use_vae_model === null || use_vae_model === 'None' ? '' : use_vae_model)
if (use_vae_model !== "") {
use_vae_model = getModelPath(use_vae_model, [".vae.pt", ".ckpt"])
use_vae_model = use_vae_model !== "" ? use_vae_model : oldVal
if (use_vae_model !== '') {
use_vae_model = getModelPath(use_vae_model, ['.vae.pt', '.ckpt'])
use_vae_model = use_vae_model !== '' ? use_vae_model : oldVal
}
vaeModelField.value = use_vae_model
},
readUI: () => vaeModelField.value,
parse: (val) => val,
parse: (val) => val
},
use_controlnet_model: {
name: "ControlNet model",
setUI: (use_controlnet_model) => {
controlnetModelField.value = getModelPath(use_controlnet_model, [".pth", ".safetensors"])
},
readUI: () => controlnetModelField.value,
parse: (val) => val,
},
control_filter_to_apply: {
name: "ControlNet Filter",
setUI: (control_filter_to_apply) => {
controlImageFilterField.value = control_filter_to_apply
},
readUI: () => controlImageFilterField.value,
parse: (val) => val,
},
use_lora_model: {
name: "LoRA model",
setUI: (use_lora_model) => {
let modelPaths = []
use_lora_model = Array.isArray(use_lora_model) ? use_lora_model : [use_lora_model]
use_lora_model.forEach((m) => {
if (m.includes("models\\lora\\")) {
m = m.split("models\\lora\\")[1]
} else if (m.includes("models\\\\lora\\\\")) {
m = m.split("models\\\\lora\\\\")[1]
} else if (m.includes("models/lora/")) {
m = m.split("models/lora/")[1]
}
m = m.replaceAll("\\\\", "/")
m = getModelPath(m, [".ckpt", ".safetensors"])
modelPaths.push(m)
})
loraModelField.modelNames = modelPaths
},
readUI: () => {
return loraModelField.modelNames
},
parse: (val) => {
val = !val || val === "None" ? "" : val
if (typeof val === "string" && val.includes(",")) {
val = val.split(",")
val = val.map((v) => v.trim())
val = val.map((v) => v.replaceAll("\\", "\\\\"))
val = val.map((v) => v.replaceAll('"', ""))
val = val.map((v) => v.replaceAll("'", ""))
val = val.map((v) => '"' + v + '"')
val = "[" + val + "]"
val = JSON.parse(val)
}
val = Array.isArray(val) ? val : [val]
return val
},
},
lora_alpha: {
name: "LoRA Strength",
setUI: (lora_alpha) => {
lora_alpha = Array.isArray(lora_alpha) ? lora_alpha : [lora_alpha]
loraModelField.modelWeights = lora_alpha
},
readUI: () => {
return loraModelField.modelWeights
},
parse: (val) => {
if (typeof val === "string" && val.includes(",")) {
val = "[" + val.replaceAll("'", '"') + "]"
val = JSON.parse(val)
}
val = Array.isArray(val) ? val : [val]
val = val.map((e) => parseFloat(e))
return val
},
},
use_hypernetwork_model: {
name: "Hypernetwork model",
use_hypernetwork_model: { name: 'Hypernetwork model',
setUI: (use_hypernetwork_model) => {
const oldVal = hypernetworkModelField.value
use_hypernetwork_model =
use_hypernetwork_model === undefined ||
use_hypernetwork_model === null ||
use_hypernetwork_model === "None"
? ""
: use_hypernetwork_model
use_hypernetwork_model = (use_hypernetwork_model === undefined || use_hypernetwork_model === null || use_hypernetwork_model === 'None' ? '' : use_hypernetwork_model)
if (use_hypernetwork_model !== "") {
use_hypernetwork_model = getModelPath(use_hypernetwork_model, [".pt"])
use_hypernetwork_model = use_hypernetwork_model !== "" ? use_hypernetwork_model : oldVal
if (use_hypernetwork_model !== '') {
use_hypernetwork_model = getModelPath(use_hypernetwork_model, ['.pt'])
use_hypernetwork_model = use_hypernetwork_model !== '' ? use_hypernetwork_model : oldVal
}
hypernetworkModelField.value = use_hypernetwork_model
hypernetworkModelField.dispatchEvent(new Event("change"))
hypernetworkModelField.dispatchEvent(new Event('change'))
},
readUI: () => hypernetworkModelField.value,
parse: (val) => val,
parse: (val) => val
},
hypernetwork_strength: {
name: "Hypernetwork Strength",
hypernetwork_strength: { name: 'Hypernetwork Strength',
setUI: (hypernetwork_strength) => {
hypernetworkStrengthField.value = hypernetwork_strength
updateHypernetworkStrengthSlider()
},
readUI: () => parseFloat(hypernetworkStrengthField.value),
parse: (val) => parseFloat(val),
parse: (val) => parseFloat(val)
},
num_outputs: {
name: "Parallel Images",
num_outputs: { name: 'Parallel Images',
setUI: (num_outputs) => {
numOutputsParallelField.value = num_outputs
},
readUI: () => parseInt(numOutputsParallelField.value),
parse: (val) => val,
parse: (val) => val
},
use_cpu: {
name: "Use CPU",
use_cpu: { name: 'Use CPU',
setUI: (use_cpu) => {
useCPUField.checked = use_cpu
},
readUI: () => useCPUField.checked,
parse: (val) => val,
parse: (val) => val
},
stream_image_progress: {
name: "Stream Image Progress",
stream_image_progress: { name: 'Stream Image Progress',
setUI: (stream_image_progress) => {
streamImageProgressField.checked = parseInt(numOutputsTotalField.value) > 50 ? false : stream_image_progress
streamImageProgressField.checked = (parseInt(numOutputsTotalField.value) > 50 ? false : stream_image_progress)
},
readUI: () => streamImageProgressField.checked,
parse: (val) => Boolean(val),
parse: (val) => Boolean(val)
},
show_only_filtered_image: {
name: "Show only the corrected/upscaled image",
show_only_filtered_image: { name: 'Show only the corrected/upscaled image',
setUI: (show_only_filtered_image) => {
showOnlyFilteredImageField.checked = show_only_filtered_image
},
readUI: () => showOnlyFilteredImageField.checked,
parse: (val) => Boolean(val),
parse: (val) => Boolean(val)
},
output_format: {
name: "Output Format",
output_format: { name: 'Output Format',
setUI: (output_format) => {
outputFormatField.value = output_format
},
readUI: () => outputFormatField.value,
parse: (val) => val,
parse: (val) => val
},
save_to_disk_path: {
name: "Save to disk path",
save_to_disk_path: { name: 'Save to disk path',
setUI: (save_to_disk_path) => {
saveToDiskField.checked = Boolean(save_to_disk_path)
diskPathField.value = save_to_disk_path
},
readUI: () => diskPathField.value,
parse: (val) => val,
},
parse: (val) => val
}
}
function restoreTaskToUI(task, fieldsToSkip) {
fieldsToSkip = fieldsToSkip || []
if ("numOutputsTotal" in task) {
if ('numOutputsTotal' in task) {
numOutputsTotalField.value = task.numOutputsTotal
}
if ("seed" in task) {
if ('seed' in task) {
randomSeedField.checked = false
seedField.value = task.seed
}
if (!("reqBody" in task)) {
if (!('reqBody' in task)) {
return
}
for (const key in TASK_MAPPING) {
@ -466,32 +310,25 @@ function restoreTaskToUI(task, fieldsToSkip) {
}
// properly reset fields not present in the task
if (!("use_hypernetwork_model" in task.reqBody)) {
if (!('use_hypernetwork_model' in task.reqBody)) {
hypernetworkModelField.value = ""
hypernetworkModelField.dispatchEvent(new Event("change"))
}
if (!("use_lora_model" in task.reqBody)) {
loraModelField.modelNames = []
loraModelField.modelWeights = []
}
// restore the original prompt if provided (e.g. use settings), fallback to prompt as needed (e.g. copy/paste or d&d)
promptField.value = task.reqBody.original_prompt
if (!("original_prompt" in task.reqBody)) {
if (!('original_prompt' in task.reqBody)) {
promptField.value = task.reqBody.prompt
}
promptField.dispatchEvent(new Event("input"))
// properly reset checkboxes
if (!("use_face_correction" in task.reqBody)) {
if (!('use_face_correction' in task.reqBody)) {
useFaceCorrectionField.checked = false
gfpganModelField.disabled = true
}
if (!("use_upscale" in task.reqBody)) {
if (!('use_upscale' in task.reqBody)) {
useUpscalingField.checked = false
}
if (!("mask" in task.reqBody) && maskSetting.checked) {
if (!('mask' in task.reqBody) && maskSetting.checked) {
maskSetting.checked = false
maskSetting.dispatchEvent(new Event("click"))
}
@ -502,60 +339,38 @@ function restoreTaskToUI(task, fieldsToSkip) {
if (IMAGE_REGEX.test(initImagePreview.src) && task.reqBody.init_image == undefined) {
// hide source image
initImageClearBtn.dispatchEvent(new Event("click"))
} else if (task.reqBody.init_image !== undefined) {
// listen for inpainter loading event, which happens AFTER the main image loads (which reloads the inpainter)
initImagePreview.addEventListener(
"load",
function() {
if (Boolean(task.reqBody.mask)) {
imageInpainter.setImg(task.reqBody.mask)
maskSetting.checked = true
}
},
{ once: true }
)
initImagePreview.src = task.reqBody.init_image
}
// hide/show controlnet picture as needed
if (IMAGE_REGEX.test(controlImagePreview.src) && task.reqBody.control_image == undefined) {
// hide source image
controlImageClearBtn.dispatchEvent(new Event("click"))
} else if (task.reqBody.control_image !== undefined) {
// listen for inpainter loading event, which happens AFTER the main image loads (which reloads the inpai
controlImagePreview.src = task.reqBody.control_image
else if (task.reqBody.init_image !== undefined) {
// listen for inpainter loading event, which happens AFTER the main image loads (which reloads the inpainter)
initImagePreview.addEventListener('load', function() {
if (Boolean(task.reqBody.mask)) {
imageInpainter.setImg(task.reqBody.mask)
}
}, { once: true })
initImagePreview.src = task.reqBody.init_image
}
}
function readUI() {
const reqBody = {}
for (const key in TASK_MAPPING) {
if (testDiffusers.checked && (key === "use_hypernetwork_model" || key === "hypernetwork_strength")) {
continue
}
reqBody[key] = TASK_MAPPING[key].readUI()
}
return {
numOutputsTotal: parseInt(numOutputsTotalField.value),
seed: TASK_MAPPING["seed"].readUI(),
reqBody: reqBody,
'numOutputsTotal': parseInt(numOutputsTotalField.value),
'seed': TASK_MAPPING['seed'].readUI(),
'reqBody': reqBody
}
}
function getModelPath(filename, extensions) {
if (typeof filename !== "string") {
return
}
let pathIdx
if (filename.includes("/models/stable-diffusion/")) {
pathIdx = filename.indexOf("/models/stable-diffusion/") + 25 // Linux, Mac paths
} else if (filename.includes("\\models\\stable-diffusion\\")) {
pathIdx = filename.indexOf("\\models\\stable-diffusion\\") + 25 // Linux, Mac paths
function getModelPath(filename, extensions)
{
let pathIdx = filename.lastIndexOf('/') // Linux, Mac paths
if (pathIdx < 0) {
pathIdx = filename.lastIndexOf('\\') // Windows paths.
}
if (pathIdx >= 0) {
filename = filename.slice(pathIdx)
filename = filename.slice(pathIdx + 1)
}
extensions.forEach((ext) => {
extensions.forEach(ext => {
if (filename.endsWith(ext)) {
filename = filename.slice(0, filename.length - ext.length)
}
@ -564,30 +379,26 @@ function getModelPath(filename, extensions) {
}
const TASK_TEXT_MAPPING = {
prompt: "Prompt",
width: "Width",
height: "Height",
seed: "Seed",
num_inference_steps: "Steps",
guidance_scale: "Guidance Scale",
prompt_strength: "Prompt Strength",
use_face_correction: "Use Face Correction",
use_upscale: "Use Upscaling",
upscale_amount: "Upscale By",
sampler_name: "Sampler",
negative_prompt: "Negative Prompt",
use_stable_diffusion_model: "Stable Diffusion model",
use_hypernetwork_model: "Hypernetwork model",
hypernetwork_strength: "Hypernetwork Strength",
use_lora_model: "LoRA model",
lora_alpha: "LoRA Strength",
use_controlnet_model: "ControlNet model",
control_filter_to_apply: "ControlNet Filter",
prompt: 'Prompt',
width: 'Width',
height: 'Height',
seed: 'Seed',
num_inference_steps: 'Steps',
guidance_scale: 'Guidance Scale',
prompt_strength: 'Prompt Strength',
use_face_correction: 'Use Face Correction',
use_upscale: 'Use Upscaling',
upscale_amount: 'Upscale By',
sampler_name: 'Sampler',
negative_prompt: 'Negative Prompt',
use_stable_diffusion_model: 'Stable Diffusion model',
use_hypernetwork_model: 'Hypernetwork model',
hypernetwork_strength: 'Hypernetwork Strength'
}
function parseTaskFromText(str) {
const taskReqBody = {}
const lines = str.split("\n")
const lines = str.split('\n')
if (lines.length === 0) {
return
}
@ -595,14 +406,14 @@ function parseTaskFromText(str) {
// Prompt
let knownKeyOnFirstLine = false
for (let key in TASK_TEXT_MAPPING) {
if (lines[0].startsWith(TASK_TEXT_MAPPING[key] + ":")) {
if (lines[0].startsWith(TASK_TEXT_MAPPING[key] + ':')) {
knownKeyOnFirstLine = true
break
}
}
if (!knownKeyOnFirstLine) {
taskReqBody.prompt = lines[0]
console.log("Prompt:", taskReqBody.prompt)
console.log('Prompt:', taskReqBody.prompt)
}
for (const key in TASK_TEXT_MAPPING) {
@ -610,18 +421,18 @@ function parseTaskFromText(str) {
continue
}
const name = TASK_TEXT_MAPPING[key]
const name = TASK_TEXT_MAPPING[key];
let val = undefined
const reName = new RegExp(`${name}\\ *:\\ *(.*)(?:\\r\\n|\\r|\\n)*`, "igm")
const match = reName.exec(str)
const reName = new RegExp(`${name}\\ *:\\ *(.*)(?:\\r\\n|\\r|\\n)*`, 'igm')
const match = reName.exec(str);
if (match) {
str = str.slice(0, match.index) + str.slice(match.index + match[0].length)
val = match[1]
}
if (val !== undefined) {
taskReqBody[key] = TASK_MAPPING[key].parse(val.trim())
console.log(TASK_MAPPING[key].name + ":", taskReqBody[key])
console.log(TASK_MAPPING[key].name + ':', taskReqBody[key])
if (!str) {
break
}
@ -631,19 +442,18 @@ function parseTaskFromText(str) {
return undefined
}
const task = { reqBody: taskReqBody }
if ("seed" in taskReqBody) {
if ('seed' in taskReqBody) {
task.seed = taskReqBody.seed
}
return task
}
async function parseContent(text) {
text = text.trim()
if (text.startsWith("{") && text.endsWith("}")) {
text = text.trim();
if (text.startsWith('{') && text.endsWith('}')) {
try {
const task = JSON.parse(text)
if (!("reqBody" in task)) {
// support the format saved to the disk, by the UI
if (!('reqBody' in task)) { // support the format saved to the disk, by the UI
task.reqBody = Object.assign({}, task)
}
restoreTaskToUI(task)
@ -655,13 +465,11 @@ async function parseContent(text) {
}
// Normal txt file.
const task = parseTaskFromText(text)
if (text.toLowerCase().includes("seed:") && task) {
// only parse valid task content
if (text.toLowerCase().includes('seed:') && task) { // only parse valid task content
restoreTaskToUI(task)
return true
} else {
console.warn(`Raw text content couldn't be parsed.`)
promptField.value = text
return false
}
}
@ -673,25 +481,21 @@ async function readFile(file, i) {
}
function dropHandler(ev) {
console.log("Content dropped...")
console.log('Content dropped...')
let items = []
if (ev?.dataTransfer?.items) {
// Use DataTransferItemList interface
if (ev?.dataTransfer?.items) { // Use DataTransferItemList interface
items = Array.from(ev.dataTransfer.items)
items = items.filter((item) => item.kind === "file")
items = items.map((item) => item.getAsFile())
} else if (ev?.dataTransfer?.files) {
// Use DataTransfer interface
items = items.filter(item => item.kind === 'file')
items = items.map(item => item.getAsFile())
} else if (ev?.dataTransfer?.files) { // Use DataTransfer interface
items = Array.from(ev.dataTransfer.files)
}
items.forEach((item) => {
item.file_ext = EXT_REGEX.exec(item.name.toLowerCase())[1]
})
items.forEach(item => {item.file_ext = EXT_REGEX.exec(item.name.toLowerCase())[1]})
let text_items = items.filter((item) => TEXT_EXTENSIONS.includes(item.file_ext))
let image_items = items.filter((item) => IMAGE_EXTENSIONS.includes(item.file_ext))
let text_items = items.filter(item => TEXT_EXTENSIONS.includes(item.file_ext))
let image_items = items.filter(item => IMAGE_EXTENSIONS.includes(item.file_ext))
if (image_items.length > 0 && ev.target == initImageSelector) {
return // let the event bubble up, so that the Init Image filepicker can receive this
@ -701,7 +505,7 @@ function dropHandler(ev) {
text_items.forEach(readFile)
}
function dragOverHandler(ev) {
console.log("Content in drop zone")
console.log('Content in drop zone')
// Prevent default behavior (Prevent file/content from being opened)
ev.preventDefault()
@ -709,72 +513,73 @@ function dragOverHandler(ev) {
ev.dataTransfer.dropEffect = "copy"
let img = new Image()
img.src = "//" + location.host + "/media/images/favicon-32x32.png"
img.src = location.host + '/media/images/favicon-32x32.png'
ev.dataTransfer.setDragImage(img, 16, 16)
}
document.addEventListener("drop", dropHandler)
document.addEventListener("dragover", dragOverHandler)
const TASK_REQ_NO_EXPORT = ["use_cpu", "save_to_disk_path"]
const resetSettings = document.getElementById("reset-image-settings")
const TASK_REQ_NO_EXPORT = [
"use_cpu",
"save_to_disk_path"
]
const resetSettings = document.getElementById('reset-image-settings')
function checkReadTextClipboardPermission(result) {
function checkReadTextClipboardPermission (result) {
if (result.state != "granted" && result.state != "prompt") {
return
}
// PASTE ICON
const pasteIcon = document.createElement("i")
pasteIcon.className = "fa-solid fa-paste section-button"
const pasteIcon = document.createElement('i')
pasteIcon.className = 'fa-solid fa-paste section-button'
pasteIcon.innerHTML = `<span class="simple-tooltip top-left">Paste Image Settings</span>`
pasteIcon.addEventListener("click", async (event) => {
pasteIcon.addEventListener('click', async (event) => {
event.stopPropagation()
// Add css class 'active'
pasteIcon.classList.add("active")
pasteIcon.classList.add('active')
// In 350 ms remove the 'active' class
asyncDelay(350).then(() => pasteIcon.classList.remove("active"))
asyncDelay(350).then(() => pasteIcon.classList.remove('active'))
// Retrieve clipboard content and try to parse it
const text = await navigator.clipboard.readText()
const text = await navigator.clipboard.readText();
await parseContent(text)
})
resetSettings.parentNode.insertBefore(pasteIcon, resetSettings)
}
navigator.permissions
.query({ name: "clipboard-read" })
.then(checkReadTextClipboardPermission, (reason) => console.log("clipboard-read is not available. %o", reason))
navigator.permissions.query({ name: "clipboard-read" }).then(checkReadTextClipboardPermission, (reason) => console.log('clipboard-read is not available. %o', reason))
document.addEventListener("paste", async (event) => {
document.addEventListener('paste', async (event) => {
if (event.target) {
const targetTag = event.target.tagName.toLowerCase()
// Disable when targeting input elements.
if (targetTag === "input" || targetTag === "textarea") {
if (targetTag === 'input' || targetTag === 'textarea') {
return
}
}
const paste = (event.clipboardData || window.clipboardData).getData("text")
const paste = (event.clipboardData || window.clipboardData).getData('text')
const selection = window.getSelection()
if (paste != "" && selection.toString().trim().length <= 0 && (await parseContent(paste))) {
if (selection.toString().trim().length <= 0 && await parseContent(paste)) {
event.preventDefault()
return
}
})
// Adds a copy and a paste icon if the browser grants permission to write to clipboard.
function checkWriteToClipboardPermission(result) {
function checkWriteToClipboardPermission (result) {
if (result.state != "granted" && result.state != "prompt") {
return
}
// COPY ICON
const copyIcon = document.createElement("i")
copyIcon.className = "fa-solid fa-clipboard section-button"
const copyIcon = document.createElement('i')
copyIcon.className = 'fa-solid fa-clipboard section-button'
copyIcon.innerHTML = `<span class="simple-tooltip top-left">Copy Image Settings</span>`
copyIcon.addEventListener("click", (event) => {
copyIcon.addEventListener('click', (event) => {
event.stopPropagation()
// Add css class 'active'
copyIcon.classList.add("active")
copyIcon.classList.add('active')
// In 350 ms remove the 'active' class
asyncDelay(350).then(() => copyIcon.classList.remove("active"))
asyncDelay(350).then(() => copyIcon.classList.remove('active'))
const uiState = readUI()
TASK_REQ_NO_EXPORT.forEach((key) => delete uiState.reqBody[key])
if (uiState.reqBody.init_image && !IMAGE_REGEX.test(uiState.reqBody.init_image)) {
@ -787,8 +592,8 @@ function checkWriteToClipboardPermission(result) {
}
// Determine which access we have to the clipboard. Clipboard access is only available on localhost or via TLS.
navigator.permissions.query({ name: "clipboard-write" }).then(checkWriteToClipboardPermission, (e) => {
if (e instanceof TypeError && typeof navigator?.clipboard?.writeText === "function") {
if (e instanceof TypeError && typeof navigator?.clipboard?.writeText === 'function') {
// Fix for firefox https://bugzilla.mozilla.org/show_bug.cgi?id=1560373
checkWriteToClipboardPermission({ state: "granted" })
checkWriteToClipboardPermission({state:"granted"})
}
})

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1,228 +0,0 @@
"use strict"
/**
* @typedef {object} ImageModalRequest
* @property {string} src
* @property {ImageModalRequest | () => ImageModalRequest | undefined} previous
* @property {ImageModalRequest | () => ImageModalRequest | undefined} next
*/
/**
* @type {(() => (string | ImageModalRequest) | string | ImageModalRequest) => {}}
*/
const imageModal = (function() {
const backElem = createElement("i", undefined, ["fa-solid", "fa-arrow-left", "tertiaryButton"])
const forwardElem = createElement("i", undefined, ["fa-solid", "fa-arrow-right", "tertiaryButton"])
const zoomElem = createElement("i", undefined, ["fa-solid", "tertiaryButton"])
const closeElem = createElement("i", undefined, ["fa-solid", "fa-xmark", "tertiaryButton"])
const menuBarElem = createElement("div", undefined, "menu-bar", [backElem, forwardElem, zoomElem, closeElem])
const imageContainer = createElement("div", undefined, "image-wrapper")
const backdrop = createElement("div", undefined, "backdrop")
const modalContainer = createElement("div", undefined, "content", [menuBarElem, imageContainer])
const modalElem = createElement("div", { id: "viewFullSizeImgModal" }, ["popup"], [backdrop, modalContainer])
document.body.appendChild(modalElem)
const setZoomLevel = (value) => {
const img = imageContainer.querySelector("img")
if (value) {
zoomElem.classList.remove("fa-magnifying-glass-plus")
zoomElem.classList.add("fa-magnifying-glass-minus")
if (img) {
img.classList.remove("natural-zoom")
let zoomLevel = typeof value === "number" ? value : img.dataset.zoomLevel
if (!zoomLevel) {
zoomLevel = 100
}
img.dataset.zoomLevel = zoomLevel
img.width = img.naturalWidth * (+zoomLevel / 100)
img.height = img.naturalHeight * (+zoomLevel / 100)
}
} else {
zoomElem.classList.remove("fa-magnifying-glass-minus")
zoomElem.classList.add("fa-magnifying-glass-plus")
if (img) {
img.classList.add("natural-zoom")
img.removeAttribute("width")
img.removeAttribute("height")
}
}
}
zoomElem.addEventListener("click", () =>
setZoomLevel(imageContainer.querySelector("img")?.classList?.contains("natural-zoom"))
)
const initialState = () => ({
previous: undefined,
next: undefined,
start: {
x: 0,
y: 0,
},
scroll: {
x: 0,
y: 0,
},
})
const state = initialState()
// Allow grabbing the image to scroll
const stopGrabbing = (e) => {
if(imageContainer.classList.contains("grabbing")) {
imageContainer.classList.remove("grabbing")
e?.preventDefault()
console.log(`stopGrabbing()`, e)
}
}
const addImageGrabbing = (image) => {
image?.addEventListener('mousedown', (e) => {
if (!image.classList.contains("natural-zoom")) {
e.stopPropagation()
e.stopImmediatePropagation()
e.preventDefault()
imageContainer.classList.add("grabbing")
state.start.x = e.pageX - imageContainer.offsetLeft
state.scroll.x = imageContainer.scrollLeft
state.start.y = e.pageY - imageContainer.offsetTop
state.scroll.y = imageContainer.scrollTop
}
})
image?.addEventListener('mouseup', stopGrabbing)
image?.addEventListener('mouseleave', stopGrabbing)
image?.addEventListener('mousemove', (e) => {
if(imageContainer.classList.contains("grabbing")) {
e.stopPropagation()
e.stopImmediatePropagation()
e.preventDefault()
// Might need to increase this multiplier based on the image size to window size ratio
// The default 1:1 is pretty slow
const multiplier = 1.0
const deltaX = e.pageX - imageContainer.offsetLeft - state.start.x
imageContainer.scrollLeft = state.scroll.x - (deltaX * multiplier)
const deltaY = e.pageY - imageContainer.offsetTop - state.start.y
imageContainer.scrollTop = state.scroll.y - (deltaY * multiplier)
}
})
}
const clear = () => {
imageContainer.innerHTML = ""
Object.entries(initialState()).forEach(([key, value]) => state[key] = value)
stopGrabbing()
}
const close = () => {
clear()
modalElem.classList.remove("active")
document.body.style.overflow = "initial"
}
/**
* @param {() => (string | ImageModalRequest) | string | ImageModalRequest} optionsFactory
*/
function init(optionsFactory) {
if (!optionsFactory) {
close()
return
}
clear()
const options = typeof optionsFactory === "function" ? optionsFactory() : optionsFactory
const src = typeof options === "string" ? options : options.src
const imgElem = createElement("img", { src }, "natural-zoom")
addImageGrabbing(imgElem)
imageContainer.appendChild(imgElem)
modalElem.classList.add("active")
document.body.style.overflow = "hidden"
setZoomLevel(false)
if (typeof options === "object" && options.previous) {
state.previous = options.previous
backElem.style.display = "unset"
} else {
backElem.style.display = "none"
}
if (typeof options === "object" && options.next) {
state.next = options.next
forwardElem.style.display = "unset"
} else {
forwardElem.style.display = "none"
}
}
const back = () => {
if (state.previous) {
init(state.previous)
} else {
backElem.style.display = "none"
}
}
const forward = () => {
if (state.next) {
init(state.next)
} else {
forwardElem.style.display = "none"
}
}
window.addEventListener("keydown", (e) => {
if (modalElem.classList.contains("active")) {
switch (e.key) {
case "Escape":
close()
break
case "ArrowLeft":
back()
break
case "ArrowRight":
forward()
break
}
}
})
window.addEventListener("click", (e) => {
if (modalElem.classList.contains("active")) {
if (e.target === backdrop || e.target === closeElem) {
close()
}
e.stopPropagation()
e.stopImmediatePropagation()
e.preventDefault()
}
})
backElem.addEventListener("click", back)
forwardElem.addEventListener("click", forward)
/**
* @param {() => (string | ImageModalRequest) | string | ImageModalRequest} optionsFactory
*/
return (optionsFactory) => init(optionsFactory)
})()

View File

@ -1,303 +1,247 @@
let activeTags = []
let modifiers = []
let customModifiersGroupElement = undefined
let customModifiersInitialContent = ""
let modifierPanelFreezed = false
let modifiersMainContainer = document.querySelector("#editor-modifiers")
let modifierDropdown = document.querySelector("#image-modifier-dropdown")
let editorModifiersContainer = document.querySelector("#editor-modifiers")
let editorModifierEntries = document.querySelector("#editor-modifiers-entries")
let editorModifierTagsList = document.querySelector("#editor-inputs-tags-list")
let editorTagsContainer = document.querySelector("#editor-inputs-tags-container")
let modifierCardSizeSlider = document.querySelector("#modifier-card-size-slider")
let previewImageField = document.querySelector("#preview-image")
let modifierSettingsBtn = document.querySelector("#modifier-settings-btn")
let modifiersContainerSizeBtn = document.querySelector("#modifiers-container-size-btn")
let modifiersCloseBtn = document.querySelector("#modifiers-close-button")
let modifiersCollapsiblesBtn = document.querySelector("#modifiers-action-collapsibles-btn")
let modifierSettingsDialog = document.querySelector("#modifier-settings-config")
let customModifiersTextBox = document.querySelector("#custom-modifiers-input")
let customModifierEntriesToolbar = document.querySelector("#editor-modifiers-subheader")
let modifierSettingsCloseBtn = document.querySelector("#modifier-settings-close-button")
let editorModifierEntries = document.querySelector('#editor-modifiers-entries')
let editorModifierTagsList = document.querySelector('#editor-inputs-tags-list')
let editorTagsContainer = document.querySelector('#editor-inputs-tags-container')
let modifierCardSizeSlider = document.querySelector('#modifier-card-size-slider')
let previewImageField = document.querySelector('#preview-image')
let modifierSettingsBtn = document.querySelector('#modifier-settings-btn')
let modifierSettingsOverlay = document.querySelector('#modifier-settings-config')
let customModifiersTextBox = document.querySelector('#custom-modifiers-input')
let customModifierEntriesToolbar = document.querySelector('#editor-modifiers-entries-toolbar')
const modifierThumbnailPath = "media/modifier-thumbnails"
const activeCardClass = "modifier-card-active"
const modifierThumbnailPath = 'media/modifier-thumbnails'
const activeCardClass = 'modifier-card-active'
const CUSTOM_MODIFIERS_KEY = "customModifiers"
function createModifierCard(name, previews, removeBy) {
let cardPreviewImageType = previewImageField.value
const modifierCard = document.createElement("div")
modifierCard.className = "modifier-card"
function createModifierCard(name, previews) {
const modifierCard = document.createElement('div')
modifierCard.className = 'modifier-card'
modifierCard.innerHTML = `
<div class="modifier-card-overlay"></div>
<div class="modifier-card-image-container">
<div class="modifier-card-image-overlay">+</div>
<p class="modifier-card-error-label">No Image</p>
<p class="modifier-card-error-label"></p>
<img onerror="this.remove()" alt="Modifier Image" class="modifier-card-image">
</div>
<div class="modifier-card-container">
<div class="modifier-card-label">
<span class="long-label hidden"></span>
<p class="regular-label"></p>
</div>
<div class="modifier-card-label"><p></p></div>
</div>`
const image = modifierCard.querySelector(".modifier-card-image")
const longLabel = modifierCard.querySelector(".modifier-card-label span.long-label")
const regularLabel = modifierCard.querySelector(".modifier-card-label p.regular-label")
const image = modifierCard.querySelector('.modifier-card-image')
const errorText = modifierCard.querySelector('.modifier-card-error-label')
const label = modifierCard.querySelector('.modifier-card-label')
if (typeof previews == "object") {
image.src = previews[cardPreviewImageType == "portrait" ? 0 : 1] // 0 index is portrait, 1 landscape
image.setAttribute("preview-type", cardPreviewImageType)
errorText.innerText = 'No Image'
if (typeof previews == 'object') {
image.src = previews[0]; // portrait
image.setAttribute('preview-type', 'portrait')
} else {
image.remove()
}
const maxLabelLength = 30
const cardLabel = removeBy ? name.replace("by ", "") : name
const nameWithoutBy = name.replace('by ', '')
function getFormattedLabel(length) {
if (cardLabel?.length <= length) {
return cardLabel
} else {
return cardLabel.substring(0, length) + "..."
}
if(nameWithoutBy.length <= maxLabelLength) {
label.querySelector('p').innerText = nameWithoutBy
} else {
const tooltipText = document.createElement('span')
tooltipText.className = 'tooltip-text'
tooltipText.innerText = name
label.classList.add('tooltip')
label.appendChild(tooltipText)
label.querySelector('p').innerText = nameWithoutBy.substring(0, maxLabelLength) + '...'
}
modifierCard.dataset.fullName = name // preserve the full name
regularLabel.dataset.fullName = name // preserve the full name, legacy support for older plugins
longLabel.innerText = getFormattedLabel(maxLabelLength * 2)
regularLabel.innerText = getFormattedLabel(maxLabelLength)
if (cardLabel.length > maxLabelLength) {
modifierCard.classList.add("support-long-label")
if (cardLabel.length > maxLabelLength * 2) {
modifierCard.title = `"${name}"`
}
}
return modifierCard
}
function createModifierGroup(modifierGroup, isInitiallyOpen, removeBy) {
function createModifierGroup(modifierGroup, initiallyExpanded) {
const title = modifierGroup.category
const modifiers = modifierGroup.modifiers
const titleEl = document.createElement("h5")
titleEl.className = "collapsible"
const titleEl = document.createElement('h5')
titleEl.className = 'collapsible'
titleEl.innerText = title
const modifiersEl = document.createElement("div")
modifiersEl.classList.add("collapsible-content", "editor-modifiers-leaf")
const modifiersEl = document.createElement('div')
modifiersEl.classList.add('collapsible-content', 'editor-modifiers-leaf')
if (isInitiallyOpen === true) {
titleEl.classList.add("active")
if (initiallyExpanded === true) {
titleEl.className += ' active'
}
modifiers.forEach((modObj) => {
modifiers.forEach(modObj => {
const modifierName = modObj.modifier
const modifierPreviews = modObj?.previews?.map(
(preview) =>
`${IMAGE_REGEX.test(preview.image) ? preview.image : modifierThumbnailPath + "/" + preview.path}`
)
const modifierPreviews = modObj?.previews?.map(preview => `${modifierThumbnailPath}/${preview.path}`)
const modifierCard = createModifierCard(modifierName, modifierPreviews, removeBy)
const modifierCard = createModifierCard(modifierName, modifierPreviews)
if (typeof modifierCard == "object") {
if(typeof modifierCard == 'object') {
modifiersEl.appendChild(modifierCard)
const trimmedName = trimModifiers(modifierName)
modifierCard.addEventListener("click", () => {
if (activeTags.map((x) => trimModifiers(x.name)).includes(trimmedName)) {
modifierCard.addEventListener('click', () => {
if (activeTags.map(x => trimModifiers(x.name)).includes(trimmedName)) {
// remove modifier from active array
activeTags = activeTags.filter((x) => trimModifiers(x.name) != trimmedName)
activeTags = activeTags.filter(x => trimModifiers(x.name) != trimmedName)
toggleCardState(trimmedName, false)
} else {
// add modifier to active array
activeTags.push({
name: modifierName,
element: modifierCard.cloneNode(true),
originElement: modifierCard,
previews: modifierPreviews,
'name': modifierName,
'element': modifierCard.cloneNode(true),
'originElement': modifierCard,
'previews': modifierPreviews
})
toggleCardState(trimmedName, true)
}
refreshTagsList()
document.dispatchEvent(new Event("refreshImageModifiers"))
document.dispatchEvent(new Event('refreshImageModifiers'))
})
}
})
let brk = document.createElement("br")
brk.style.clear = "both"
let brk = document.createElement('br')
brk.style.clear = 'both'
modifiersEl.appendChild(brk)
let e = document.createElement("div")
e.className = "modifier-category"
let e = document.createElement('div')
e.appendChild(titleEl)
e.appendChild(modifiersEl)
editorModifierEntries.prepend(e)
editorModifierEntries.insertBefore(e, customModifierEntriesToolbar.nextSibling)
return e
}
function trimModifiers(tag) {
// Remove trailing '-' and/or '+'
tag = tag.replace(/[-+]+$/, "")
// Remove parentheses at beginning and end
return tag.replace(/^[(]+|[\s)]+$/g, "")
return tag.replace(/^\(+|\)+$/g, '').replace(/^\[+|\]+$/g, '')
}
async function loadModifiers() {
try {
let res = await fetch("/get/modifiers")
let res = await fetch('/get/modifiers')
if (res.status === 200) {
res = await res.json()
modifiers = res // update global variable
modifiers = res; // update global variable
res.reverse()
res.forEach((modifierGroup, idx) => {
const isInitiallyOpen = false // idx === res.length - 1
const removeBy = modifierGroup === "Artist" ? true : false // only remove "By " for artists
createModifierGroup(modifierGroup, isInitiallyOpen, removeBy)
createModifierGroup(modifierGroup, idx === res.length - 1)
})
createCollapsibles(editorModifierEntries)
}
} catch (e) {
console.error("error fetching modifiers", e)
console.log('error fetching modifiers', e)
}
loadCustomModifiers()
resizeModifierCards(modifierCardSizeSlider.value)
document.dispatchEvent(new Event("loadImageModifiers"))
document.dispatchEvent(new Event('loadImageModifiers'))
}
function refreshModifiersState(newTags, inactiveTags) {
function refreshModifiersState(newTags) {
// clear existing modifiers
document
.querySelector("#editor-modifiers")
.querySelectorAll(".modifier-card")
.forEach((modifierCard) => {
const modifierName = modifierCard.dataset.fullName // pick the full modifier name
if (activeTags.map((x) => x.name).includes(modifierName)) {
modifierCard.classList.remove(activeCardClass)
modifierCard.querySelector(".modifier-card-image-overlay").innerText = "+"
}
})
document.querySelector('#editor-modifiers').querySelectorAll('.modifier-card').forEach(modifierCard => {
const modifierName = modifierCard.querySelector('.modifier-card-label').innerText
if (activeTags.map(x => x.name).includes(modifierName)) {
modifierCard.classList.remove(activeCardClass)
modifierCard.querySelector('.modifier-card-image-overlay').innerText = '+'
}
})
activeTags = []
// set new modifiers
newTags.forEach((tag) => {
newTags.forEach(tag => {
let found = false
document
.querySelector("#editor-modifiers")
.querySelectorAll(".modifier-card")
.forEach((modifierCard) => {
const modifierName = modifierCard.dataset.fullName
const shortModifierName = modifierCard.querySelector(".modifier-card-label p").innerText
if (trimModifiers(tag) == trimModifiers(modifierName)) {
// add modifier to active array
if (!activeTags.map((x) => x.name).includes(tag)) {
// only add each tag once even if several custom modifier cards share the same tag
const imageModifierCard = modifierCard.cloneNode(true)
imageModifierCard.querySelector(".modifier-card-label p").innerText = tag.replace(
modifierName,
shortModifierName
)
activeTags.push({
name: tag,
element: imageModifierCard,
originElement: modifierCard,
})
}
modifierCard.classList.add(activeCardClass)
modifierCard.querySelector(".modifier-card-image-overlay").innerText = "-"
found = true
document.querySelector('#editor-modifiers').querySelectorAll('.modifier-card').forEach(modifierCard => {
const modifierName = modifierCard.querySelector('.modifier-card-label').innerText
if (tag == modifierName) {
// add modifier to active array
if (!activeTags.map(x => x.name).includes(tag)) { // only add each tag once even if several custom modifier cards share the same tag
activeTags.push({
'name': modifierName,
'element': modifierCard.cloneNode(true),
'originElement': modifierCard
})
}
})
if (found == false) {
// custom tag went missing, create one here
let modifierCard = createModifierCard(tag, undefined, false) // create a modifier card for the missing tag, no image
modifierCard.addEventListener("click", () => {
if (activeTags.map((x) => x.name).includes(tag)) {
modifierCard.classList.add(activeCardClass)
modifierCard.querySelector('.modifier-card-image-overlay').innerText = '-'
found = true
}
})
if (found == false) { // custom tag went missing, create one here
let modifierCard = createModifierCard(tag, undefined) // create a modifier card for the missing tag, no image
modifierCard.addEventListener('click', () => {
if (activeTags.map(x => x.name).includes(tag)) {
// remove modifier from active array
activeTags = activeTags.filter((x) => x.name != tag)
activeTags = activeTags.filter(x => x.name != tag)
modifierCard.classList.remove(activeCardClass)
modifierCard.querySelector(".modifier-card-image-overlay").innerText = "+"
modifierCard.querySelector('.modifier-card-image-overlay').innerText = '+'
}
refreshTagsList()
})
activeTags.push({
name: tag,
element: modifierCard,
originElement: undefined, // no origin element for missing tags
'name': tag,
'element': modifierCard,
'originElement': undefined // no origin element for missing tags
})
}
})
refreshTagsList(inactiveTags)
refreshTagsList()
}
function refreshInactiveTags(inactiveTags) {
// update inactive tags
if (inactiveTags !== undefined && inactiveTags.length > 0) {
activeTags.forEach((tag) => {
if (inactiveTags.find((element) => element === tag.name) !== undefined) {
activeTags.forEach (tag => {
if (inactiveTags.find(element => element === tag.name) !== undefined) {
tag.inactive = true
}
})
}
// update cards
let overlays = editorModifierTagsList.querySelectorAll(".modifier-card-overlay")
overlays.forEach((i) => {
let modifierName = i.parentElement.dataset.fullName
if (inactiveTags?.find((element) => trimModifiers(element) === modifierName) !== undefined) {
i.parentElement.classList.add("modifier-toggle-inactive")
let overlays = document.querySelector('#editor-inputs-tags-list').querySelectorAll('.modifier-card-overlay')
overlays.forEach (i => {
let modifierName = i.parentElement.getElementsByClassName('modifier-card-label')[0].getElementsByTagName("p")[0].innerText
if (inactiveTags.find(element => element === modifierName) !== undefined) {
i.parentElement.classList.add('modifier-toggle-inactive')
}
})
}
function refreshTagsList(inactiveTags) {
editorModifierTagsList.innerHTML = ""
function refreshTagsList() {
editorModifierTagsList.innerHTML = ''
if (activeTags.length == 0) {
editorTagsContainer.style.display = "none"
editorTagsContainer.style.display = 'none'
return
} else {
editorTagsContainer.style.display = "block"
}
if(activeTags.length > 15) {
editorModifierTagsList.style["overflow-y"] = "auto"
} else {
editorModifierTagsList.style["overflow-y"] = "unset"
editorTagsContainer.style.display = 'block'
}
activeTags.forEach((tag, index) => {
tag.element.querySelector(".modifier-card-image-overlay").innerText = "-"
tag.element.classList.add("modifier-card-tiny")
tag.element.querySelector('.modifier-card-image-overlay').innerText = '-'
tag.element.classList.add('modifier-card-tiny')
editorModifierTagsList.appendChild(tag.element)
tag.element.addEventListener("click", () => {
let idx = activeTags.findIndex((o) => {
return o.name === tag.name
})
tag.element.addEventListener('click', () => {
let idx = activeTags.findIndex(o => { return o.name === tag.name })
if (idx !== -1) {
toggleCardState(activeTags[idx].name, false)
@ -305,90 +249,99 @@ function refreshTagsList(inactiveTags) {
activeTags.splice(idx, 1)
refreshTagsList()
}
document.dispatchEvent(new Event("refreshImageModifiers"))
document.dispatchEvent(new Event('refreshImageModifiers'))
})
})
let brk = document.createElement("br")
brk.style.clear = "both"
let brk = document.createElement('br')
brk.style.clear = 'both'
editorModifierTagsList.appendChild(brk)
refreshInactiveTags(inactiveTags)
document.dispatchEvent(new Event("refreshImageModifiers")) // notify plugins that the image tags have been refreshed
}
function toggleCardState(modifierName, makeActive) {
const cards = [...document.querySelectorAll("#editor-modifiers .modifier-card")]
.filter(cardElem => trimModifiers(cardElem.dataset.fullName) == trimModifiers(modifierName))
const cardExists = typeof cards == "object" && cards?.length > 0
if (cardExists) {
const card = cards[0]
if (makeActive) {
card.classList.add(activeCardClass)
card.querySelector(".modifier-card-image-overlay").innerText = "-"
} else {
card.classList.remove(activeCardClass)
card.querySelector(".modifier-card-image-overlay").innerText = "+"
document.querySelector('#editor-modifiers').querySelectorAll('.modifier-card').forEach(card => {
const name = card.querySelector('.modifier-card-label').innerText
if ( trimModifiers(modifierName) == trimModifiers(name)
|| trimModifiers(modifierName) == 'by ' + trimModifiers(name)) {
if(makeActive) {
card.classList.add(activeCardClass)
card.querySelector('.modifier-card-image-overlay').innerText = '-'
}
else{
card.classList.remove(activeCardClass)
card.querySelector('.modifier-card-image-overlay').innerText = '+'
}
}
}
})
}
function changePreviewImages(val) {
const previewImages = document.querySelectorAll(".modifier-card-image-container img")
const previewImages = document.querySelectorAll('.modifier-card-image-container img')
const previewArr = modifiers.flatMap((x) => x.modifiers.map((m) => m.previews))
.map((x) => x.reduce((obj, preview) => {
let previewArr = []
modifiers.map(x => x.modifiers).forEach(x => previewArr.push(...x.map(m => m.previews)))
previewArr = previewArr.map(x => {
let obj = {}
x.forEach(preview => {
obj[preview.name] = preview.path
})
return obj
})
return obj
}, {}))
previewImages.forEach(previewImage => {
const currentPreviewType = previewImage.getAttribute('preview-type')
const relativePreviewPath = previewImage.src.split(modifierThumbnailPath + '/').pop()
previewImages.forEach((previewImage) => {
const currentPreviewType = previewImage.getAttribute("preview-type")
const relativePreviewPath = previewImage.src.split(modifierThumbnailPath + "/").pop()
const previews = previewArr.find(preview => relativePreviewPath == preview[currentPreviewType])
const previews = previewArr.find((preview) => relativePreviewPath == preview[currentPreviewType])
if (typeof previews == "object") {
if(typeof previews == 'object') {
let preview = null
if (val == "portrait") {
if (val == 'portrait') {
preview = previews.portrait
} else if (val == "landscape") {
}
else if (val == 'landscape') {
preview = previews.landscape
}
if (preview) {
if(preview != null) {
previewImage.src = `${modifierThumbnailPath}/${preview}`
previewImage.setAttribute("preview-type", val)
previewImage.setAttribute('preview-type', val)
}
}
})
}
function resizeModifierCards(val) {
const cardSizePrefix = "modifier-card-size_"
const modifierCardClass = "modifier-card"
const cardSizePrefix = 'modifier-card-size_'
const modifierCardClass = 'modifier-card'
const modifierCards = document.querySelectorAll(`.${modifierCardClass}`)
const cardSize = (n) => `${cardSizePrefix}${n}`
const cardSize = n => `${cardSizePrefix}${n}`
modifierCards.forEach((card) => {
modifierCards.forEach(card => {
// remove existing size classes
const classes = card.className.split(" ").filter((c) => !c.startsWith(cardSizePrefix))
card.className = classes.join(" ").trim()
const classes = card.className.split(' ').filter(c => !c.startsWith(cardSizePrefix))
card.className = classes.join(' ').trim()
if (val != 0) {
if(val != 0) {
card.classList.add(cardSize(val))
}
})
}
modifierCardSizeSlider.onchange = () => resizeModifierCards(modifierCardSizeSlider.value)
previewImageField.onchange = () => changePreviewImages(previewImageField.value)
modifierSettingsBtn.addEventListener('click', function(e) {
modifierSettingsOverlay.classList.add("active")
e.stopPropagation()
})
function saveCustomModifiers() {
localStorage.setItem(CUSTOM_MODIFIERS_KEY, customModifiersTextBox.value.trim())
@ -396,159 +349,7 @@ function saveCustomModifiers() {
}
function loadCustomModifiers() {
PLUGINS["MODIFIERS_LOAD"].forEach((fn) => fn.loader.call())
PLUGINS['MODIFIERS_LOAD'].forEach(fn=>fn.loader.call())
}
function showModifierContainer() {
document.addEventListener("mousedown", checkIfClickedOutsideDropdownElem)
modifierDropdown.dataset.active = true
editorModifiersContainer.classList.add("active")
}
function hideModifierContainer() {
document.removeEventListener("click", checkIfClickedOutsideDropdownElem)
modifierDropdown.dataset.active = false
editorModifiersContainer.classList.remove("active")
}
function checkIfClickedOutsideDropdownElem(e) {
const clickedElement = e.target
const clickedInsideSpecificElems = [modifierDropdown, editorModifiersContainer, modifierSettingsDialog].some((div) =>
div && (div.contains(clickedElement) || div === clickedElement))
if (!clickedInsideSpecificElems && !modifierPanelFreezed) {
hideModifierContainer()
}
}
function collapseAllModifierCategory() {
collapseAll(".modifier-category .collapsible")
}
function expandAllModifierCategory() {
expandAll(".modifier-category .collapsible")
}
customModifiersTextBox.addEventListener("change", saveCustomModifiers)
modifierCardSizeSlider.onchange = () => resizeModifierCards(modifierCardSizeSlider.value)
previewImageField.onchange = () => changePreviewImages(previewImageField.value)
modifierSettingsDialog.addEventListener("keydown", function(e) {
switch (e.key) {
case "Escape": // Escape to cancel
customModifiersTextBox.value = customModifiersInitialContent // undo the changes
modifierSettingsDialog.close()
e.stopPropagation()
break
case "Enter":
if (e.ctrlKey) {
// Ctrl+Enter to confirm
modifierSettingsDialog.close()
e.stopPropagation()
break
}
}
})
modifierDropdown.addEventListener("click", e => {
const targetElem = e.target
const isDropdownActive = targetElem.dataset.active == "true" ? true : false
if (!isDropdownActive)
showModifierContainer()
else
hideModifierContainer()
})
let collapsiblesBtnState = false
modifiersCollapsiblesBtn.addEventListener("click", (e) => {
const btnElem = modifiersCollapsiblesBtn
const collapseText = "Collapse Categories"
const expandText = "Expand Categories"
const collapseIconClasses = ["fa-solid", "fa-square-minus"]
const expandIconClasses = ["fa-solid", "fa-square-plus"]
const iconElem = btnElem.querySelector(".modifiers-action-icon")
const textElem = btnElem.querySelector(".modifiers-action-text")
if (collapsiblesBtnState) {
collapseAllModifierCategory()
collapsiblesBtnState = false
collapseIconClasses.forEach((c) => iconElem.classList.remove(c))
expandIconClasses.forEach((c) => iconElem.classList.add(c))
textElem.innerText = expandText
} else {
expandAllModifierCategory()
collapsiblesBtnState = true
expandIconClasses.forEach((c) => iconElem.classList.remove(c))
collapseIconClasses.forEach((c) => iconElem.classList.add(c))
textElem.innerText = collapseText
}
})
let containerSizeBtnState = false
modifiersContainerSizeBtn.addEventListener("click", (e) => {
const btnElem = modifiersContainerSizeBtn
const maximizeIconClasses = ["fa-solid", "fa-expand"]
const revertIconClasses = ["fa-solid", "fa-compress"]
modifiersMainContainer.classList.toggle("modifiers-maximized")
if(containerSizeBtnState) {
revertIconClasses.forEach((c) => btnElem.classList.remove(c))
maximizeIconClasses.forEach((c) => btnElem.classList.add(c))
containerSizeBtnState = false
} else {
maximizeIconClasses.forEach((c) => btnElem.classList.remove(c))
revertIconClasses.forEach((c) => btnElem.classList.add(c))
containerSizeBtnState = true
}
})
modifierSettingsBtn.addEventListener("click", (e) => {
modifierSettingsDialog.showModal()
customModifiersTextBox.setSelectionRange(0, 0)
customModifiersTextBox.focus()
customModifiersInitialContent = customModifiersTextBox.value // preserve the initial content
e.stopPropagation()
})
modifiersCloseBtn.addEventListener("click", (e) => {
hideModifierContainer()
})
// prevents the modifier panel closing at the same time as the settings overlay
new MutationObserver(() => {
const isActive = modifierSettingsDialog.open
if (!isActive) {
modifierPanelFreezed = true
setTimeout(() => modifierPanelFreezed = false, 25)
}
}).observe(modifierSettingsDialog, { attributes: true })
modifierSettingsCloseBtn.addEventListener("click", (e) => {
modifierSettingsDialog.close()
})
modalDialogCloseOnBackdropClick(modifierSettingsDialog)
makeDialogDraggable(modifierSettingsDialog)
customModifiersTextBox.addEventListener('change', saveCustomModifiers)

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1,256 +0,0 @@
/**
* A component consisting of multiple model dropdowns, along with a "weight" field per model.
*
* Behaves like a single input element, giving an object in response to the .value field.
*
* Inspired by the design of the ModelDropdown component (searchable-models.js).
*/
class MultiModelSelector {
root
modelType
modelNameFriendly
defaultWeight
weightStep
modelContainer
addNewButton
counter = 0
/* MIMIC A REGULAR INPUT FIELD */
get id() {
return this.root.id
}
get parentElement() {
return this.root.parentElement
}
get parentNode() {
return this.root.parentNode
}
get value() {
return { modelNames: this.modelNames, modelWeights: this.modelWeights }
}
set value(modelData) {
if (typeof modelData !== "object") {
throw new Error("Multi-model selector expects an object containing modelNames and modelWeights as keys!")
}
if (!("modelNames" in modelData) || !("modelWeights" in modelData)) {
throw new Error("modelNames or modelWeights not present in the data passed to the multi-model selector")
}
let newModelNames = modelData["modelNames"]
let newModelWeights = modelData["modelWeights"]
if (newModelNames.length !== newModelWeights.length) {
throw new Error("Need to pass an equal number of modelNames and modelWeights!")
}
// update weight first, name second.
// for some unholy reason this order matters for dispatch chains
// the root of all this unholiness is because searchable-models automatically dispatches an update event
// as soon as the value is updated via JS, which is against the DOM pattern of not dispatching an event automatically
// unless the caller explicitly dispatches the event.
this.modelWeights = newModelWeights
this.modelNames = newModelNames
}
get disabled() {
return false
}
set disabled(state) {
// do nothing
}
getModelElements(ignoreEmpty = false) {
let entries = this.root.querySelectorAll(".model_entry")
entries = [...entries]
let elements = entries.map((e) => {
let modelName = e.querySelector(".model_name").field
let modelWeight = e.querySelector(".model_weight")
if (ignoreEmpty && modelName.value.trim() === "") {
return null
}
return { name: modelName, weight: modelWeight }
})
elements = elements.filter((e) => e !== null)
return elements
}
addEventListener(type, listener, options) {
// do nothing
}
dispatchEvent(event) {
// do nothing
}
appendChild(option) {
// do nothing
}
// remember 'this' - http://blog.niftysnippets.org/2008/04/you-must-remember-this.html
bind(f, obj) {
return function() {
return f.apply(obj, arguments)
}
}
constructor(root, modelType, modelNameFriendly = undefined, defaultWeight = 0.5, weightStep = 0.02) {
this.root = root
this.modelType = modelType
this.modelNameFriendly = modelNameFriendly || modelType
this.defaultWeight = defaultWeight
this.weightStep = weightStep
let self = this
document.addEventListener("refreshModels", function() {
setTimeout(self.bind(self.populateModels, self), 1)
})
this.createStructure()
this.populateModels()
}
createStructure() {
this.modelContainer = document.createElement("div")
this.modelContainer.className = "model_entries"
this.root.appendChild(this.modelContainer)
this.addNewButton = document.createElement("button")
this.addNewButton.className = "add_model_entry"
this.addNewButton.innerHTML = '<i class="fa-solid fa-plus"></i> add another ' + this.modelNameFriendly
this.addNewButton.addEventListener("click", this.bind(this.addModelEntry, this))
this.root.appendChild(this.addNewButton)
}
populateModels() {
if (this.root.dataset.path === "") {
if (this.length === 0) {
this.addModelEntry() // create a single blank entry
}
} else {
this.value = JSON.parse(this.root.dataset.path)
}
}
addModelEntry() {
let idx = this.counter++
let currLength = this.length
const modelElement = document.createElement("div")
modelElement.className = "model_entry"
modelElement.innerHTML = `
<input id="${this.modelType}_${idx}" class="model_name model-filter" type="text" spellcheck="false" autocomplete="off" data-path="" />
<input class="model_weight" type="number" step="${this.weightStep}" value="${this.defaultWeight}" pattern="^-?[0-9]*\.?[0-9]*$" onkeypress="preventNonNumericalInput(event)">
`
this.modelContainer.appendChild(modelElement)
let modelNameEl = modelElement.querySelector(".model_name")
modelNameEl.field = new ModelDropdown(modelNameEl, this.modelType, "None")
let modelWeightEl = modelElement.querySelector(".model_weight")
let self = this
function makeUpdateEvent(type) {
return function(e) {
e.stopPropagation()
let modelData = self.value
self.root.dataset.path = JSON.stringify(modelData)
self.root.dispatchEvent(new Event(type))
}
}
modelNameEl.addEventListener("change", makeUpdateEvent("change"))
modelNameEl.addEventListener("input", makeUpdateEvent("input"))
modelWeightEl.addEventListener("change", makeUpdateEvent("change"))
modelWeightEl.addEventListener("input", makeUpdateEvent("input"))
let removeBtn = document.createElement("button")
removeBtn.className = "remove_model_btn"
removeBtn.setAttribute("title", "Remove model")
removeBtn.innerHTML = '<i class="fa-solid fa-minus"></i>'
if (currLength === 0) {
removeBtn.classList.add("displayNone")
}
removeBtn.addEventListener(
"click",
this.bind(function(e) {
this.modelContainer.removeChild(modelElement)
makeUpdateEvent("change")(e)
}, this)
)
modelElement.appendChild(removeBtn)
}
removeModelEntry() {
if (this.length === 0) {
return
}
let lastEntry = this.modelContainer.lastElementChild
lastEntry.remove()
}
get length() {
return this.getModelElements().length
}
get modelNames() {
return this.getModelElements(true).map((e) => e.name.value)
}
set modelNames(newModelNames) {
this.resizeEntryList(newModelNames.length)
if (newModelNames.length === 0) {
this.getModelElements()[0].name.value = ""
}
// assign to the corresponding elements
let currElements = this.getModelElements()
for (let i = 0; i < newModelNames.length; i++) {
let curr = currElements[i]
curr.name.value = newModelNames[i]
}
}
get modelWeights() {
return this.getModelElements(true).map((e) => e.weight.value)
}
set modelWeights(newModelWeights) {
this.resizeEntryList(newModelWeights.length)
if (newModelWeights.length === 0) {
this.getModelElements()[0].weight.value = this.defaultWeight
}
// assign to the corresponding elements
let currElements = this.getModelElements()
for (let i = 0; i < newModelWeights.length; i++) {
let curr = currElements[i]
curr.weight.value = newModelWeights[i]
}
}
resizeEntryList(newLength) {
if (newLength === 0) {
newLength = 1
}
let currLength = this.length
if (currLength < newLength) {
for (let i = currLength; i < newLength; i++) {
this.addModelEntry()
}
} else {
for (let i = newLength; i < currLength; i++) {
this.removeModelEntry()
}
}
}
}

View File

@ -3,34 +3,24 @@
* @readonly
* @enum {string}
*/
var ParameterType = {
var ParameterType = {
checkbox: "checkbox",
select: "select",
select_multiple: "select_multiple",
slider: "slider",
custom: "custom",
}
/**
* Element shortcuts
*/
let parametersTable = document.querySelector("#system-settings-table")
let networkParametersTable = document.querySelector("#system-settings-network-table")
let installExtrasTable = document.querySelector("#system-settings-install-extras-table")
};
/**
* JSDoc style
* @typedef {object} Parameter
* @property {string} id
* @property {keyof ParameterType} type
* @property {string | (parameter: Parameter) => (HTMLElement | string)} label
* @property {string | (parameter: Parameter) => (HTMLElement | string) | undefined} note
* @property {(parameter: Parameter) => (HTMLElement | string) | undefined} render
* @property {string | undefined} icon
* @property {ParameterType} type
* @property {string} label
* @property {?string} note
* @property {number|boolean|string} default
* @property {boolean?} saveInAppConfig
*/
/** @type {Array.<Parameter>} */
var PARAMETERS = [
{
@ -39,14 +29,13 @@ var PARAMETERS = [
label: "Theme",
default: "theme-default",
note: "customize the look and feel of the ui",
options: [
// Note: options expanded dynamically
options: [ // Note: options expanded dynamically
{
value: "theme-default",
label: "Default",
},
label: "Default"
}
],
icon: "fa-palette",
icon: "fa-palette"
},
{
id: "save_to_disk",
@ -62,7 +51,7 @@ var PARAMETERS = [
label: "Save Location",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="30" disabled>`
},
}
},
{
id: "metadata_output_format",
@ -71,40 +60,16 @@ var PARAMETERS = [
note: "will be saved to disk in this format",
default: "txt",
options: [
{
value: "none",
label: "none",
},
{
value: "txt",
label: "txt",
label: "txt"
},
{
value: "json",
label: "json",
},
{
value: "embed",
label: "embed",
},
{
value: "embed,txt",
label: "embed & txt",
},
{
value: "embed,json",
label: "embed & json",
},
label: "json"
}
],
},
{
id: "block_nsfw",
type: ParameterType.checkbox,
label: "Block NSFW images",
note: "blurs out NSFW images",
icon: "fa-land-mine-on",
default: false,
},
{
id: "sound_toggle",
type: ParameterType.checkbox,
@ -121,15 +86,6 @@ var PARAMETERS = [
icon: "fa-arrow-down-short-wide",
default: false,
},
{
id: "extract_lora_from_prompt",
type: ParameterType.checkbox,
label: "Extract LoRA tags from the prompt",
note:
"Automatically extract lora tags like &lt;lora:name:0.4&gt; from the prompt, and apply the correct LoRA (if present)",
icon: "fa-code",
default: true,
},
{
id: "ui_open_browser_on_start",
type: ParameterType.checkbox,
@ -137,23 +93,21 @@ var PARAMETERS = [
note: "starts the default browser on startup",
icon: "fa-window-restore",
default: true,
saveInAppConfig: true,
},
{
id: "vram_usage_level",
type: ParameterType.select,
label: "GPU Memory Usage",
note:
"Faster performance requires more GPU memory (VRAM)<br/><br/>" +
"<b>Balanced:</b> nearly as fast as High, much lower VRAM usage<br/>" +
"<b>High:</b> fastest, maximum GPU memory usage</br>" +
"<b>Low:</b> slowest, recommended for GPUs with 3 to 4 GB memory",
note: "Faster performance requires more GPU memory (VRAM)<br/><br/>" +
"<b>Balanced:</b> nearly as fast as High, much lower VRAM usage<br/>" +
"<b>High:</b> fastest, maximum GPU memory usage</br>" +
"<b>Low:</b> slowest, force-used for GPUs with 3 to 4 GB memory",
icon: "fa-forward",
default: "balanced",
options: [
{ value: "balanced", label: "Balanced" },
{ value: "high", label: "High" },
{ value: "low", label: "Low" },
{value: "balanced", label: "Balanced"},
{value: "high", label: "High"},
{value: "low", label: "Low"}
],
},
{
@ -189,268 +143,121 @@ var PARAMETERS = [
id: "confirm_dangerous_actions",
type: ParameterType.checkbox,
label: "Confirm dangerous actions",
note:
"Actions that might lead to data loss must either be clicked with the shift key pressed, or confirmed in an 'Are you sure?' dialog",
note: "Actions that might lead to data loss must either be clicked with the shift key pressed, or confirmed in an 'Are you sure?' dialog",
icon: "fa-check-double",
default: true,
},
{
id: "profileName",
type: ParameterType.custom,
label: "Profile Name",
note:
"Name of the profile for model manager settings, e.g. thumbnails for embeddings. Use this to have different settings for different users.",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" value="default" size="12">`
},
icon: "fa-user-gear",
},
{
id: "listen_to_network",
type: ParameterType.checkbox,
label: "Make Stable Diffusion available on your network",
note: "Other devices on your network can access this web page. Please restart the program after changing this.",
note: "Other devices on your network can access this web page",
icon: "fa-network-wired",
default: true,
saveInAppConfig: true,
table: networkParametersTable,
},
{
id: "listen_port",
type: ParameterType.custom,
label: "Network port",
note:
"Port that this server listens to. The '9000' part in 'http://localhost:9000'. Please restart the program after changing this.",
note: "Port that this server listens to. The '9000' part in 'http://localhost:9000'",
icon: "fa-anchor",
render: (parameter) => {
return `<input id="${parameter.id}" name="${parameter.id}" size="6" value="9000" onkeypress="preventNonNumericalInput(event)">`
},
saveInAppConfig: true,
table: networkParametersTable,
}
},
{
id: "use_beta_channel",
type: ParameterType.checkbox,
label: "Beta channel",
note:
"Get the latest features immediately (but could be less stable). Please restart the program after changing this.",
note: "Get the latest features immediately (but could be less stable). Please restart the program after changing this.",
icon: "fa-fire",
default: false,
},
{
id: "test_diffusers",
type: ParameterType.checkbox,
label: "Use the new v3 engine (diffusers)",
note:
"Use our new v3 engine, with additional features like LoRA, ControlNet, SDXL, Embeddings, Tiling and lots more! Please press Save, then restart the program after changing this.",
icon: "fa-bolt",
default: true,
saveInAppConfig: true,
},
{
id: "cloudflare",
type: ParameterType.custom,
label: "Cloudflare tunnel",
note: `<span id="cloudflare-off">Create a VPN tunnel to share your Easy Diffusion instance with your friends. This will
generate a web server address on the public Internet for your Easy Diffusion instance. </span>
<div id="cloudflare-on" class="displayNone"><div>This Easy Diffusion server is available on the Internet using the
address:</div><div><input id="cloudflare-address" value="" readonly><button id="copy-cloudflare-address">Copy</button></div></div>
<b>Anyone knowing this address can access your server.</b> The address of your server will change each time
you share a session.<br>
Uses <a href="https://try.cloudflare.com/" target="_blank">Cloudflare services</a>.`,
icon: ["fa-brands", "fa-cloudflare"],
render: () => '<button id="toggle-cloudflare-tunnel" class="primaryButton">Start</button>',
table: networkParametersTable,
},
{
id: "nvidia_tensorrt",
type: ParameterType.custom,
label: "NVIDIA TensorRT",
note: `Faster image generation by converting your Stable Diffusion models to the NVIDIA TensorRT format. You can choose the
models to convert. Download size: approximately 2 GB.<br/><br/>
<b>Early access version:</b> support for LoRA is still under development.
<div id="trt-build-config" class="displayNone">
<h3>Build Config:</h3>
Batch size range:
<label>Min:</label> <input id="trt-build-min-batch" type="number" min="1" value="1" style="width: 40pt" />
<label>Max:</label> <input id="trt-build-max-batch" type="number" min="1" value="1" style="width: 40pt" /><br/><br/>
<b>Build for resolutions</b>:<br/>
<input id="trt-build-res-512" type="checkbox" value="1" /> 512x512 to 768x768<br/>
<input id="trt-build-res-768" type="checkbox" value="1" checked /> 768x768 to 1024x1024<br/>
<input id="trt-build-res-1024" type="checkbox" value="1" /> 1024x1024 to 1280x1280<br/>
<input id="trt-build-res-1280" type="checkbox" value="1" /> 1280x1280 to 1536x1536<br/>
<input id="trt-build-res-1536" type="checkbox" value="1" /> 1536x1536 to 1792x1792<br/>
</div>`,
icon: "fa-angles-up",
render: () => '<button id="toggle-tensorrt-install" class="primaryButton">Install</button>',
table: installExtrasTable,
},
]
];
function getParameterSettingsEntry(id) {
let parameter = PARAMETERS.filter((p) => p.id === id)
let parameter = PARAMETERS.filter(p => p.id === id)
if (parameter.length === 0) {
return
}
return parameter[0].settingsEntry
}
function sliderUpdate(event) {
if (event.srcElement.id.endsWith("-input")) {
let slider = document.getElementById(event.srcElement.id.slice(0, -6))
slider.value = event.srcElement.value
slider.dispatchEvent(new Event("change"))
} else {
let field = document.getElementById(event.srcElement.id + "-input")
field.value = event.srcElement.value
field.dispatchEvent(new Event("change"))
}
}
/**
* @param {Parameter} parameter
* @returns {string | HTMLElement}
*/
function getParameterElement(parameter) {
switch (parameter.type) {
case ParameterType.checkbox:
var is_checked = parameter.default ? " checked" : ""
var is_checked = parameter.default ? " checked" : "";
return `<input id="${parameter.id}" name="${parameter.id}"${is_checked} type="checkbox">`
case ParameterType.select:
case ParameterType.select_multiple:
var options = (parameter.options || [])
.map((option) => `<option value="${option.value}">${option.label}</option>`)
.join("")
var multiple = parameter.type == ParameterType.select_multiple ? "multiple" : ""
var options = (parameter.options || []).map(option => `<option value="${option.value}">${option.label}</option>`).join("")
var multiple = (parameter.type == ParameterType.select_multiple ? 'multiple' : '')
return `<select id="${parameter.id}" name="${parameter.id}" ${multiple}>${options}</select>`
case ParameterType.slider:
return `<input id="${parameter.id}" name="${parameter.id}" class="editor-slider" type="range" value="${parameter.default}" min="${parameter.slider_min}" max="${parameter.slider_max}" oninput="sliderUpdate(event)"> <input id="${parameter.id}-input" name="${parameter.id}-input" size="4" value="${parameter.default}" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" oninput="sliderUpdate(event)">&nbsp;${parameter.slider_unit}`
case ParameterType.custom:
return parameter.render(parameter)
default:
console.error(`Invalid type ${parameter.type} for parameter ${parameter.id}`)
console.error(`Invalid type for parameter ${parameter.id}`);
return "ERROR: Invalid Type"
}
}
/**
* fill in the system settings popup table
* @param {Array<Parameter> | undefined} parameters
* */
function initParameters(parameters) {
parameters.forEach((parameter) => {
const element = getParameterElement(parameter)
const elementWrapper = createElement("div")
if (element instanceof Node) {
elementWrapper.appendChild(element)
} else {
elementWrapper.innerHTML = element
}
const note = typeof parameter.note === "function" ? parameter.note(parameter) : parameter.note
const noteElements = []
if (note) {
const noteElement = createElement("small")
if (note instanceof Node) {
noteElement.appendChild(note)
} else {
noteElement.innerHTML = note || ""
}
noteElements.push(noteElement)
}
if (typeof parameter.icon == "string") {
parameter.icon = [parameter.icon]
}
const icon = parameter.icon ? [createElement("i", undefined, ["fa", ...parameter.icon])] : []
const label = typeof parameter.label === "function" ? parameter.label(parameter) : parameter.label
const labelElement = createElement("label", { for: parameter.id })
if (label instanceof Node) {
labelElement.appendChild(label)
} else {
labelElement.innerHTML = label
}
const newrow = createElement(
"div",
{ "data-setting-id": parameter.id, "data-save-in-app-config": parameter.saveInAppConfig },
undefined,
[
createElement("div", undefined, undefined, icon),
createElement("div", undefined, undefined, [labelElement, ...noteElements]),
elementWrapper,
]
)
let p = parametersTable
if (parameter.table) {
p = parameter.table
}
p.appendChild(newrow)
let parametersTable = document.querySelector("#system-settings .parameters-table")
/* fill in the system settings popup table */
function initParameters() {
PARAMETERS.forEach(parameter => {
var element = getParameterElement(parameter)
var note = parameter.note ? `<small>${parameter.note}</small>` : "";
var icon = parameter.icon ? `<i class="fa ${parameter.icon}"></i>` : "";
var newrow = document.createElement('div')
newrow.innerHTML = `
<div>${icon}</div>
<div><label for="${parameter.id}">${parameter.label}</label>${note}</div>
<div>${element}</div>`
parametersTable.appendChild(newrow)
parameter.settingsEntry = newrow
})
}
initParameters(PARAMETERS)
initParameters()
// listen to parameters from plugins
PARAMETERS.addEventListener("push", (...items) => {
initParameters(items)
if (items.find((item) => item.saveInAppConfig)) {
console.log(
"Reloading app config for new parameters",
items.map((p) => p.id)
)
getAppConfig()
}
})
let vramUsageLevelField = document.querySelector("#vram_usage_level")
let useCPUField = document.querySelector("#use_cpu")
let autoPickGPUsField = document.querySelector("#auto_pick_gpus")
let useGPUsField = document.querySelector("#use_gpus")
let saveToDiskField = document.querySelector("#save_to_disk")
let diskPathField = document.querySelector("#diskPath")
let metadataOutputFormatField = document.querySelector("#metadata_output_format")
let vramUsageLevelField = document.querySelector('#vram_usage_level')
let useCPUField = document.querySelector('#use_cpu')
let autoPickGPUsField = document.querySelector('#auto_pick_gpus')
let useGPUsField = document.querySelector('#use_gpus')
let saveToDiskField = document.querySelector('#save_to_disk')
let diskPathField = document.querySelector('#diskPath')
let listenToNetworkField = document.querySelector("#listen_to_network")
let listenPortField = document.querySelector("#listen_port")
let useBetaChannelField = document.querySelector("#use_beta_channel")
let uiOpenBrowserOnStartField = document.querySelector("#ui_open_browser_on_start")
let confirmDangerousActionsField = document.querySelector("#confirm_dangerous_actions")
let testDiffusers = document.querySelector("#test_diffusers")
let profileNameField = document.querySelector("#profileName")
let saveSettingsBtn = document.querySelector("#save-system-settings-btn")
let saveSettingsBtn = document.querySelector('#save-system-settings-btn')
async function changeAppConfig(configDelta) {
try {
let res = await fetch("/app_config", {
method: "POST",
let res = await fetch('/app_config', {
method: 'POST',
headers: {
"Content-Type": "application/json",
'Content-Type': 'application/json'
},
body: JSON.stringify(configDelta),
body: JSON.stringify(configDelta)
})
res = await res.json()
console.log("set config status response", res)
console.log('set config status response', res)
} catch (e) {
console.log("set config status error", e)
console.log('set config status error', e)
}
}
async function getAppConfig() {
try {
let res = await fetch("/get/app_config")
let res = await fetch('/get/app_config')
const config = await res.json()
applySettingsFromConfig(config)
// custom overrides
if (config.update_branch === "beta") {
if (config.update_branch === 'beta') {
useBetaChannelField.checked = true
document.querySelector("#updateBranchLabel").innerText = "(beta)"
}
@ -464,170 +271,80 @@ async function getAppConfig() {
listenPortField.value = config.net.listen_port
}
let testDiffusersEnabled = true
if (config.test_diffusers === false) {
testDiffusersEnabled = false
}
testDiffusers.checked = testDiffusersEnabled
if (config.config_on_startup) {
if (config.config_on_startup?.test_diffusers) {
document.body.classList.add("diffusers-enabled-on-startup")
document.body.classList.remove("diffusers-disabled-on-startup")
} else {
document.body.classList.add("diffusers-disabled-on-startup")
document.body.classList.remove("diffusers-enabled-on-startup")
}
}
if (!testDiffusersEnabled) {
document.querySelector("#lora_model_container").style.display = "none"
document.querySelector("#tiling_container").style.display = "none"
document.querySelector("#controlnet_model_container").style.display = "none"
document.querySelector("#hypernetwork_model_container").style.display = ""
document.querySelector("#hypernetwork_strength_container").style.display = ""
document.querySelector("#negative-embeddings-button").style.display = "none"
document.querySelectorAll("#sampler_name option.diffusers-only").forEach((option) => {
option.style.display = "none"
})
IMAGE_STEP_SIZE = 64
customWidthField.step = IMAGE_STEP_SIZE
customHeightField.step = IMAGE_STEP_SIZE
} else {
document.querySelector("#lora_model_container").style.display = ""
document.querySelector("#tiling_container").style.display = ""
document.querySelector("#controlnet_model_container").style.display = ""
document.querySelector("#hypernetwork_model_container").style.display = "none"
document.querySelector("#hypernetwork_strength_container").style.display = "none"
document.querySelectorAll("#sampler_name option.k_diffusion-only").forEach((option) => {
option.style.display = "none"
})
document.querySelector("#clip_skip_config").classList.remove("displayNone")
document.querySelector("#embeddings-button").classList.remove("displayNone")
IMAGE_STEP_SIZE = 8
customWidthField.step = IMAGE_STEP_SIZE
customHeightField.step = IMAGE_STEP_SIZE
}
console.log("get config status response", config)
return config
console.log('get config status response', config)
} catch (e) {
console.log("get config status error", e)
return {}
console.log('get config status error', e)
}
}
function applySettingsFromConfig(config) {
Array.from(parametersTable.children).forEach((parameterRow) => {
if (parameterRow.dataset.settingId in config && parameterRow.dataset.saveInAppConfig === "true") {
const configValue = config[parameterRow.dataset.settingId]
const parameterElement =
document.getElementById(parameterRow.dataset.settingId) ||
parameterRow.querySelector("input") ||
parameterRow.querySelector("select")
switch (parameterElement?.tagName) {
case "INPUT":
if (parameterElement.type === "checkbox") {
parameterElement.checked = configValue
} else {
parameterElement.value = configValue
}
parameterElement.dispatchEvent(new Event("change"))
break
case "SELECT":
if (Array.isArray(configValue)) {
Array.from(parameterElement.options).forEach((option) => {
if (configValue.includes(option.value || option.text)) {
option.selected = true
}
})
} else {
parameterElement.value = configValue
}
parameterElement.dispatchEvent(new Event("change"))
break
}
}
})
}
saveToDiskField.addEventListener("change", function(e) {
saveToDiskField.addEventListener('change', function(e) {
diskPathField.disabled = !this.checked
metadataOutputFormatField.disabled = !this.checked
})
function getCurrentRenderDeviceSelection() {
let selectedGPUs = $("#use_gpus").val()
let selectedGPUs = $('#use_gpus').val()
if (useCPUField.checked && !autoPickGPUsField.checked) {
return "cpu"
return 'cpu'
}
if (autoPickGPUsField.checked || selectedGPUs.length == 0) {
return "auto"
return 'auto'
}
return selectedGPUs.join(",")
return selectedGPUs.join(',')
}
useCPUField.addEventListener("click", function() {
let gpuSettingEntry = getParameterSettingsEntry("use_gpus")
let autoPickGPUSettingEntry = getParameterSettingsEntry("auto_pick_gpus")
useCPUField.addEventListener('click', function() {
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
let autoPickGPUSettingEntry = getParameterSettingsEntry('auto_pick_gpus')
if (this.checked) {
gpuSettingEntry.style.display = "none"
autoPickGPUSettingEntry.style.display = "none"
autoPickGPUsField.setAttribute("data-old-value", autoPickGPUsField.checked)
gpuSettingEntry.style.display = 'none'
autoPickGPUSettingEntry.style.display = 'none'
autoPickGPUsField.setAttribute('data-old-value', autoPickGPUsField.checked)
autoPickGPUsField.checked = false
} else if (useGPUsField.options.length >= MIN_GPUS_TO_SHOW_SELECTION) {
gpuSettingEntry.style.display = ""
autoPickGPUSettingEntry.style.display = ""
let oldVal = autoPickGPUsField.getAttribute("data-old-value")
if (oldVal === null || oldVal === undefined) {
// the UI started with CPU selected by default
gpuSettingEntry.style.display = ''
autoPickGPUSettingEntry.style.display = ''
let oldVal = autoPickGPUsField.getAttribute('data-old-value')
if (oldVal === null || oldVal === undefined) { // the UI started with CPU selected by default
autoPickGPUsField.checked = true
} else {
autoPickGPUsField.checked = oldVal === "true"
autoPickGPUsField.checked = (oldVal === 'true')
}
gpuSettingEntry.style.display = autoPickGPUsField.checked ? "none" : ""
gpuSettingEntry.style.display = (autoPickGPUsField.checked ? 'none' : '')
}
})
useGPUsField.addEventListener("click", function() {
let selectedGPUs = $("#use_gpus").val()
autoPickGPUsField.checked = selectedGPUs.length === 0
useGPUsField.addEventListener('click', function() {
let selectedGPUs = $('#use_gpus').val()
autoPickGPUsField.checked = (selectedGPUs.length === 0)
})
autoPickGPUsField.addEventListener("click", function() {
autoPickGPUsField.addEventListener('click', function() {
if (this.checked) {
$("#use_gpus").val([])
$('#use_gpus').val([])
}
let gpuSettingEntry = getParameterSettingsEntry("use_gpus")
gpuSettingEntry.style.display = this.checked ? "none" : ""
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
gpuSettingEntry.style.display = (this.checked ? 'none' : '')
})
async function setDiskPath(defaultDiskPath, force = false) {
async function setDiskPath(defaultDiskPath) {
var diskPath = getSetting("diskPath")
if (force || diskPath == "" || diskPath == undefined || diskPath == "undefined") {
if (diskPath == '' || diskPath == undefined || diskPath == "undefined") {
setSetting("diskPath", defaultDiskPath)
}
}
function setDeviceInfo(devices) {
let cpu = devices.all.cpu.name
let allGPUs = Object.keys(devices.all).filter((d) => d != "cpu")
let allGPUs = Object.keys(devices.all).filter(d => d != 'cpu')
let activeGPUs = Object.keys(devices.active)
function ID_TO_TEXT(d) {
let info = devices.all[d]
if ("mem_free" in info && "mem_total" in info) {
return `${info.name} <small>(${d}) (${info.mem_free.toFixed(1)}Gb free / ${info.mem_total.toFixed(
1
)} Gb total)</small>`
return `${info.name} <small>(${d}) (${info.mem_free.toFixed(1)}Gb free / ${info.mem_total.toFixed(1)} Gb total)</small>`
} else {
return `${info.name} <small>(${d}) (no memory info)</small>`
}
@ -636,185 +353,83 @@ function setDeviceInfo(devices) {
allGPUs = allGPUs.map(ID_TO_TEXT)
activeGPUs = activeGPUs.map(ID_TO_TEXT)
let systemInfoEl = document.querySelector("#system-info")
systemInfoEl.querySelector("#system-info-cpu").innerText = cpu
systemInfoEl.querySelector("#system-info-gpus-all").innerHTML = allGPUs.join("</br>")
systemInfoEl.querySelector("#system-info-rendering-devices").innerHTML = activeGPUs.join("</br>")
// tensorRT
if (devices.active && testDiffusers.checked && devices.enable_trt === true) {
let nvidiaGPUs = Object.keys(devices.active).filter((d) => {
let gpuName = devices.active[d].name
gpuName = gpuName.toLowerCase()
return (
gpuName.includes("nvidia") ||
gpuName.includes("geforce") ||
gpuName.includes("quadro") ||
gpuName.includes("tesla")
)
})
if (nvidiaGPUs.length > 0) {
document.querySelector("#install-extras-container").classList.remove("displayNone")
}
}
let systemInfoEl = document.querySelector('#system-info')
systemInfoEl.querySelector('#system-info-cpu').innerText = cpu
systemInfoEl.querySelector('#system-info-gpus-all').innerHTML = allGPUs.join('</br>')
systemInfoEl.querySelector('#system-info-rendering-devices').innerHTML = activeGPUs.join('</br>')
}
function setHostInfo(hosts) {
let port = listenPortField.value
hosts = hosts.map((addr) => `http://${addr}:${port}/`).map((url) => `<div><a href="${url}">${url}</a></div>`)
document.querySelector("#system-info-server-hosts").innerHTML = hosts.join("")
hosts = hosts.map(addr => `http://${addr}:${port}/`).map(url => `<div><a href="${url}">${url}</a></div>`)
document.querySelector('#system-info-server-hosts').innerHTML = hosts.join('')
}
async function getSystemInfo() {
try {
const res = await SD.getSystemInfo()
let devices = res["devices"]
let devices = res['devices']
let allDeviceIds = Object.keys(devices["all"]).filter((d) => d !== "cpu")
let activeDeviceIds = Object.keys(devices["active"]).filter((d) => d !== "cpu")
let allDeviceIds = Object.keys(devices['all']).filter(d => d !== 'cpu')
let activeDeviceIds = Object.keys(devices['active']).filter(d => d !== 'cpu')
if (activeDeviceIds.length === 0) {
useCPUField.checked = true
}
if (allDeviceIds.length < MIN_GPUS_TO_SHOW_SELECTION || useCPUField.checked) {
let gpuSettingEntry = getParameterSettingsEntry("use_gpus")
gpuSettingEntry.style.display = "none"
let autoPickGPUSettingEntry = getParameterSettingsEntry("auto_pick_gpus")
autoPickGPUSettingEntry.style.display = "none"
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
gpuSettingEntry.style.display = 'none'
let autoPickGPUSettingEntry = getParameterSettingsEntry('auto_pick_gpus')
autoPickGPUSettingEntry.style.display = 'none'
}
if (allDeviceIds.length === 0) {
useCPUField.checked = true
useCPUField.disabled = true // no compatible GPUs, so make the CPU mandatory
getParameterSettingsEntry("use_cpu").addEventListener("click", function() {
alert(
"Sorry, we could not find a compatible graphics card! Easy Diffusion supports graphics cards with minimum 2 GB of RAM. " +
"Only NVIDIA cards are supported on Windows. NVIDIA and AMD cards are supported on Linux.<br/><br/>" +
"If you have a compatible graphics card, please try updating to the latest drivers.<br/><br/>" +
"Only the CPU can be used for generating images, without a compatible graphics card.",
"No compatible graphics card found!"
)
})
}
autoPickGPUsField.checked = devices["config"] === "auto"
autoPickGPUsField.checked = (devices['config'] === 'auto')
useGPUsField.innerHTML = ""
allDeviceIds.forEach((device) => {
let deviceName = devices["all"][device]["name"]
useGPUsField.innerHTML = ''
allDeviceIds.forEach(device => {
let deviceName = devices['all'][device]['name']
let deviceOption = `<option value="${device}">${deviceName} (${device})</option>`
useGPUsField.insertAdjacentHTML("beforeend", deviceOption)
useGPUsField.insertAdjacentHTML('beforeend', deviceOption)
})
if (autoPickGPUsField.checked) {
let gpuSettingEntry = getParameterSettingsEntry("use_gpus")
gpuSettingEntry.style.display = "none"
let gpuSettingEntry = getParameterSettingsEntry('use_gpus')
gpuSettingEntry.style.display = 'none'
} else {
$("#use_gpus").val(activeDeviceIds)
$('#use_gpus').val(activeDeviceIds)
}
document.dispatchEvent(new CustomEvent("system_info_update", { detail: devices }))
setHostInfo(res["hosts"])
let force = false
if (res["enforce_output_dir"] !== undefined) {
force = res["enforce_output_dir"]
if (force == true) {
saveToDiskField.checked = true
metadataOutputFormatField.disabled = false
}
saveToDiskField.disabled = force
diskPathField.disabled = force
}
setDiskPath(res["default_output_dir"], force)
setDeviceInfo(devices)
setHostInfo(res['hosts'])
setDiskPath(res['default_output_dir'])
} catch (e) {
console.log("error fetching devices", e)
console.log('error fetching devices', e)
}
}
saveSettingsBtn.addEventListener("click", function() {
if (listenPortField.value == "") {
alert("The network port field must not be empty.")
saveSettingsBtn.addEventListener('click', function() {
if (listenPortField.value == '') {
alert('The network port field must not be empty.')
return
}
if (listenPortField.value < 1 || listenPortField.value > 65535) {
alert("The network port must be a number from 1 to 65535")
alert('The network port must be a number from 1 to 65535')
return
}
const updateBranch = useBetaChannelField.checked ? "beta" : "main"
const updateAppConfigRequest = {
render_devices: getCurrentRenderDeviceSelection(),
update_branch: updateBranch,
}
document.querySelectorAll("#system-settings [data-setting-id]").forEach((parameterRow) => {
if (parameterRow.dataset.saveInAppConfig === "true") {
const parameterElement =
document.getElementById(parameterRow.dataset.settingId) ||
parameterRow.querySelector("input") ||
parameterRow.querySelector("select")
switch (parameterElement?.tagName) {
case "INPUT":
if (parameterElement.type === "checkbox") {
updateAppConfigRequest[parameterRow.dataset.settingId] = parameterElement.checked
} else {
updateAppConfigRequest[parameterRow.dataset.settingId] = parameterElement.value
}
break
case "SELECT":
if (parameterElement.multiple) {
updateAppConfigRequest[parameterRow.dataset.settingId] = Array.from(parameterElement.options)
.filter((option) => option.selected)
.map((option) => option.value || option.text)
} else {
updateAppConfigRequest[parameterRow.dataset.settingId] = parameterElement.value
}
break
default:
console.error(
`Setting parameter ${parameterRow.dataset.settingId} couldn't be saved to app.config - element #${parameter.id} is a <${parameterElement?.tagName} /> instead of a <input /> or a <select />!`
)
break
}
}
let updateBranch = (useBetaChannelField.checked ? 'beta' : 'main')
changeAppConfig({
'render_devices': getCurrentRenderDeviceSelection(),
'update_branch': updateBranch,
'ui_open_browser_on_start': uiOpenBrowserOnStartField.checked,
'listen_to_network': listenToNetworkField.checked,
'listen_port': listenPortField.value
})
const savePromise = changeAppConfig(updateAppConfigRequest)
showToast("Settings saved")
saveSettingsBtn.classList.add("active")
Promise.all([savePromise, asyncDelay(300)]).then(() => saveSettingsBtn.classList.remove("active"))
saveSettingsBtn.classList.add('active')
asyncDelay(300).then(() => saveSettingsBtn.classList.remove('active'))
})
listenToNetworkField.addEventListener(
"change",
debounce(() => {
saveSettingsBtn.click()
}, 1000)
)
listenPortField.addEventListener(
"change",
debounce(() => {
saveSettingsBtn.click()
}, 1000)
)
let copyCloudflareAddressBtn = document.querySelector("#copy-cloudflare-address")
let cloudflareAddressField = document.getElementById("cloudflare-address")
navigator.permissions.query({ name: "clipboard-write" }).then(function(result) {
if (result.state === "granted") {
// you can read from the clipboard
copyCloudflareAddressBtn.addEventListener("click", (e) => {
navigator.clipboard.writeText(cloudflareAddressField.innerHTML)
showToast("Copied server address to clipboard")
})
} else {
copyCloudflareAddressBtn.classList.add("displayNone")
}
})
document.addEventListener("system_info_update", (e) => setDeviceInfo(e.detail))

File diff suppressed because it is too large Load Diff

View File

@ -1,666 +0,0 @@
"use strict"
let modelsCache
let modelsOptions
/*
*** SEARCHABLE MODELS ***
Creates searchable dropdowns for SD, VAE, or HN models.
Also adds a reload models button (placed next to SD models, reloads everything including VAE and HN models).
More reload buttons may be added at strategic UI locations as needed.
Merely calling getModels() makes all the magic happen behind the scene to refresh the dropdowns.
HOW TO CREATE A MODEL DROPDOWN:
1) Create an input element. Make sure to add a data-path property, as this is how model dropdowns are identified in auto-save.js.
<input id="stable_diffusion_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
2) Just declare one of these for your own dropdown (remember to change the element id, e.g. #stable_diffusion_models to your own input's id).
let stableDiffusionModelField = new ModelDropdown(document.querySelector('#stable_diffusion_model'), 'stable-diffusion')
let vaeModelField = new ModelDropdown(document.querySelector('#vae_model'), 'vae', 'None')
let hypernetworkModelField = new ModelDropdown(document.querySelector('#hypernetwork_model'), 'hypernetwork', 'None')
3) Model dropdowns will be refreshed automatically when the reload models button is invoked.
*/
class ModelDropdown {
modelFilter //= document.querySelector("#model-filter")
modelFilterArrow //= document.querySelector("#model-filter-arrow")
modelList //= document.querySelector("#model-list")
modelResult //= document.querySelector("#model-result")
modelNoResult //= document.querySelector("#model-no-result")
currentSelection //= { elem: undefined, value: '', path: ''}
highlightedModelEntry //= undefined
activeModel //= undefined
inputModels //= undefined
modelKey //= undefined
flatModelList //= []
noneEntry //= ''
modelFilterInitialized //= undefined
sorted //= true
/* MIMIC A REGULAR INPUT FIELD */
get parentElement() {
return this.modelFilter.parentElement
}
get parentNode() {
return this.modelFilter.parentNode
}
get value() {
return this.modelFilter.dataset.path
}
set value(path) {
this.modelFilter.dataset.path = path
this.selectEntry(path)
}
get disabled() {
return this.modelFilter.disabled
}
set disabled(state) {
this.modelFilter.disabled = state
if (this.modelFilterArrow) {
this.modelFilterArrow.style.color = state ? "dimgray" : ""
}
}
get modelElements() {
return this.modelList.querySelectorAll(".model-file")
}
addEventListener(type, listener, options) {
return this.modelFilter.addEventListener(type, listener, options)
}
dispatchEvent(event) {
return this.modelFilter.dispatchEvent(event)
}
appendChild(option) {
// do nothing
}
// remember 'this' - http://blog.niftysnippets.org/2008/04/you-must-remember-this.html
bind(f, obj) {
return function() {
return f.apply(obj, arguments)
}
}
/* SEARCHABLE INPUT */
constructor(input, modelKey, noneEntry = "", sorted = true) {
this.modelFilter = input
this.noneEntry = noneEntry
this.modelKey = modelKey
this.sorted = sorted
if (modelsOptions !== undefined) {
// reuse models from cache (only useful for plugins, which are loaded after models)
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
let k = Array.isArray(modelsOptions[key]) ? modelsOptions[key] : [modelsOptions[key]]
this.inputModels.push(...k)
}
this.populateModels()
}
document.addEventListener(
"refreshModels",
this.bind(function(e) {
// reload the models
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
let k = Array.isArray(modelsOptions[key]) ? modelsOptions[key] : [modelsOptions[key]]
this.inputModels.push(...k)
}
this.populateModels()
}, this)
)
}
saveCurrentSelection(elem, value, path, dispatchEvent = true) {
this.currentSelection.elem = elem
this.currentSelection.value = value
this.currentSelection.path = path
this.modelFilter.dataset.path = path
this.modelFilter.value = value
if (dispatchEvent) {
this.modelFilter.dispatchEvent(new Event("change"))
}
}
processClick(e) {
e.preventDefault()
if (e.srcElement.classList.contains("model-file") || e.srcElement.classList.contains("fa-file")) {
const elem = e.srcElement.classList.contains("model-file") ? e.srcElement : e.srcElement.parentElement
this.saveCurrentSelection(elem, elem.innerText, elem.dataset.path)
this.hideModelList()
this.modelFilter.focus()
this.modelFilter.select()
}
}
getPreviousVisibleSibling(elem) {
const modelElements = Array.from(this.modelElements)
const index = modelElements.indexOf(elem)
if (index <= 0) {
return undefined
}
return modelElements
.slice(0, index)
.reverse()
.find((e) => e.style.display === "list-item")
}
getLastVisibleChild(elem) {
let lastElementChild = elem.lastElementChild
if (lastElementChild.style.display == "list-item") return lastElementChild
return this.getPreviousVisibleSibling(lastElementChild)
}
getNextVisibleSibling(elem) {
const modelElements = Array.from(this.modelElements)
const index = modelElements.indexOf(elem)
return modelElements.slice(index + 1).find((e) => e.style.display === "list-item")
}
getFirstVisibleChild(elem) {
let firstElementChild = elem.firstElementChild
if (firstElementChild.style.display == "list-item") return firstElementChild
return this.getNextVisibleSibling(firstElementChild)
}
selectModelEntry(elem) {
if (elem) {
if (this.highlightedModelEntry !== undefined) {
this.highlightedModelEntry.classList.remove("selected")
}
this.saveCurrentSelection(elem, elem.innerText, elem.dataset.path)
elem.classList.add("selected")
elem.scrollIntoView({ block: "nearest" })
this.highlightedModelEntry = elem
}
}
selectPreviousFile() {
const elem = this.getPreviousVisibleSibling(this.highlightedModelEntry)
if (elem) {
this.selectModelEntry(elem)
} else {
//this.highlightedModelEntry.parentElement.parentElement.scrollIntoView({block: 'nearest'})
this.highlightedModelEntry.closest(".model-list").scrollTop = 0
}
this.modelFilter.select()
}
selectNextFile() {
this.selectModelEntry(this.getNextVisibleSibling(this.highlightedModelEntry))
this.modelFilter.select()
}
selectFirstFile() {
this.selectModelEntry(this.modelList.querySelector(".model-file"))
this.highlightedModelEntry.scrollIntoView({ block: "nearest" })
this.modelFilter.select()
}
selectLastFile() {
const elems = this.modelList.querySelectorAll(".model-file:last-child")
this.selectModelEntry(elems[elems.length - 1])
this.modelFilter.select()
}
resetSelection() {
this.hideModelList()
this.showAllEntries()
this.modelFilter.value = this.currentSelection.value
this.modelFilter.focus()
this.modelFilter.select()
}
validEntrySelected() {
return this.modelNoResult.style.display === "none"
}
processKey(e) {
switch (e.key) {
case "Escape":
e.preventDefault()
this.resetSelection()
break
case "Enter":
e.preventDefault()
if (this.validEntrySelected()) {
if (this.modelList.style.display != "block") {
this.showModelList()
} else {
this.saveCurrentSelection(
this.highlightedModelEntry,
this.highlightedModelEntry.innerText,
this.highlightedModelEntry.dataset.path
)
this.hideModelList()
this.showAllEntries()
}
this.modelFilter.focus()
} else {
this.resetSelection()
}
break
case "ArrowUp":
e.preventDefault()
if (this.validEntrySelected()) {
this.selectPreviousFile()
}
break
case "ArrowDown":
e.preventDefault()
if (this.validEntrySelected()) {
this.selectNextFile()
}
break
case "ArrowLeft":
if (this.modelList.style.display != "block") {
e.preventDefault()
}
break
case "ArrowRight":
if (this.modelList.style.display != "block") {
e.preventDefault()
}
break
case "PageUp":
e.preventDefault()
if (this.validEntrySelected()) {
this.selectPreviousFile()
this.selectPreviousFile()
this.selectPreviousFile()
this.selectPreviousFile()
this.selectPreviousFile()
this.selectPreviousFile()
this.selectPreviousFile()
this.selectPreviousFile()
}
break
case "PageDown":
e.preventDefault()
if (this.validEntrySelected()) {
this.selectNextFile()
this.selectNextFile()
this.selectNextFile()
this.selectNextFile()
this.selectNextFile()
this.selectNextFile()
this.selectNextFile()
this.selectNextFile()
}
break
case "Home":
//if (this.modelList.style.display != 'block') {
e.preventDefault()
if (this.validEntrySelected()) {
this.selectFirstFile()
}
//}
break
case "End":
//if (this.modelList.style.display != 'block') {
e.preventDefault()
if (this.validEntrySelected()) {
this.selectLastFile()
}
//}
break
default:
//console.log(e.key)
}
}
modelListFocus() {
this.selectEntry()
this.showAllEntries()
}
showModelList() {
this.modelList.style.display = "block"
this.selectEntry()
this.showAllEntries()
//this.modelFilter.value = ''
this.modelFilter.select() // preselect the entire string so user can just start typing.
this.modelFilter.focus()
this.modelFilter.style.cursor = "auto"
}
hideModelList() {
this.modelList.style.display = "none"
this.modelFilter.value = this.currentSelection.value
this.modelFilter.style.cursor = ""
}
toggleModelList(e) {
e.preventDefault()
if (!this.modelFilter.disabled) {
if (this.modelList.style.display != "block") {
this.showModelList()
} else {
this.hideModelList()
this.modelFilter.select()
}
}
}
selectEntry(path, dispatchEvent = true) {
if (path !== undefined) {
const entries = this.modelElements
for (const elem of entries) {
if (elem.dataset.path == path) {
this.saveCurrentSelection(elem, elem.innerText, elem.dataset.path, dispatchEvent)
this.highlightedModelEntry = elem
elem.scrollIntoView({ block: "nearest" })
break
}
}
}
if (this.currentSelection.elem !== undefined) {
// select the previous element
if (this.highlightedModelEntry !== undefined && this.highlightedModelEntry != this.currentSelection.elem) {
this.highlightedModelEntry.classList.remove("selected")
}
this.currentSelection.elem.classList.add("selected")
this.highlightedModelEntry = this.currentSelection.elem
this.currentSelection.elem.scrollIntoView({ block: "nearest" })
} else {
this.selectFirstFile()
}
}
highlightModelAtPosition(e) {
let elem = document.elementFromPoint(e.clientX, e.clientY)
if (elem.classList.contains("model-file")) {
this.highlightModel(elem)
}
}
highlightModel(elem) {
if (elem.classList.contains("model-file")) {
if (this.highlightedModelEntry !== undefined && this.highlightedModelEntry != elem) {
this.highlightedModelEntry.classList.remove("selected")
}
elem.classList.add("selected")
this.highlightedModelEntry = elem
}
}
showAllEntries() {
this.modelList.querySelectorAll("li").forEach(function(li) {
if (li.id !== "model-no-result") {
li.style.display = "list-item"
}
})
this.modelNoResult.style.display = "none"
}
filterList(e) {
const filter = this.modelFilter.value.toLowerCase()
let found = false
let showAllChildren = false
this.modelList.querySelectorAll("li").forEach(function(li) {
if (li.classList.contains("model-folder")) {
showAllChildren = false
}
if (filter == "") {
li.style.display = "list-item"
found = true
} else if (showAllChildren || li.textContent.toLowerCase().match(filter)) {
li.style.display = "list-item"
if (li.classList.contains("model-folder") && li.firstChild.textContent.toLowerCase().match(filter)) {
showAllChildren = true
}
found = true
} else {
li.style.display = "none"
}
})
if (found) {
this.modelResult.style.display = "list-item"
this.modelNoResult.style.display = "none"
const elem = this.getNextVisibleSibling(this.modelList.querySelector(".model-file"))
this.highlightModel(elem)
elem.scrollIntoView({ block: "nearest" })
} else {
this.modelResult.style.display = "none"
this.modelNoResult.style.display = "list-item"
}
this.modelList.style.display = "block"
}
/* MODEL LOADER */
getElementDimensions(element) {
// Clone the element
const clone = element.cloneNode(true)
// Copy the styles of the original element to the cloned element
const originalStyles = window.getComputedStyle(element)
for (let i = 0; i < originalStyles.length; i++) {
const property = originalStyles[i]
clone.style[property] = originalStyles.getPropertyValue(property)
}
// Set its visibility to hidden and display to inline-block
clone.style.visibility = "hidden"
clone.style.display = "inline-block"
// Put the cloned element next to the original element
element.parentNode.insertBefore(clone, element.nextSibling)
// Get its width and height
const width = clone.offsetWidth
const height = clone.offsetHeight
// Remove it from the DOM
clone.remove()
// Return its width and height
return { width, height }
}
/**
* @param {Array<string>} models
*/
sortStringArray(models) {
models.sort((a, b) => a.localeCompare(b, undefined, { sensitivity: "base" }))
}
populateModels() {
this.activeModel = this.modelFilter.dataset.path
this.currentSelection = { elem: undefined, value: "", path: "" }
this.highlightedModelEntry = undefined
this.flatModelList = []
if (this.modelList !== undefined) {
this.modelList.remove()
this.modelFilterArrow.remove()
}
this.createDropdown()
}
createDropdown() {
// create dropdown entries
let rootModelList = this.createRootModelList(this.inputModels)
this.modelFilter.insertAdjacentElement("afterend", rootModelList)
this.modelFilter.insertAdjacentElement(
"afterend",
createElement("i", { id: `${this.modelFilter.id}-model-filter-arrow` }, [
"model-selector-arrow",
"fa-solid",
"fa-angle-down",
])
)
this.modelFilter.classList.add("model-selector")
this.modelFilterArrow = document.querySelector(`#${this.modelFilter.id}-model-filter-arrow`)
if (this.modelFilterArrow) {
this.modelFilterArrow.style.color = this.modelFilter.disabled ? "dimgray" : ""
}
this.modelList = document.querySelector(`#${this.modelFilter.id}-model-list`)
this.modelResult = document.querySelector(`#${this.modelFilter.id}-model-result`)
this.modelNoResult = document.querySelector(`#${this.modelFilter.id}-model-no-result`)
if (this.modelFilterInitialized !== true) {
this.modelFilter.addEventListener("input", this.bind(this.filterList, this))
this.modelFilter.addEventListener("focus", this.bind(this.modelListFocus, this))
this.modelFilter.addEventListener("blur", this.bind(this.hideModelList, this))
this.modelFilter.addEventListener("click", this.bind(this.showModelList, this))
this.modelFilter.addEventListener("keydown", this.bind(this.processKey, this))
this.modelFilterInitialized = true
}
this.modelFilterArrow.addEventListener("mousedown", this.bind(this.toggleModelList, this))
this.modelList.addEventListener("mousemove", this.bind(this.highlightModelAtPosition, this))
this.modelList.addEventListener("mousedown", this.bind(this.processClick, this))
let mf = this.modelFilter
this.modelFilter.addEventListener("focus", function() {
let modelFilterStyle = window.getComputedStyle(mf)
rootModelList.style.minWidth = modelFilterStyle.width
})
this.selectEntry(this.activeModel, false)
}
/**
* @param {Array<string | object} modelTree
* @param {string} folderName
* @param {boolean} isRootFolder
* @returns {HTMLElement}
*/
createModelNodeList(folderName, modelTree, isRootFolder) {
const listElement = createElement("ul")
const foldersMap = new Map()
const modelsMap = new Map()
modelTree.forEach((model) => {
if (Array.isArray(model)) {
const [childFolderName, childModels] = model
foldersMap.set(
childFolderName,
this.createModelNodeList(`${folderName || ""}/${childFolderName}`, childModels, false)
)
} else {
let modelId = model
let modelName = model
if (typeof model === "object") {
modelId = Object.keys(model)[0]
modelName = model[modelId]
}
const classes = ["model-file"]
if (isRootFolder) {
classes.push("in-root-folder")
}
// Remove the leading slash from the model path
const fullPath = folderName ? `${folderName.substring(1)}/${modelId}` : modelId
modelsMap.set(
modelId,
createElement("li", { "data-path": fullPath }, classes, [
createElement("i", undefined, ["fa-regular", "fa-file", "icon"]),
modelName,
])
)
}
})
const childFolderNames = Array.from(foldersMap.keys())
if (this.sorted) {
this.sortStringArray(childFolderNames)
}
const folderElements = childFolderNames.map((name) => foldersMap.get(name))
const modelNames = Array.from(modelsMap.keys())
if (this.sorted) {
this.sortStringArray(modelNames)
}
const modelElements = modelNames.map((name) => modelsMap.get(name))
if (modelElements.length && folderName) {
listElement.appendChild(
createElement(
"li",
undefined,
["model-folder"],
[createElement("i", undefined, ["fa-regular", "fa-folder-open", "icon"]), folderName.substring(1)]
)
)
}
// const allModelElements = isRootFolder ? [...folderElements, ...modelElements] : [...modelElements, ...folderElements]
const allModelElements = [...modelElements, ...folderElements]
allModelElements.forEach((e) => listElement.appendChild(e))
return listElement
}
/**
* @param {object} modelTree
* @returns {HTMLElement}
*/
createRootModelList(modelTree) {
const rootList = createElement("ul", { id: `${this.modelFilter.id}-model-list` }, ["model-list"])
rootList.appendChild(
createElement("li", { id: `${this.modelFilter.id}-model-no-result` }, ["model-no-result"], "No result")
)
if (this.noneEntry) {
rootList.appendChild(
createElement("li", { "data-path": "" }, ["model-file", "in-root-folder"], this.noneEntry)
)
}
if (modelTree.length > 0) {
const containerListItem = createElement("li", { id: `${this.modelFilter.id}-model-result` }, [
"model-result",
])
//console.log(containerListItem)
containerListItem.appendChild(this.createModelNodeList(undefined, modelTree, true))
rootList.appendChild(containerListItem)
}
return rootList
}
}
/* (RE)LOAD THE MODELS */
async function getModels(scanForMalicious = true) {
try {
modelsCache = await SD.getModels(scanForMalicious)
modelsOptions = modelsCache["options"]
if ("scan-error" in modelsCache) {
// let previewPane = document.getElementById('tab-content-wrapper')
let previewPane = document.getElementById("preview")
previewPane.style.background = "red"
previewPane.style.textAlign = "center"
previewPane.innerHTML =
"<H1>🔥Malware alert!🔥</H1><h2>The file <i>" +
modelsCache["scan-error"] +
'</i> in your <tt>models/stable-diffusion</tt> folder is probably malware infected.</h2><h2>Please delete this file from the folder before proceeding!</h2>After deleting the file, reload this page.<br><br><button onClick="window.location.reload();">Reload Page</button>'
makeImageBtn.disabled = true
}
// notify ModelDropdown objects to refresh
document.dispatchEvent(new Event("refreshModels"))
} catch (e) {
console.log("get models error", e)
}
}
// reload models button
document.querySelector("#reload-models").addEventListener("click", (e) => {
e.stopPropagation()
getModels()
})

View File

@ -1,409 +0,0 @@
const htmlTaskMap = new WeakMap()
const pauseBtn = document.querySelector("#pause")
const resumeBtn = document.querySelector("#resume")
const processOrder = document.querySelector("#process_order_toggle")
let pauseClient = false
async function onIdle() {
const serverCapacity = SD.serverCapacity
if (pauseClient === true) {
await resumeClient()
}
for (const taskEntry of getUncompletedTaskEntries()) {
if (SD.activeTasks.size >= serverCapacity) {
break
}
const task = htmlTaskMap.get(taskEntry)
if (!task) {
const taskStatusLabel = taskEntry.querySelector(".taskStatusLabel")
taskStatusLabel.style.display = "none"
continue
}
await onTaskStart(task)
}
}
function getUncompletedTaskEntries() {
const taskEntries = Array.from(document.querySelectorAll("#preview .imageTaskContainer .taskStatusLabel"))
.filter((taskLabel) => taskLabel.style.display !== "none")
.map(function(taskLabel) {
let imageTaskContainer = taskLabel.parentNode
while (!imageTaskContainer.classList.contains("imageTaskContainer") && imageTaskContainer.parentNode) {
imageTaskContainer = imageTaskContainer.parentNode
}
return imageTaskContainer
})
if (!processOrder.checked) {
taskEntries.reverse()
}
return taskEntries
}
async function onTaskStart(task) {
if (!task.isProcessing || task.batchesDone >= task.batchCount) {
return
}
if (typeof task.startTime !== "number") {
task.startTime = Date.now()
}
if (!("instances" in task)) {
task["instances"] = []
}
task["stopTask"].innerHTML = '<i class="fa-solid fa-circle-stop"></i> Stop'
task["taskStatusLabel"].innerText = "Starting"
task["taskStatusLabel"].classList.add("waitingTaskLabel")
if (task.previewTaskReq !== undefined) {
let controlImagePreview = task.taskConfig.querySelector(".controlnet-img-preview > img")
try {
let result = await SD.filter(task.previewTaskReq)
controlImagePreview.src = result.output[0]
let controlImageLargePreview = task.taskConfig.querySelector(
".controlnet-img-preview .task-fs-initimage img"
)
controlImageLargePreview.src = controlImagePreview.src
} catch (error) {
console.log("filter error", error)
}
delete task.previewTaskReq
}
let newTaskReqBody = task.reqBody
if (task.batchCount > 1) {
// Each output render batch needs it's own task reqBody instance to avoid altering the other runs after they are completed.
newTaskReqBody = Object.assign({}, task.reqBody)
if (task.batchesDone == task.batchCount - 1) {
// Last batch of the task
// If the number of parallel jobs is no factor of the total number of images, the last batch must create less than "parallel jobs count" images
// E.g. with numOutputsTotal = 6 and num_outputs = 5, the last batch shall only generate 1 image.
newTaskReqBody.num_outputs = task.numOutputsTotal - task.reqBody.num_outputs * (task.batchCount - 1)
}
}
const startSeed = task.seed || newTaskReqBody.seed
const genSeeds = Boolean(
typeof newTaskReqBody.seed !== "number" || (newTaskReqBody.seed === task.seed && task.numOutputsTotal > 1)
)
if (genSeeds) {
newTaskReqBody.seed = parseInt(startSeed) + task.batchesDone * task.reqBody.num_outputs
}
const outputContainer = document.createElement("div")
outputContainer.className = "img-batch"
task.outputContainer.insertBefore(outputContainer, task.outputContainer.firstChild)
const eventInfo = { reqBody: newTaskReqBody }
const callbacksPromises = PLUGINS["TASK_CREATE"].map((hook) => {
if (typeof hook !== "function") {
console.error("The provided TASK_CREATE hook is not a function. Hook: %o", hook)
return Promise.reject(new Error("hook is not a function."))
}
try {
return Promise.resolve(hook.call(task, eventInfo))
} catch (err) {
console.error(err)
return Promise.reject(err)
}
})
await Promise.allSettled(callbacksPromises)
let instance = eventInfo.instance
if (!instance) {
const factory = PLUGINS.OUTPUTS_FORMATS.get(eventInfo.reqBody?.output_format || newTaskReqBody.output_format)
if (factory) {
instance = await Promise.resolve(factory(eventInfo.reqBody || newTaskReqBody))
}
if (!instance) {
console.error(
`${factory ? "Factory " + String(factory) : "No factory defined"} for output format ${eventInfo.reqBody
?.output_format || newTaskReqBody.output_format}. Instance is ${instance ||
"undefined"}. Using default renderer.`
)
instance = new SD.RenderTask(eventInfo.reqBody || newTaskReqBody)
}
}
task["instances"].push(instance)
task.batchesDone++
document.dispatchEvent(new CustomEvent("before_task_start", { detail: { task: task } }))
instance.enqueue(getTaskUpdater(task, newTaskReqBody, outputContainer)).then(
(renderResult) => {
onRenderTaskCompleted(task, newTaskReqBody, instance, outputContainer, renderResult)
},
(reason) => {
onTaskErrorHandler(task, newTaskReqBody, instance, reason)
}
)
document.dispatchEvent(new CustomEvent("after_task_start", { detail: { task: task } }))
}
function getTaskUpdater(task, reqBody, outputContainer) {
const outputMsg = task["outputMsg"]
const progressBar = task["progressBar"]
const progressBarInner = progressBar.querySelector("div")
const batchCount = task.batchCount
let lastStatus = undefined
return async function(event) {
if (this.status !== lastStatus) {
lastStatus = this.status
switch (this.status) {
case SD.TaskStatus.pending:
task["taskStatusLabel"].innerText = "Pending"
task["taskStatusLabel"].classList.add("waitingTaskLabel")
break
case SD.TaskStatus.waiting:
task["taskStatusLabel"].innerText = "Waiting"
task["taskStatusLabel"].classList.add("waitingTaskLabel")
task["taskStatusLabel"].classList.remove("activeTaskLabel")
break
case SD.TaskStatus.processing:
case SD.TaskStatus.completed:
task["taskStatusLabel"].innerText = "Processing"
task["taskStatusLabel"].classList.add("activeTaskLabel")
task["taskStatusLabel"].classList.remove("waitingTaskLabel")
break
case SD.TaskStatus.stopped:
break
case SD.TaskStatus.failed:
if (!SD.isServerAvailable()) {
logError(
"Stable Diffusion is still starting up, please wait. If this goes on beyond a few minutes, Stable Diffusion has probably crashed. Please check the error message in the command-line window.",
event,
outputMsg
)
} else if (typeof event?.response === "object") {
let msg = "Stable Diffusion had an error reading the response:<br/><pre>"
if (this.exception) {
msg += `Error: ${this.exception.message}<br/>`
}
try {
// 'Response': body stream already read
msg += "Read: " + (await event.response.text())
} catch (e) {
msg += "Unexpected end of stream. "
}
const bufferString = event.reader.bufferedString
if (bufferString) {
msg += "Buffered data: " + bufferString
}
msg += "</pre>"
logError(msg, event, outputMsg)
}
break
}
}
if ("update" in event) {
const stepUpdate = event.update
if (!("step" in stepUpdate)) {
return
}
// task.instances can be a mix of different tasks with uneven number of steps (Render Vs Filter Tasks)
const instancesWithProgressUpdates = task.instances.filter((instance) => instance.step !== undefined)
const overallStepCount =
instancesWithProgressUpdates.reduce(
(sum, instance) =>
sum +
(instance.isPending
? Math.max(0, instance.step || stepUpdate.step) /
(instance.total_steps || stepUpdate.total_steps)
: 1),
0 // Initial value
) * stepUpdate.total_steps // Scale to current number of steps.
const totalSteps = instancesWithProgressUpdates.reduce(
(sum, instance) => sum + (instance.total_steps || stepUpdate.total_steps),
stepUpdate.total_steps * (batchCount - task.batchesDone) // Initial value at (unstarted task count * Nbr of steps)
)
const percent = Math.min(100, 100 * (overallStepCount / totalSteps)).toFixed(0)
const timeTaken = stepUpdate.step_time // sec
const stepsRemaining = Math.max(0, totalSteps - overallStepCount)
const timeRemaining = timeTaken < 0 ? "" : millisecondsToStr(stepsRemaining * timeTaken * 1000)
outputMsg.innerHTML = `Batch ${task.batchesDone} of ${batchCount}. Generating image(s): ${percent}%. Time remaining (approx): ${timeRemaining}`
outputMsg.style.display = "block"
progressBarInner.style.width = `${percent}%`
if (stepUpdate.output) {
document.dispatchEvent(
new CustomEvent("on_task_step", {
detail: {
task: task,
reqBody: reqBody,
stepUpdate: stepUpdate,
outputContainer: outputContainer,
},
})
)
}
}
}
}
function onRenderTaskCompleted(task, reqBody, instance, outputContainer, stepUpdate) {
if (typeof stepUpdate === "object") {
if (stepUpdate.status === "succeeded") {
document.dispatchEvent(
new CustomEvent("on_render_task_success", {
detail: {
task: task,
reqBody: reqBody,
stepUpdate: stepUpdate,
outputContainer: outputContainer,
},
})
)
} else {
task.isProcessing = false
document.dispatchEvent(
new CustomEvent("on_render_task_fail", {
detail: {
task: task,
reqBody: reqBody,
stepUpdate: stepUpdate,
outputContainer: outputContainer,
},
})
)
}
}
if (task.isProcessing && task.batchesDone < task.batchCount) {
task["taskStatusLabel"].innerText = "Pending"
task["taskStatusLabel"].classList.add("waitingTaskLabel")
task["taskStatusLabel"].classList.remove("activeTaskLabel")
return
}
if ("instances" in task && task.instances.some((ins) => ins != instance && ins.isPending)) {
return
}
task.isProcessing = false
task["stopTask"].innerHTML = '<i class="fa-solid fa-trash-can"></i> Remove'
task["taskStatusLabel"].style.display = "none"
let time = millisecondsToStr(Date.now() - task.startTime)
if (task.batchesDone == task.batchCount) {
if (!task.outputMsg.innerText.toLowerCase().includes("error")) {
task.outputMsg.innerText = `Processed ${task.numOutputsTotal} images in ${time}`
}
task.progressBar.style.height = "0px"
task.progressBar.style.border = "0px solid var(--background-color3)"
task.progressBar.classList.remove("active")
// setStatus("request", "done", "success")
} else {
task.outputMsg.innerText += `. Task ended after ${time}`
}
// if (randomSeedField.checked) { // we already update this before the task starts
// seedField.value = task.seed
// }
if (SD.activeTasks.size > 0) {
return
}
const uncompletedTasks = getUncompletedTaskEntries()
if (uncompletedTasks && uncompletedTasks.length > 0) {
return
}
if (pauseClient) {
resumeBtn.click()
}
document.dispatchEvent(
new CustomEvent("on_all_tasks_complete", {
detail: {},
})
)
}
function resumeClient() {
if (pauseClient) {
document.body.classList.remove("wait-pause")
document.body.classList.add("pause")
}
return new Promise((resolve) => {
let playbuttonclick = function() {
resumeBtn.removeEventListener("click", playbuttonclick)
resolve("resolved")
}
resumeBtn.addEventListener("click", playbuttonclick)
})
}
function abortTask(task) {
if (!task.isProcessing) {
return false
}
task.isProcessing = false
task.progressBar.classList.remove("active")
task["taskStatusLabel"].style.display = "none"
task["stopTask"].innerHTML = '<i class="fa-solid fa-trash-can"></i> Remove'
if (!task.instances?.some((r) => r.isPending)) {
return
}
task.instances.forEach((instance) => {
try {
instance.abort()
} catch (e) {
console.error(e)
}
})
}
async function stopAllTasks() {
getUncompletedTaskEntries().forEach((taskEntry) => {
const taskStatusLabel = taskEntry.querySelector(".taskStatusLabel")
if (taskStatusLabel) {
taskStatusLabel.style.display = "none"
}
const task = htmlTaskMap.get(taskEntry)
if (!task) {
return
}
abortTask(task)
})
}
function onTaskErrorHandler(task, reqBody, instance, reason) {
if (!task.isProcessing) {
return
}
console.log("Render request %o, Instance: %o, Error: %s", reqBody, instance, reason)
abortTask(task)
const outputMsg = task["outputMsg"]
logError(
"Stable Diffusion had an error. Please check the logs in the command-line window. <br/><br/>" +
reason +
"<br/><pre>" +
reason.stack +
"</pre>",
task,
outputMsg
)
// setStatus("request", "error", "error")
}
pauseBtn.addEventListener("click", function() {
pauseClient = true
pauseBtn.style.display = "none"
resumeBtn.style.display = "inline"
document.body.classList.add("wait-pause")
})
resumeBtn.addEventListener("click", function() {
pauseClient = false
resumeBtn.style.display = "none"
pauseBtn.style.display = "inline"
document.body.classList.remove("pause")
document.body.classList.remove("wait-pause")
})

View File

@ -1,85 +1,82 @@
const themeField = document.getElementById("theme")
var DEFAULT_THEME = {}
var THEMES = [] // initialized in initTheme from data in css
const themeField = document.getElementById("theme");
var DEFAULT_THEME = {};
var THEMES = []; // initialized in initTheme from data in css
function getThemeName(theme) {
theme = theme.replace("theme-", "")
theme = theme
.split("-")
.map((word) => word.charAt(0).toUpperCase() + word.slice(1))
.join(" ")
return theme
theme = theme.replace("theme-", "");
theme = theme.split("-").map(word => word.charAt(0).toUpperCase() + word.slice(1)).join(" ");
return theme;
}
// init themefield
function initTheme() {
Array.from(document.styleSheets)
.filter((sheet) => sheet.href?.startsWith(window.location.origin))
.flatMap((sheet) => Array.from(sheet.cssRules))
.forEach((rule) => {
var selector = rule.selectorText
.filter(sheet => sheet.href?.startsWith(window.location.origin))
.flatMap(sheet => Array.from(sheet.cssRules))
.forEach(rule => {
var selector = rule.selectorText;
if (selector && selector.startsWith(".theme-") && !selector.includes(" ")) {
if (DEFAULT_THEME) {
// re-add props that dont change (css needs this so they update correctly)
if (DEFAULT_THEME) { // re-add props that dont change (css needs this so they update correctly)
Array.from(DEFAULT_THEME.rule.style)
.filter((cssVariable) => !Array.from(rule.style).includes(cssVariable))
.forEach((cssVariable) => {
rule.style.setProperty(cssVariable, DEFAULT_THEME.rule.style.getPropertyValue(cssVariable))
})
.filter(cssVariable => !Array.from(rule.style).includes(cssVariable))
.forEach(cssVariable => {
rule.style.setProperty(cssVariable, DEFAULT_THEME.rule.style.getPropertyValue(cssVariable));
});
}
var theme_key = selector.substring(1)
var theme_key = selector.substring(1);
THEMES.push({
key: theme_key,
name: getThemeName(theme_key),
rule: rule,
rule: rule
})
}
if (selector && selector == ":root") {
DEFAULT_THEME = {
key: "theme-default",
name: "Default",
rule: rule,
}
rule: rule
};
}
})
THEMES.forEach((theme) => {
var new_option = document.createElement("option")
new_option.setAttribute("value", theme.key)
new_option.innerText = theme.name
themeField.appendChild(new_option)
})
});
THEMES.forEach(theme => {
var new_option = document.createElement("option");
new_option.setAttribute("value", theme.key);
new_option.innerText = theme.name;
themeField.appendChild(new_option);
});
// setup the style transitions a second after app initializes, so initial style is instant
setTimeout(() => {
var body = document.querySelector("body")
var style = document.createElement("style")
style.innerHTML = "* { transition: background 0.5s, color 0.5s, background-color 0.5s; }"
body.appendChild(style)
}, 1000)
var body = document.querySelector("body");
var style = document.createElement('style');
style.innerHTML = "* { transition: background 0.5s, color 0.5s, background-color 0.5s; }";
body.appendChild(style);
}, 1000);
}
initTheme()
initTheme();
function themeFieldChanged() {
var theme_key = themeField.value
var theme_key = themeField.value;
var body = document.querySelector("body")
body.classList.remove(...THEMES.map((theme) => theme.key))
body.classList.add(theme_key)
var body = document.querySelector("body");
body.classList.remove(...THEMES.map(theme => theme.key));
body.classList.add(theme_key);
//
//
body.style = ""
var theme = THEMES.find((t) => t.key == theme_key)
body.style = "";
var theme = THEMES.find(t => t.key == theme_key);
let borderColor = undefined
if (theme) {
borderColor = theme.rule.style.getPropertyValue("--input-border-color").trim()
if (!borderColor.startsWith("#")) {
borderColor = theme.rule.style.getPropertyValue("--theme-color-fallback")
borderColor = theme.rule.style.getPropertyValue('--input-border-color').trim()
if (!borderColor.startsWith('#')) {
borderColor = theme.rule.style.getPropertyValue('--theme-color-fallback')
}
} else {
borderColor = DEFAULT_THEME.rule.style.getPropertyValue("--theme-color-fallback")
borderColor = DEFAULT_THEME.rule.style.getPropertyValue('--theme-color-fallback')
}
document.querySelector('meta[name="theme-color"]').setAttribute("content", borderColor)
}
themeField.addEventListener("change", themeFieldChanged)
themeField.addEventListener('change', themeFieldChanged);

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

View File

@ -2428,19 +2428,6 @@
"path": "artist/by_yoshitaka_amano/landscape-0.jpg"
}
]
},
{
"modifier": "by Zdzislaw Beksinski",
"previews": [
{
"name": "portrait",
"path": "artist/by_zdzislaw_beksinski/portrait-0.jpg"
},
{
"name": "landscape",
"path": "artist/by_zdzislaw_beksinski/landscape-0.jpg"
}
]
}
]
},

View File

@ -1,32 +1,45 @@
;(function() {
(function () {
"use strict"
var styleSheet = document.createElement("style");
styleSheet.textContent = `
.auto-scroll {
float: right;
}
`;
document.head.appendChild(styleSheet);
const autoScrollControl = document.createElement('div');
autoScrollControl.innerHTML = `<input id="auto_scroll" name="auto_scroll" type="checkbox">
<label for="auto_scroll">Scroll to generated image</label>`
autoScrollControl.className = "auto-scroll"
clearAllPreviewsBtn.parentNode.insertBefore(autoScrollControl, clearAllPreviewsBtn.nextSibling)
prettifyInputs(document);
let autoScroll = document.querySelector("#auto_scroll")
// save/restore the toggle state
autoScroll.addEventListener('click', (e) => {
localStorage.setItem('auto_scroll', autoScroll.checked)
})
autoScroll.checked = localStorage.getItem('auto_scroll') == "true"
// observe for changes in the preview pane
var observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.target.className == "img-batch") {
var observer = new MutationObserver(function (mutations) {
mutations.forEach(function (mutation) {
if (mutation.target.className == 'img-batch') {
Autoscroll(mutation.target)
}
})
})
observer.observe(document.getElementById("preview"), {
childList: true,
subtree: true,
observer.observe(document.getElementById('preview'), {
childList: true,
subtree: true
})
function Autoscroll(target) {
if (autoScroll.checked && target !== null) {
const img = target.querySelector("img")
img.addEventListener(
"load",
function() {
img?.closest(".imageTaskContainer").scrollIntoView()
},
{ once: true }
)
target.parentElement.parentElement.parentElement.scrollIntoView();
}
}
})()

View File

@ -1,116 +1,93 @@
;(function() {
"use strict"
if (typeof editorModifierTagsList !== "object") {
console.error("editorModifierTagsList missing...")
(function () { "use strict"
if (typeof editorModifierTagsList !== 'object') {
console.error('editorModifierTagsList missing...')
return
}
const styleSheet = document.createElement("style")
const styleSheet = document.createElement("style");
styleSheet.textContent = `
.modifier-card-tiny.drag-sort-active {
background: transparent;
border: 2px dashed white;
opacity:0.2;
}
`
document.head.appendChild(styleSheet)
`;
document.head.appendChild(styleSheet);
// observe for changes in tag list
const observer = new MutationObserver(function(mutations) {
// mutations.forEach(function (mutation) {
if (editorModifierTagsList.childNodes.length > 0) {
ModifierDragAndDrop(editorModifierTagsList)
}
// })
const observer = new MutationObserver(function (mutations) {
// mutations.forEach(function (mutation) {
if (editorModifierTagsList.childNodes.length > 0) {
ModifierDragAndDrop(editorModifierTagsList)
}
// })
})
observer.observe(editorModifierTagsList, {
childList: true,
childList: true
})
let current
function ModifierDragAndDrop(target) {
let overlays = document.querySelector("#editor-inputs-tags-list").querySelectorAll(".modifier-card-overlay")
overlays.forEach((i) => {
i.parentElement.draggable = true
let overlays = document.querySelector('#editor-inputs-tags-list').querySelectorAll('.modifier-card-overlay')
overlays.forEach (i => {
i.parentElement.draggable = true;
i.parentElement.ondragstart = (e) => {
current = i
i.parentElement.getElementsByClassName("modifier-card-image-overlay")[0].innerText = ""
i.parentElement.getElementsByClassName('modifier-card-image-overlay')[0].innerText = ''
i.parentElement.draggable = true
i.parentElement.classList.add("drag-sort-active")
for (let item of document
.querySelector("#editor-inputs-tags-list")
.getElementsByClassName("modifier-card-image-overlay")) {
if (
item.parentElement.parentElement.getElementsByClassName("modifier-card-overlay")[0] != current
) {
item.parentElement.parentElement.getElementsByClassName(
"modifier-card-image-overlay"
)[0].style.opacity = 0
if (item.parentElement.getElementsByClassName("modifier-card-image").length > 0) {
item.parentElement.getElementsByClassName("modifier-card-image")[0].style.filter = "none"
i.parentElement.classList.add('drag-sort-active')
for(let item of document.querySelector('#editor-inputs-tags-list').getElementsByClassName('modifier-card-image-overlay')) {
if (item.parentElement.parentElement.getElementsByClassName('modifier-card-overlay')[0] != current) {
item.parentElement.parentElement.getElementsByClassName('modifier-card-image-overlay')[0].style.opacity = 0
if(item.parentElement.getElementsByClassName('modifier-card-image').length > 0) {
item.parentElement.getElementsByClassName('modifier-card-image')[0].style.filter = 'none'
}
item.parentElement.parentElement.style.transform = "none"
item.parentElement.parentElement.style.boxShadow = "none"
item.parentElement.parentElement.style.transform = 'none'
item.parentElement.parentElement.style.boxShadow = 'none'
}
item.innerText = ""
item.innerText = ''
}
}
i.ondragenter = (e) => {
e.preventDefault()
if (i != current) {
let currentPos = 0,
droppedPos = 0
let currentPos = 0, droppedPos = 0;
for (let it = 0; it < overlays.length; it++) {
if (current == overlays[it]) {
currentPos = it
}
if (i == overlays[it]) {
droppedPos = it
}
if (current == overlays[it]) { currentPos = it; }
if (i == overlays[it]) { droppedPos = it; }
}
if (i.parentElement != current.parentElement) {
let currentPos = 0,
droppedPos = 0
let currentPos = 0, droppedPos = 0
for (let it = 0; it < overlays.length; it++) {
if (current == overlays[it]) {
currentPos = it
}
if (i == overlays[it]) {
droppedPos = it
}
if (current == overlays[it]) { currentPos = it }
if (i == overlays[it]) { droppedPos = it }
}
if (currentPos < droppedPos) {
current = i.parentElement.parentNode
.insertBefore(current.parentElement, i.parentElement.nextSibling)
.getElementsByClassName("modifier-card-overlay")[0]
current = i.parentElement.parentNode.insertBefore(current.parentElement, i.parentElement.nextSibling).getElementsByClassName('modifier-card-overlay')[0]
} else {
current = i.parentElement.parentNode
.insertBefore(current.parentElement, i.parentElement)
.getElementsByClassName("modifier-card-overlay")[0]
current = i.parentElement.parentNode.insertBefore(current.parentElement, i.parentElement).getElementsByClassName('modifier-card-overlay')[0]
}
// update activeTags
const tag = activeTags.splice(currentPos, 1)
activeTags.splice(droppedPos, 0, tag[0])
document.dispatchEvent(new Event("refreshImageModifiers"))
document.dispatchEvent(new Event('refreshImageModifiers'))
}
}
}
};
i.ondragover = (e) => {
e.preventDefault()
}
i.parentElement.ondragend = (e) => {
i.parentElement.classList.remove("drag-sort-active")
for (let item of document
.querySelector("#editor-inputs-tags-list")
.getElementsByClassName("modifier-card-image-overlay")) {
item.style.opacity = ""
item.innerText = "-"
i.parentElement.classList.remove('drag-sort-active')
for(let item of document.querySelector('#editor-inputs-tags-list').getElementsByClassName('modifier-card-image-overlay')) {
item.style.opacity = ''
item.innerText = '-'
}
}
})

Some files were not shown because too many files have changed in this diff Show More